BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Corpas FJ, González-gordo S, Cañas A, Palma JM, Brouquisse R. Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany 2019;70:4391-404. [DOI: 10.1093/jxb/erz031] [Cited by in Crossref: 107] [Cited by in F6Publishing: 115] [Article Influence: 35.7] [Reference Citation Analysis]
Number Citing Articles
1 Mir IR, Gautam H, Anjum NA, Masood A, Khan NA. Calcium and nitric oxide signaling in plant cadmium stress tolerance: A cross talk. South African Journal of Botany 2022;150:387-403. [DOI: 10.1016/j.sajb.2022.07.039] [Reference Citation Analysis]
2 Fang H, Liu R, Yu Z, Shao Y, Wu G, Pei Y. Gasotransmitter H2S accelerates seed germination via activating AOX mediated cyanide-resistant respiration pathway. Plant Physiol Biochem 2022;190:193-202. [PMID: 36126464 DOI: 10.1016/j.plaphy.2022.09.003] [Reference Citation Analysis]
3 Zulfiqar F, Nafees M, Chen J, Darras A, Ferrante A, Hancock JT, Ashraf M, Zaid A, Latif N, Corpas FJ, Altaf MA, Siddique KHM. Chemical priming enhances plant tolerance to salt stress. Front Plant Sci 2022;13:946922. [DOI: 10.3389/fpls.2022.946922] [Reference Citation Analysis]
4 Sharma P, Meyyazhagan A, Easwaran M, Sharma MMM, Mehta S, Pandey V, Liu W, Kamyab H, Balasubramanian B, Baskaran R, Klemeš JJ, Mesbah M, Chelliapan S. Hydrogen Sulfide: A new warrior in assisting seed germination during adverse environmental conditions. Plant Growth Regul. [DOI: 10.1007/s10725-022-00887-w] [Reference Citation Analysis]
5 Ma S, Bao J, Lu Y, Lu X, Tian P, Zhang X, Yang J, Shi X, Pu Z, Li S. Glucoraphanin and sulforaphane biosynthesis by melatonin mediating nitric oxide in hairy roots of broccoli (Brassica oleracea L. var. italica Planch): insights from transcriptome data. BMC Plant Biol 2022;22:403. [PMID: 35974315 DOI: 10.1186/s12870-022-03747-x] [Reference Citation Analysis]
6 Treffon P, Vierling E. Focus on Nitric Oxide Homeostasis: Direct and Indirect Enzymatic Regulation of Protein Denitrosation Reactions in Plants. Antioxidants 2022;11:1411. [DOI: 10.3390/antiox11071411] [Reference Citation Analysis]
7 Bano K, Kumar B, Alyemeni MN, Ahmad P. Protective mechanisms of sulfur against arsenic phytotoxicity in Brassica napus by regulating thiol biosynthesis, sulfur-assimilation, photosynthesis, and antioxidant response. Plant Physiology and Biochemistry 2022. [DOI: 10.1016/j.plaphy.2022.07.026] [Reference Citation Analysis]
8 Tao Z, Yan P, Zhang X, Wang D, Wang Y, Ma X, Yang Y, Liu X, Chang X, Sui P, Chen Y. Physiological Mechanism of Abscisic Acid-Induced Heat-Tolerance Responses to Cultivation Techniques in Wheat and Maize—Review. Agronomy 2022;12:1579. [DOI: 10.3390/agronomy12071579] [Reference Citation Analysis]
9 Martínez-Lorente SE, Pardo-Hernández M, Martí-Guillén JM, López-Delacalle M, Rivero RM. Interaction between Melatonin and NO: Action Mechanisms, Main Targets, and Putative Roles of the Emerging Molecule NOmela. Int J Mol Sci 2022;23:6646. [PMID: 35743084 DOI: 10.3390/ijms23126646] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. H2S in Horticultural Plants: Endogenous Detection by an Electrochemical Sensor, Emission by a Gas Detector, and Its Correlation with L-Cysteine Desulfhydrase (LCD) Activity. Int J Mol Sci 2022;23:5648. [PMID: 35628468 DOI: 10.3390/ijms23105648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Singh D. Juggling with Reactive Oxygen Species and Antioxidant Defense System – A coping mechanism under salt stress. Plant Stress 2022. [DOI: 10.1016/j.stress.2022.100093] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiological Reviews. [DOI: 10.1152/physrev.00028.2021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
13 Khan MSS, Islam F, Ye Y, Ashline M, Wang D, Zhao B, Fu ZQ, Chen J. The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022;23:4272. [PMID: 35457090 DOI: 10.3390/ijms23084272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Mathur P, Roy S, Nasir Khan M, Mukherjee S. Hydrogen sulphide (H2 S) in the hidden half: Role in root growth, stress signalling and rhizospheric interactions. Plant Biol (Stuttg) 2022. [PMID: 35334141 DOI: 10.1111/plb.13417] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang L, Mu X, Chen X, Han Y. Hydrogen sulfide attenuates intracellular oxidative stress via repressing glycolate oxidase activities in Arabidopsis thaliana. BMC Plant Biol 2022;22. [DOI: 10.1186/s12870-022-03490-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
