BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. J Exp Bot 2021;72:848-63. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Ren Q, Li N, Liu R, Ma X, Sun J, Zeng J, Li Q, Wang M, Chen X, Wu X, Yang L. Nitric oxide (NO) involved in Cd tolerance in NHX1 transgenic duckweed during Cd stress. Plant Signal Behav 2022;17:2065114. [PMID: 35470786 DOI: 10.1080/15592324.2022.2065114] [Reference Citation Analysis]
2 Yang Z, Chen Y, Wang Y, Xia H, Zheng S, Xie S, Cao Y, Liu J, Sehar S, Lin Y, Guo Y, Shamsi IH. Nitrogen metabolic rate and differential ammonia volatilization regulate resistance against opportunistic fungus Alternaria alternata in tobacco. Front Plant Sci 2022;13:1003534. [DOI: 10.3389/fpls.2022.1003534] [Reference Citation Analysis]
3 Sun K, Tang MJ, Lu F, Peng DH, Xu FJ, Zhang W, Xie XG, Dai CC. Alteration of plant immunity in the interaction of roots with the endophytic fungus Phomopsis liquidambaris in response to external nitrogen conditions. Environ Microbiol Rep 2022. [PMID: 35925011 DOI: 10.1111/1758-2229.13110] [Reference Citation Analysis]
4 Zheng S, Fu Z, Lu Y. ELO2 Participates in the Regulation of Osmotic Stress Response by Modulating Nitric Oxide Accumulation in Arabidopsis. Front Plant Sci 2022;13:924064. [DOI: 10.3389/fpls.2022.924064] [Reference Citation Analysis]
5 León J. Protein Tyrosine Nitration in Plant Nitric Oxide Signaling. Front Plant Sci 2022;13:859374. [DOI: 10.3389/fpls.2022.859374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Janků M, Jedelská T, Činčalová L, Sedlář A, Luhová L, Lochman J, Petřivalský M. Structure-activity relationships of oomycete elicitins uncover the role of reactive oxygen and nitrogen species in triggering plant defence responses. Plant Science 2022. [DOI: 10.1016/j.plantsci.2022.111239] [Reference Citation Analysis]
7 Kondak S, Molnár Á, Oláh D, Kolbert Z. The Role of Nitric Oxide (NO) in Plant Responses to Disturbed Zinc Homeostasis. Plant Stress 2022. [DOI: 10.1016/j.stress.2022.100068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Kolbert Z, Lindermayr C. Computational prediction of NO-dependent posttranslational modifications in plants: Current status and perspectives. Plant Physiol Biochem 2021;167:851-61. [PMID: 34536898 DOI: 10.1016/j.plaphy.2021.09.011] [Reference Citation Analysis]
9 Franco-Cano A, Marcos AT, Strauss J, Cánovas D. Evidence for an arginine-dependent route for the synthesis of NO in the model filamentous fungus Aspergillus nidulans. Environ Microbiol 2021. [PMID: 34448331 DOI: 10.1111/1462-2920.15733] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Kolbert Z, Lindermayr C, Loake GJ. The role of nitric oxide in plant biology: current insights and future perspectives. J Exp Bot 2021;72:777-80. [PMID: 33570126 DOI: 10.1093/jxb/erab013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]