BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. H2S in Horticultural Plants: Endogenous Detection by an Electrochemical Sensor, Emission by a Gas Detector, and Its Correlation with L-Cysteine Desulfhydrase (LCD) Activity. Int J Mol Sci 2022;23:5648. [PMID: 35628468 DOI: 10.3390/ijms23105648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 González-gordo S, Rodríguez-ruiz M, López-jaramillo J, Muñoz-vargas MA, Palma JM, Corpas FJ. Nitric Oxide (NO) Differentially Modulates the Ascorbate Peroxidase (APX) Isozymes of Sweet Pepper (Capsicum annuum L.) Fruits. Antioxidants 2022;11:765. [DOI: 10.3390/antiox11040765] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Houmani H, Debez A, Freitas-silva LD, Abdelly C, Palma JM, Corpas FJ. Potassium (K+) Starvation-Induced Oxidative Stress Triggers a General Boost of Antioxidant and NADPH-Generating Systems in the Halophyte Cakile maritima. Antioxidants 2022;11:401. [DOI: 10.3390/antiox11020401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Kalaji HM, Fahad S, Rajput VD, Narayan OP. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. Environ Pollut 2021;290:117953. [PMID: 34438168 DOI: 10.1016/j.envpol.2021.117953] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Hasan MM, Alharbi BM, Alhaithloul HAS, Abdulmajeed AM, Alghanem SM, Al-Mushhin AAM, Jahan MS, Corpas FJ, Fang XW, Soliman MH. Spermine-Mediated Tolerance to Selenium Toxicity in Wheat (Triticum aestivum L.) Depends on Endogenous Nitric Oxide Synthesis. Antioxidants (Basel) 2021;10:1835. [PMID: 34829706 DOI: 10.3390/antiox10111835] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Corpas FJ, González-Gordo S, Muñoz-Vargas MA, Rodríguez-Ruiz M, Palma JM. The Modus Operandi of Hydrogen Sulfide(H2S)-Dependent Protein Persulfidation in Higher Plants. Antioxidants (Basel) 2021;10:1686. [PMID: 34829557 DOI: 10.3390/antiox10111686] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Zheng S, Su M, Wang L, Zhang T, Wang J, Xie H, Wu X, Haq SIU, Qiu QS. Small signaling molecules in plant response to cold stress. J Plant Physiol 2021;266:153534. [PMID: 34601338 DOI: 10.1016/j.jplph.2021.153534] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
8 Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. Plants (Basel) 2021;10:1939. [PMID: 34579473 DOI: 10.3390/plants10091939] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
9 Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci 2021;26:1270-85. [PMID: 34417078 DOI: 10.1016/j.tplants.2021.07.016] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Siddiqui MH, Khan MN, Mukherjee S, Basahi RA, Alamri S, Al-Amri AA, Alsubaie QD, Ali HM, Al-Munqedhi BMA, Almohisen IAA. Exogenous melatonin-mediated regulation of K+ /Na+ transport, H+ -ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl-stressed tomato seedling roots. Plant Biol (Stuttg) 2021;23:797-805. [PMID: 34263973 DOI: 10.1111/plb.13296] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Siddiqui MH, Khan MN, Mukherjee S, Alamri S, Basahi RA, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Almohisen IAA. Hydrogen sulfide (H2S) and potassium (K+) synergistically induce drought stress tolerance through regulation of H+-ATPase activity, sugar metabolism, and antioxidative defense in tomato seedlings. Plant Cell Rep 2021;40:1543-64. [PMID: 34142217 DOI: 10.1007/s00299-021-02731-3] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
12 Kolbert Z, Lindermayr C, Loake GJ. The role of nitric oxide in plant biology: current insights and future perspectives. J Exp Bot 2021;72:777-80. [PMID: 33570126 DOI: 10.1093/jxb/erab013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Lodde V, Morandini P, Costa A, Murgia I, Ezquer I. cROStalk for Life: Uncovering ROS Signaling in Plants and Animal Systems, from Gametogenesis to Early Embryonic Development. Genes (Basel) 2021;12:525. [PMID: 33916807 DOI: 10.3390/genes12040525] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Goyal V, Jhanghel D, Mehrotra S. Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. Physiologia Plantarum 2021;171:896-908. [DOI: 10.1111/ppl.13380] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
15 Corpas FJ, González-Gordo S, Palma JM. Nitric Oxide (NO) Scaffolds the Peroxisomal Protein-Protein Interaction Network in Higher Plants. Int J Mol Sci 2021;22:2444. [PMID: 33671021 DOI: 10.3390/ijms22052444] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Iqbal N, Umar S, Khan NA, Corpas FJ. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants. Antioxidants (Basel) 2021;10:108. [PMID: 33466569 DOI: 10.3390/antiox10010108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
17 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020;324:211-9. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
18 González-gordo S, Palma JM, Corpas FJ. Appraisal of H2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. Plant Physiology and Biochemistry 2020;155:579-88. [DOI: 10.1016/j.plaphy.2020.08.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]