16 Kharbech O, Sakouhi L, Mahjoubi Y, Ben Massoud M, Debez A, Zribi OT, Djebali W, Chaoui A, Mur LAJ. Nitric oxide donor, sodium nitroprusside modulates hydrogen sulfide metabolism and cysteine homeostasis to aid the alleviation of chromium toxicity in maize seedlings (Zea mays L.). J Hazard Mater 2022;424:127302. [PMID: 34583165 DOI: 10.1016/j.jhazmat.2021.127302] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
17 Suhel M, Husain T, Prasad SM, Singh VP. GABA Requires Nitric Oxide for Alleviating Arsenate Stress in Tomato and Brinjal Seedlings. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10576-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Cheng P, Zhang Y, Wang J, Guan R, Pu H, Shen W. Importance of hydrogen sulfide as the molecular basis of heterosis in hybrid Brassica napus: A case study in salinity response. Environmental and Experimental Botany 2022;193:104693. [DOI: 10.1016/j.envexpbot.2021.104693] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
19 Mondal R, Madhurya K, Saha P, Chattopadhyay SK, Antony S, Kumar A, Roy S, Roy D. Expression profile, transcriptional and post-transcriptional regulation of genes involved in hydrogen sulphide metabolism connecting the balance between development and stress adaptation in plants: a data-mining bioinformatics approach. Plant Biol (Stuttg) 2021. [PMID: 34939301 DOI: 10.1111/plb.13378] [Reference Citation Analysis]
20 Ahmad A, Hashmi SS, Palma JM, Corpas FJ. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Chemosphere 2021;290:133329. [PMID: 34922969 DOI: 10.1016/j.chemosphere.2021.133329] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
21 Choudhary AK, Singh S, Khatri N, Gupta R. Hydrogen sulphide: an emerging regulator of plant defence signalling. Plant Biol (Stuttg) 2021. [PMID: 34904345 DOI: 10.1111/plb.13376] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H. Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol (Stuttg) 2021. [PMID: 34870354 DOI: 10.1111/plb.13368] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
23 Nabi A, Naeem M, Aftab T, Khan MMA, Ahmad P. A comprehensive review of adaptations in plants under arsenic toxicity: Physiological, metabolic and molecular interventions. Environ Pollut 2021;290:118029. [PMID: 34474375 DOI: 10.1016/j.envpol.2021.118029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Lana LG, de Araújo LM, Silva TF, Modolo LV. Interplay between gasotransmitters and potassium is a K+ey factor during plant response to abiotic stress. Plant Physiol Biochem 2021;169:322-32. [PMID: 34837865 DOI: 10.1016/j.plaphy.2021.11.023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Zhao R, Yin K, Chen S. Hydrogen sulphide signalling in plant response to abiotic stress. Plant Biol (Stuttg) 2021. [PMID: 34837449 DOI: 10.1111/plb.13367] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Zhou H, Zhou Y, Zhang F, Guan W, Su Y, Yuan X, Xie Y. Persulfidation of Nitrate Reductase 2 Is Involved in l-Cysteine Desulfhydrase-Regulated Rice Drought Tolerance. Int J Mol Sci 2021;22:12119. [PMID: 34829996 DOI: 10.3390/ijms222212119] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
27 Tyagi A, Sharma S, Ali S, Gaikwad K. Crosstalk between H2 S and NO: an emerging signalling pathway during waterlogging stress in legume crops. Plant Biol (Stuttg) 2021. [PMID: 34693601 DOI: 10.1111/plb.13319] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Sharafi Y, Jannatizadeh A, Fard JR, Aghdam MS. Melatonin treatment delays senescence and improves antioxidant potential of sweet cherry fruits during cold storage. Scientia Horticulturae 2021;288:110304. [DOI: 10.1016/j.scienta.2021.110304] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
