BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J Radiat Res 2013;54:494-514. [PMID: 23266948 DOI: 10.1093/jrr/rrs114] [Cited by in Crossref: 129] [Cited by in F6Publishing: 114] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Loeffler JS, Durante M. Charged particle therapy--optimization, challenges and future directions. Nat Rev Clin Oncol 2013;10:411-24. [PMID: 23689752 DOI: 10.1038/nrclinonc.2013.79] [Cited by in Crossref: 259] [Cited by in F6Publishing: 205] [Article Influence: 32.4] [Reference Citation Analysis]
2 Jones B, Hill MA. Physical characteristics at the turnover-points of relative biological effect (RBE) with linear energy transfer (LET). Phys Med Biol 2019;64:225010. [PMID: 31665711 DOI: 10.1088/1361-6560/ab52a5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
3 Kanematsu N, Inaniwa T. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation. Phys Med Biol 2017;62:1062-75. [DOI: 10.1088/1361-6560/62/3/1062] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
4 Hamdi DH, Chevalier F, Groetz J, Durantel F, Thuret J, Mann C, Saintigny Y. Comparable Senescence Induction in Three-dimensional Human Cartilage Model by Exposure to Therapeutic Doses of X-rays or C-ions. International Journal of Radiation Oncology*Biology*Physics 2016;95:139-46. [DOI: 10.1016/j.ijrobp.2016.02.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
5 Grün R, Friedrich T, Krämer M, Zink K, Durante M, Engenhart-cabillic R, Scholz M. Physical and biological factors determining the effective proton range: Biologically effective proton range analysis. Med Phys 2013;40:111716. [DOI: 10.1118/1.4824321] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
6 Resch AF, Heyes PD, Fuchs H, Bassler N, Georg D, Palmans H. Dose- rather than fluence-averaged LET should be used as a single-parameter descriptor of proton beam quality for radiochromic film dosimetry. Med Phys 2020;47:2289-99. [PMID: 32166764 DOI: 10.1002/mp.14097] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
7 Falzone N, Ackerman NL, Rosales LF, Bernal MA, Liu X, Peeters SG, Soto MS, Corroyer-Dulmont A, Bernaudin M, Grimoin E, Touzani O, Sibson NR, Vallis KA. Dosimetric evaluation of radionuclides for VCAM-1-targeted radionuclide therapy of early brain metastases. Theranostics 2018;8:292-303. [PMID: 29290808 DOI: 10.7150/thno.22217] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
8 Mairani A, Dokic I, Magro G, Tessonnier T, Bauer J, Böhlen TT, Ciocca M, Ferrari A, Sala PR, Jäkel O, Debus J, Haberer T, Abdollahi A, Parodi K. A phenomenological relative biological effectiveness approach for proton therapy based on an improved description of the mixed radiation field. Phys Med Biol 2017;62:1378-95. [DOI: 10.1088/1361-6560/aa51f7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
9 Cometto A, Russo G, Bourhaleb F, Milian FM, Giordanengo S, Marchetto F, Cirio R, Attili A. Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: an alternative approach to the relative biological effectiveness. Phys Med Biol 2014;59:7393-417. [PMID: 25386876 DOI: 10.1088/0031-9155/59/23/7393] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
10 McMahon SJ. Proton RBE models: commonalities and differences. Phys Med Biol 2021;66:04NT02. [PMID: 33429381 DOI: 10.1088/1361-6560/abda98] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Marshall TI, Chaudhary P, Michaelidesová A, Vachelová J, Davídková M, Vondráček V, Schettino G, Prise KM. Investigating the Implications of a Variable RBE on Proton Dose Fractionation Across a Clinical Pencil Beam Scanned Spread-Out Bragg Peak. Int J Radiat Oncol Biol Phys 2016;95:70-7. [PMID: 27084630 DOI: 10.1016/j.ijrobp.2016.02.029] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 8.8] [Reference Citation Analysis]
12 Held KD, Kawamura H, Kaminuma T, Paz AE, Yoshida Y, Liu Q, Willers H, Takahashi A. Effects of Charged Particles on Human Tumor Cells. Front Oncol 2016;6:23. [PMID: 26904502 DOI: 10.3389/fonc.2016.00023] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 8.6] [Reference Citation Analysis]
13 Dahle TJ, Magro G, Ytre-Hauge KS, Stokkevåg CH, Choi K, Mairani A. Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy. Phys Med Biol 2018;63:225016. [PMID: 30418940 DOI: 10.1088/1361-6560/aae8b4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