29 Chen P, Yang W, MinxueWen, Jin S, Liu Y. Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity. Plant Physiol Biochem 2021;167:738-47. [PMID: 34509132 DOI: 10.1016/j.plaphy.2021.09.004] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
30 Jahan B, Rasheed F, Sehar Z, Fatma M, Iqbal N, Masood A, Anjum NA, Khan NA. Coordinated Role of Nitric Oxide, Ethylene, Nitrogen, and Sulfur in Plant Salt Stress Tolerance. Stresses 2021;1:181-99. [DOI: 10.3390/stresses1030014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
31 Liu L, Huang L, Sun C, Wang L, Jin C, Lin X. Cross-Talk between Hydrogen Peroxide and Nitric Oxide during Plant Development and Responses to Stress. J Agric Food Chem 2021;69:9485-97. [PMID: 34428901 DOI: 10.1021/acs.jafc.1c01605] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
32 Huang D, Jing G, Zhang L, Chen C, Zhu S. Interplay Among Hydrogen Sulfide, Nitric Oxide, Reactive Oxygen Species, and Mitochondrial DNA Oxidative Damage. Front Plant Sci 2021;12:701681. [PMID: 34421950 DOI: 10.3389/fpls.2021.701681] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci 2021;26:1270-85. [PMID: 34417078 DOI: 10.1016/j.tplants.2021.07.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
34 Khanna K, Sharma N, Kour S, Ali M, Ohri P, Bhardwaj R. Hydrogen Sulfide: A Robust Combatant against Abiotic Stresses in Plants. Hydrogen 2021;2:319-42. [DOI: 10.3390/hydrogen2030017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Huang D, Wang Y, Zhang D, Dong Y, Meng Q, Zhu S, Zhang L. Strigolactone maintains strawberry quality by regulating phenylpropanoid, NO, and H2S metabolism during storage. Postharvest Biology and Technology 2021;178:111546. [DOI: 10.1016/j.postharvbio.2021.111546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Siddiqui MH, Khan MN, Mukherjee S, Basahi RA, Alamri S, Al-Amri AA, Alsubaie QD, Ali HM, Al-Munqedhi BMA, Almohisen IAA. Exogenous melatonin-mediated regulation of K+ /Na+ transport, H+ -ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl-stressed tomato seedling roots. Plant Biol (Stuttg) 2021;23:797-805. [PMID: 34263973 DOI: 10.1111/plb.13296] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
37 Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. Plant Physiology and Biochemistry 2021;164:260-78. [DOI: 10.1016/j.plaphy.2021.05.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
38 Buet A, Steelheart C, Perini MA, Galatro A, Simontacchi M, Gergoff Grozeff GE. Nitric Oxide as a Key Gasotransmitter in Fruit Postharvest: An Overview. J Plant Growth Regul 2021;40:2286-302. [DOI: 10.1007/s00344-021-10428-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Kumar A, Kumar S, Anju T, Ramchiary N. Genetic, Epigenetic, and Hormonal Regulation of Fruit Development and Ripening in Capsicum L. Species. In: Roberts JA, editor. Annual Plant Reviews online. Wiley; 2018. pp. 295-356. [DOI: 10.1002/9781119312994.apr0782] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Kharbech O, Massoud MB, Chaoui A, Mur LAJ, Djebali W. Exogenous Nitric Oxide Confers Tolerance to Cr(VI) in Maize (Zea mays L.) Seedlings by Modulating Endogenous Oxido-Nitrosative Events. J Plant Growth Regul. [DOI: 10.1007/s00344-021-10411-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Dou Y, Chang C, Wang J, Cai Z, Zhang W, Du H, Gan Z, Wan C, Chen J, Zhu L. Hydrogen Sulfide Inhibits Enzymatic Browning of Fresh-Cut Chinese Water Chestnuts. Front Nutr 2021;8:652984. [PMID: 34150826 DOI: 10.3389/fnut.2021.652984] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
42 Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. J Exp Bot 2021;72:848-63. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
43 Zuccarelli R, Rodríguez-Ruiz M, Lopes-Oliveira PJ, Pascoal GB, Andrade SCS, Furlan CM, Purgatto E, Palma JM, Corpas FJ, Rossi M, Freschi L. Multifaceted roles of nitric oxide in tomato fruit ripening: NO-induced metabolic rewiring and consequences for fruit quality traits. J Exp Bot 2021;72:941-58. [PMID: 33165620 DOI: 10.1093/jxb/eraa526] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
44 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
45 Chen T, Tian M, Han Y. Hydrogen sulfide: a multi-tasking signal molecule in the regulation of oxidative stress responses. J Exp Bot 2020;71:2862-9. [PMID: 32076713 DOI: 10.1093/jxb/eraa093] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 18.0] [Reference Citation Analysis]
46 Pedersen O, Revsbech NP, Shabala S. Microsensors in plant biology: in vivo visualization of inorganic analytes with high spatial and/or temporal resolution. J Exp Bot 2020;71:3941-54. [PMID: 32253437 DOI: 10.1093/jxb/eraa175] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
47 Singh S, Husain T, Kushwaha BK, Suhel M, Fatima A, Mishra V, Singh SK, Bhatt JA, Rai M, Prasad SM, Dubey NK, Chauhan DK, Tripathi DK, Fotopoulos V, Singh VP. Regulation of ascorbate-glutathione cycle by exogenous nitric oxide and hydrogen peroxide in soybean roots under arsenate stress. Journal of Hazardous Materials 2021;409:123686. [DOI: 10.1016/j.jhazmat.2020.123686] [Cited by in Crossref: 11] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
48 Thakur M, Anand A. Hydrogen sulfide: An emerging signaling molecule regulating drought stress response in plants. Physiol Plant 2021;172:1227-43. [PMID: 33860955 DOI: 10.1111/ppl.13432] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
49 Wiszniewska A. Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure. Plants (Basel) 2021;10:623. [PMID: 33805922 DOI: 10.3390/plants10040623] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
50 Liu H, Xue S. Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response. Plant Commun 2021;2:100179. [PMID: 34027393 DOI: 10.1016/j.xplc.2021.100179] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
51 Yang T, Yuan G, Zhang Q, Xuan L, Li J, Zhou L, Shi H, Wang X, Wang C. Transcriptome and metabolome analyses reveal the pivotal role of hydrogen sulfide in promoting submergence tolerance in Arabidopsis. Environmental and Experimental Botany 2021;183:104365. [DOI: 10.1016/j.envexpbot.2020.104365] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
52 Bhat JA, Ahmad P, Corpas FJ. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. Journal of Hazardous Materials 2021;406:124289. [DOI: 10.1016/j.jhazmat.2020.124289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
53 Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. J Exp Bot 2021;72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
54 Iqbal N, Umar S, Khan NA, Corpas FJ. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants. Antioxidants (Basel) 2021;10:108. [PMID: 33466569 DOI: 10.3390/antiox10010108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
55 Arif MS, Yasmeen T, Abbas Z, Ali S, Rizwan M, Aljarba NH, Alkahtani S, Abdel-Daim MM. Role of Exogenous and Endogenous Hydrogen Sulfide (H2S) on Functional Traits of Plants Under Heavy Metal Stresses: A Recent Perspective. Front Plant Sci 2020;11:545453. [PMID: 33488636 DOI: 10.3389/fpls.2020.545453] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
56 Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int J Mol Sci 2020;22:E101. [PMID: 33374189 DOI: 10.3390/ijms22010101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 15] [Article Influence: 0.5] [Reference Citation Analysis]
57 Vojtovič D, Luhová L, Petřivalský M. Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. J Adv Res 2021;27:199-209. [PMID: 33318878 DOI: 10.1016/j.jare.2020.09.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
58 Kharbech O, Sakouhi L, Ben Massoud M, Jose Mur LA, Corpas FJ, Djebali W, Chaoui A. Nitric oxide and hydrogen sulfide protect plasma membrane integrity and mitigate chromium-induced methylglyoxal toxicity in maize seedlings. Plant Physiology and Biochemistry 2020;157:244-55. [DOI: 10.1016/j.plaphy.2020.10.017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
59 Zhang Y, Cheng P, Wang Y, Li Y, Su J, Chen Z, Yu X, Shen W. Genetic elucidation of hydrogen signaling in plant osmotic tolerance and stomatal closure via hydrogen sulfide. Free Radical Biology and Medicine 2020;161:1-14. [DOI: 10.1016/j.freeradbiomed.2020.09.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
60 Khan MIR, Khan NA, Jahan B, Goyal V, Hamid J, Khan S, Iqbal N, Alamri S, Siddiqui MH. Phosphorus supplementation modulates nitric oxide biosynthesis and stabilizes the defence system to improve arsenic stress tolerance in mustard. Plant Biol (Stuttg) 2021;23 Suppl 1:152-61. [PMID: 33176068 DOI: 10.1111/plb.13211] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
61 Mukherjee S, Bhatla SC. Exogenous Melatonin Modulates Endogenous H2S Homeostasis and L-Cysteine Desulfhydrase Activity in Salt-Stressed Tomato (Solanum lycopersicum L. var. cherry) Seedling Cotyledons. J Plant Growth Regul. [DOI: 10.1007/s00344-020-10261-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
62 Li H, Shi J, Wang Z, Zhang W, Yang H. H2S pretreatment mitigates the alkaline salt stress on Malus hupehensis roots by regulating Na+/K+ homeostasis and oxidative stress. Plant Physiology and Biochemistry 2020;156:233-41. [DOI: 10.1016/j.plaphy.2020.09.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
63 Li J, Shi C, Wang X, Liu C, Ding X, Ma P, Wang X, Jia H. Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to Copper Oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiology and Biochemistry 2020;156:257-66. [DOI: 10.1016/j.plaphy.2020.09.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
64 Gong C, Shi C, Ding X, Liu C, Li J. Hydrogen sulfide induces Ca2+ signal in guard cells by regulating reactive oxygen species accumulation. Plant Signal Behav 2020;15:1805228. [PMID: 32772870 DOI: 10.1080/15592324.2020.1805228] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020;324:211-9. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
66 Szepesi Á. Halotropism: Phytohormonal Aspects and Potential Applications. Front Plant Sci 2020;11:571025. [PMID: 33042187 DOI: 10.3389/fpls.2020.571025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
67 Jia H, Wang X, Shi C, Guo J, Ma P, Ren X, Wei T, Liu H, Li J. Hydrogen sulfide decreases Cd translocation from root to shoot through increasing Cd accumulation in cell wall and decreasing Cd2+ influx in Isatis indigotica. Plant Physiology and Biochemistry 2020;155:605-12. [DOI: 10.1016/j.plaphy.2020.08.033] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
68 González-gordo S, Palma JM, Corpas FJ. Appraisal of H2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. Plant Physiology and Biochemistry 2020;155:579-88. [DOI: 10.1016/j.plaphy.2020.08.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
69 Rather BA, Mir IR, Sehar Z, Anjum NA, Masood A, Khan NA. The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. Plant Physiology and Biochemistry 2020;155:523-34. [DOI: 10.1016/j.plaphy.2020.08.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
70 Mukherjee S, Corpas FJ. Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: A gaseous interactome. Plant Physiology and Biochemistry 2020;155:800-14. [DOI: 10.1016/j.plaphy.2020.08.020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
71 Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. Front Plant Sci 2020;11:571288. [PMID: 33072147 DOI: 10.3389/fpls.2020.571288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
72 Sohail M, Wills RBH, Bowyer MC, Pristijono P. Beneficial impact of exogenous arginine, cysteine and methionine on postharvest senescence of broccoli. Food Chem 2021;338:128055. [PMID: 32950008 DOI: 10.1016/j.foodchem.2020.128055] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
73 Ma M, Wendehenne D, Philippot L, Hänsch R, Flemetakis E, Hu B, Rennenberg H. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. Plant Cell Environ 2020;43:2336-54. [DOI: 10.1111/pce.13850] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
74 Yastreb TO, Kolupaev YE, Shkliarevskyi MA, Dmitriev AP. Participation of Jasmonate Signaling Components in the Development of Arabidopsis thaliana’s Salt Resistance Induced by H2S and NO Donors. Russ J Plant Physiol 2020;67:827-34. [DOI: 10.1134/s1021443720050192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
75 Zulfiqar F, Hancock JT. Hydrogen sulfide in horticulture: Emerging roles in the era of climate change. Plant Physiol Biochem 2020;155:667-75. [PMID: 32861033 DOI: 10.1016/j.plaphy.2020.08.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
76 Karpets YV, Shkliarevskyi MA, Horielova EI, Kolupaev YE. Participation of Hydrogen Sulfide in Induction of Antioxidant System in Roots of Wheat Plantlets and Their Heat Resistance by Salicylic Acid. Appl Biochem Microbiol 2020;56:467-72. [DOI: 10.1134/s0003683820040079] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
77 González-Gordo S, Bautista R, Claros MG, Cañas A, Palma JM, Corpas FJ. Nitric oxide-dependent regulation of sweet pepper fruit ripening. J Exp Bot 2019;70:4557-70. [PMID: 31046097 DOI: 10.1093/jxb/erz136] [Cited by in Crossref: 32] [Cited by in F6Publishing: 41] [Article Influence: 16.0] [Reference Citation Analysis]
78 Palma JM, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas FJ. Nitric oxide in the physiology and quality of fleshy fruits. J Exp Bot 2019;70:4405-17. [PMID: 31359063 DOI: 10.1093/jxb/erz350] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 14.5] [Reference Citation Analysis]
79 Hancock JT, Veal D, Kolbert Z. Nitric oxide, other reactive signalling compounds, redox, and reductive stress. Journal of Experimental Botany 2021;72:819-29. [DOI: 10.1093/jxb/eraa331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
80 Solórzano E, Corpas FJ, González-gordo S, Palma JM. Reactive Oxygen Species (ROS) Metabolism and Nitric Oxide (NO) Content in Roots and Shoots of Rice (Oryza sativa L.) Plants under Arsenic-Induced Stress. Agronomy 2020;10:1014. [DOI: 10.3390/agronomy10071014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
81 Alamri S, Alsubaie QD, Al-Amri AA, Al-Munqedi B, Ali HM, Kushwaha BK, Singh VP, Siddiqui MH. Priming of tomato seedlings with 2-oxoglutarate induces arsenic toxicity alleviatory responses by involving endogenous nitric oxide. Physiol Plant 2021;173:45-57. [PMID: 32656764 DOI: 10.1111/ppl.13168] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
82 Li J, Wang X, Wang X, Ma P, Yin W, Wang Y, Chen Y, Chen S, Jia H, Usadel B. Hydrogen sulfide promotes hypocotyl elongation via increasing cellulose content and changing the arrangement of cellulose fibrils in alfalfa. Journal of Experimental Botany 2020;71:5852-64. [DOI: 10.1093/jxb/eraa318] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
83 Kushwaha BK, Ali HM, Siddiqui MH, Singh VP. Nitric oxide-mediated regulation of sub-cellular chromium distribution, ascorbate–glutathione cycle and glutathione biosynthesis in tomato roots under chromium (VI) toxicity. Journal of Biotechnology 2020;318:68-77. [DOI: 10.1016/j.jbiotec.2020.05.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
84 He H, He LF. Crosstalk between melatonin and nitric oxide in plant development and stress responses. Physiol Plant 2020;170:218-26. [PMID: 32479663 DOI: 10.1111/ppl.13143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
85 Kharbech O, Ben Massoud M, Sakouhi L, Djebali W, Jose Mur LA, Chaoui A. Exogenous application of hydrogen sulfide reduces chromium toxicity in maize seedlings by suppressing NADPH oxidase activities and methylglyoxal accumulation. Plant Physiol Biochem 2020;154:646-56. [PMID: 32731097 DOI: 10.1016/j.plaphy.2020.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
86 Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM, Corpas FJ. Plant catalases as NO and H2S targets. Redox Biol 2020;34:101525. [PMID: 32505768 DOI: 10.1016/j.redox.2020.101525] [Cited by in Crossref: 41] [Cited by in F6Publishing: 59] [Article Influence: 20.5] [Reference Citation Analysis]
87 Gupta KJ, Kolbert Z, Durner J, Lindermayr C, Corpas FJ, Brouquisse R, Barroso JB, Umbreen S, Palma JM, Hancock JT, Petrivalsky M, Wendehenne D, Loake GJ. Regulating the regulator: nitric oxide control of post-translational modifications. New Phytol 2020;227:1319-25. [PMID: 32339293 DOI: 10.1111/nph.16622] [Cited by in Crossref: 26] [Cited by in F6Publishing: 45] [Article Influence: 13.0] [Reference Citation Analysis]
88 González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Superoxide Radical Metabolism in Sweet Pepper (Capsicum annuum L.) Fruits Is Regulated by Ripening and by a NO-Enriched Environment. Front Plant Sci 2020;11:485. [PMID: 32477380 DOI: 10.3389/fpls.2020.00485] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
89 Chen S, Jia H, Wang X, Shi C, Wang X, Ma P, Wang J, Ren M, Li J. Hydrogen Sulfide Positively Regulates Abscisic Acid Signaling through Persulfidation of SnRK2.6 in Guard Cells. Molecular Plant 2020;13:732-44. [DOI: 10.1016/j.molp.2020.01.004] [Cited by in Crossref: 52] [Cited by in F6Publishing: 85] [Article Influence: 26.0] [Reference Citation Analysis]
90 Ozfidan-konakci C, Yildiztugay E, Elbasan F, Kucukoduk M, Turkan I. Hydrogen sulfide (H2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photosynthesis, chloroplastic redox and antioxidant capacity. Journal of Hazardous Materials 2020;388:122061. [DOI: 10.1016/j.jhazmat.2020.122061] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
91 Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation. Environmental Pollution 2020;259:113943. [DOI: 10.1016/j.envpol.2020.113943] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
92 Corpas FJ, Palma JM. H2S signaling in plants and applications in agriculture. J Adv Res 2020;24:131-7. [PMID: 32292600 DOI: 10.1016/j.jare.2020.03.011] [Cited by in Crossref: 50] [Cited by in F6Publishing: 60] [Article Influence: 25.0] [Reference Citation Analysis]
93 Zhou H, Zhang J, Shen J, Zhou M, Yuan X, Xie Y. Redox-based protein persulfidation in guard cell ABA signaling. Plant Signal Behav 2020;15:1741987. [PMID: 32178559 DOI: 10.1080/15592324.2020.1741987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
94 Bhuyan MHMB, Hasanuzzaman M, Parvin K, Mohsin SM, Al Mahmud J, Nahar K, Fujita M. Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regul 2020;90:409-24. [DOI: 10.1007/s10725-020-00594-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 12.5] [Reference Citation Analysis]
95 Luo S, Calderón-urrea A, Yu J, Liao W, Xie J, Lv J, Feng Z, Tang Z. The role of hydrogen sulfide in plant alleviates heavy metal stress. Plant Soil 2020;449:1-10. [DOI: 10.1007/s11104-020-04471-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
96 Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, Romero LC, Fu L, Yang J, Foyer CH, Pan Q, Shen W, Xie Y. Persulfidation-based Modification of Cysteine Desulfhydrase and the NADPH Oxidase RBOHD Controls Guard Cell Abscisic Acid Signaling. Plant Cell 2020;32:1000-17. [PMID: 32024687 DOI: 10.1105/tpc.19.00826] [Cited by in Crossref: 53] [Cited by in F6Publishing: 77] [Article Influence: 26.5] [Reference Citation Analysis]
97 Kolbert Z, Oláh D, Molnár Á, Szőllősi R, Erdei L, Ördög A. Distinct redox signalling and nickel tolerance in Brassica juncea and Arabidopsis thaliana. Ecotoxicology and Environmental Safety 2020;189:109989. [DOI: 10.1016/j.ecoenv.2019.109989] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
98 Tian W, Huang D, Geng B, Zhang Q, Feng J, Zhu S. Regulation of the biosynthesis of endogenous nitric oxide and abscisic acid in stored peaches by exogenous nitric oxide and abscisic acid. J Sci Food Agric 2020;100:2136-44. [DOI: 10.1002/jsfa.10237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
99 Pandey AK, Gautam A. Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress. Physiol Plant 2020;168:511-25. [PMID: 31916586 DOI: 10.1111/ppl.13064] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
100 Antoniou C, Xenofontos R, Chatzimichail G, Christou A, Kashfi K, Fotopoulos V. Exploring the Potential of Nitric Oxide and Hydrogen Sulfide (NOSH)-Releasing Synthetic Compounds as Novel Priming Agents against Drought Stress in Medicago sativa Plants. Biomolecules 2020;10:E120. [PMID: 31936819 DOI: 10.3390/biom10010120] [Cited by in Crossref: 27] [Cited by in F6Publishing: 34] [Article Influence: 13.5] [Reference Citation Analysis]
101 Zhang J, Zhou M, Ge Z, Shen J, Zhou C, Gotor C, Romero LC, Duan X, Liu X, Wu D, Yin X, Xie Y. Abscisic acid‐triggered guard cell l ‐cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase‐modulated stomatal closure. Plant Cell Environ 2019;43:624-36. [DOI: 10.1111/pce.13685] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
102 Paul S, Roychoudhury A. Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment. Physiol Plant 2020;168:374-93. [PMID: 31479515 DOI: 10.1111/ppl.13021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
103 Corpas FJ. Hydrogen Sulfide: A New Warrior against Abiotic Stress. Trends in Plant Science 2019;24:983-8. [DOI: 10.1016/j.tplants.2019.08.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 54] [Article Influence: 14.7] [Reference Citation Analysis]
104 Kushwaha BK, Singh VP. Glutathione and hydrogen sulfide are required for sulfur‐mediated mitigation of Cr(VI) toxicity in tomato, pea and brinjal seedlings. Physiol Plantarum 2019. [DOI: 10.1111/ppl.13024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
105 Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, Kumawat S, Singh A, Prasad M, Sonah H, Sharma TR, Deshmukh R. Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiol Plant 2020;168:437-55. [PMID: 31587278 DOI: 10.1111/ppl.13028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
106 Corpas FJ. Nitric Oxide and Hydrogen Sulfide in Higher Plants under Physiological and Stress Conditions. Antioxidants (Basel) 2019;8:E457. [PMID: 31591332 DOI: 10.3390/antiox8100457] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
107 Svoboda T, Parich A, Güldener U, Schöfbeck D, Twaruschek K, Václavíková M, Hellinger R, Wiesenberger G, Schuhmacher R, Adam G. Biochemical Characterization of the Fusarium graminearum Candidate ACC-Deaminases and Virulence Testing of Knockout Mutant Strains. Front Plant Sci 2019;10:1072. [PMID: 31552072 DOI: 10.3389/fpls.2019.01072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
108 Geng B, Huang D, Zhu S. Regulation of Hydrogen Sulfide Metabolism by Nitric Oxide Inhibitors and the Quality of Peaches during Cold Storage. Antioxidants (Basel) 2019;8:E401. [PMID: 31527494 DOI: 10.3390/antiox8090401] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
109 Brouquisse R. Multifaceted roles of nitric oxide in plants. Journal of Experimental Botany 2019;70:4319-22. [DOI: 10.1093/jxb/erz352] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
110 Sun LR, Yue CM, Hao FS. Update on roles of nitric oxide in regulating stomatal closure. Plant Signal Behav 2019;14:e1649569. [PMID: 31370725 DOI: 10.1080/15592324.2019.1649569] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
111 Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. Inhibition of NADP-malic enzyme activity by H2 S and NO in sweet pepper (Capsicum annuum L.) fruits. Physiol Plant 2020;168:278-88. [PMID: 31152557 DOI: 10.1111/ppl.13000] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
112 Fuentes-Lara LO, Medrano-Macías J, Pérez-Labrada F, Rivas-Martínez EN, García-Enciso EL, González-Morales S, Juárez-Maldonado A, Rincón-Sánchez F, Benavides-Mendoza A. From Elemental Sulfur to Hydrogen Sulfide in Agricultural Soils and Plants. Molecules 2019;24:E2282. [PMID: 31248198 DOI: 10.3390/molecules24122282] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
113 Kolbert Z, Feigl G, Freschi L, Poór P. Gasotransmitters in Action: Nitric Oxide-Ethylene Crosstalk during Plant Growth and Abiotic Stress Responses. Antioxidants (Basel) 2019;8:E167. [PMID: 31181724 DOI: 10.3390/antiox8060167] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
114 Palma JM, Corpas FJ, Freschi L, Valpuesta V. Editorial: Fruit Ripening: From Present Knowledge to Future Development. Front Plant Sci 2019;10:545. [PMID: 31118940 DOI: 10.3389/fpls.2019.00545] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
115 Ahmad P, Tripathi DK, Deshmukh R, Pratap Singh V, Corpas FJ. Revisiting the role of ROS and RNS in plants under changing environment. Environmental and Experimental Botany 2019;161:1-3. [DOI: 10.1016/j.envexpbot.2019.02.017] [Cited by in Crossref: 34] [Cited by in F6Publishing: 51] [Article Influence: 11.3] [Reference Citation Analysis]
116 Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM. Hydrogen sulfide: A novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J Integr Plant Biol 2019;61:871-83. [PMID: 30652411 DOI: 10.1111/jipb.12779] [Cited by in Crossref: 19] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]