14 Dokic I, Niklas M, Zimmermann F, Mairani A, Seidel P, Krunic D, Jäkel O, Debus J, Greilich S, Abdollahi A. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector. Front Oncol 2015;5:275. [PMID: 26697410 DOI: 10.3389/fonc.2015.00275] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Durante M, Debus J. Heavy Charged Particles: Does Improved Precision and Higher Biological Effectiveness Translate to Better Outcome in Patients? Seminars in Radiation Oncology 2018;28:160-7. [DOI: 10.1016/j.semradonc.2017.11.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
16 Yang Z, Gu Q, Wang Y, Liu B, Zhou G, Shao C, Ruan J, Jia R, Ge S. Heavy-Ion Carbon Radiation Regulates Long Non-Coding RNAs in Cervical Cancer HeLa Cells. J Cancer 2019;10:5022-30. [PMID: 31602253 DOI: 10.7150/jca.30846] [Reference Citation Analysis]
17 Chiolo I, Tang J, Georgescu W, Costes SV. Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutat Res 2013;750:56-66. [PMID: 23958412 DOI: 10.1016/j.mrfmmm.2013.08.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 5.5] [Reference Citation Analysis]
18 Friedrich T, Pfuhl T, Scholz M. Update of the particle irradiation data ensemble (PIDE) for cell survival. J Radiat Res 2021;62:645-55. [PMID: 33912970 DOI: 10.1093/jrr/rrab034] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59:R419-R472. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Cited by in Crossref: 460] [Cited by in F6Publishing: 172] [Article Influence: 65.7] [Reference Citation Analysis]
20 Jones B. Why RBE must be a variable and not a constant in proton therapy. Br J Radiol 2016;89:20160116. [PMID: 27146168 DOI: 10.1259/bjr.20160116] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
21 Hartzell S, Guan F, Taylor P, Peterson C, Taddei P, Kry S. Uncertainty in tissue equivalent proportional counter assessments of microdosimetry and RBE estimates in carbon radiotherapy. Phys Med Biol 2021;66. [PMID: 34252894 DOI: 10.1088/1361-6560/ac1366] [Reference Citation Analysis]
22 Wang X, Chen X, Li G, Han X, Gao T, Liu W, Tang X. Application of Carbon Ion and Its Sensitizing Agent in Cancer Therapy: A Systematic Review. Front Oncol 2021;11:708724. [PMID: 34290989 DOI: 10.3389/fonc.2021.708724] [Reference Citation Analysis]
23 Bao C, Sun Y, Dwarakanath B, Dong Y, Huang Y, Wu X, Guha C, Kong L, Lu JJ. Carbon ion triggered immunogenic necroptosis of nasopharyngeal carcinoma cells involving necroptotic inhibitor BCL-x. J Cancer 2021;12:1520-30. [PMID: 33531997 DOI: 10.7150/jca.46316] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Tommasino F, Scifoni E, Durante M. New Ions for Therapy. Int J Part Ther 2016;2:428-38. [PMID: 31772953 DOI: 10.14338/IJPT-15-00027.1] [Cited by in Crossref: 64] [Cited by in F6Publishing: 7] [Article Influence: 12.8] [Reference Citation Analysis]
25 Bellinzona EV, Grzanka L, Attili A, Tommasino F, Friedrich T, Krämer M, Scholz M, Battistoni G, Embriaco A, Chiappara D, Cirrone GAP, Petringa G, Durante M, Scifoni E. Biological Impact of Target Fragments on Proton Treatment Plans: An Analysis Based on the Current Cross-Section Data and a Full Mixed Field Approach. Cancers (Basel) 2021;13:4768. [PMID: 34638254 DOI: 10.3390/cancers13194768] [Reference Citation Analysis]
26 Rørvik E, Fjæra LF, Dahle TJ, Dale JE, Engeseth GM, Stokkevåg CH, Thörnqvist S, Ytre-Hauge KS. Exploration and application of phenomenological RBE models for proton therapy. Phys Med Biol 2018;63:185013. [PMID: 30102240 DOI: 10.1088/1361-6560/aad9db] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 14.7] [Reference Citation Analysis]
27 Si J, Zhou R, Zhao B, Xie Y, Gan L, Zhang J, Wang Y, Zhou X, Ren X, Zhang H. Effects of ionizing radiation and HLY78 on the zebrafish embryonic developmental toxicity. Toxicology 2019;411:143-53. [DOI: 10.1016/j.tox.2018.10.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
28 Papakonstantinou D, Zanni V, Nikitaki Z, Vasileiou C, Kousouris K, Georgakilas AG. Using Machine Learning Techniques for Asserting Cellular Damage Induced by High-LET Particle Radiation. Radiation 2021;1:45-64. [DOI: 10.3390/radiation1010005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Lühr A, von Neubeck C, Helmbrecht S, Baumann M, Enghardt W, Krause M. Modeling in vivo relative biological effectiveness in particle therapy for clinically relevant endpoints. Acta Oncologica 2017;56:1392-8. [DOI: 10.1080/0284186x.2017.1356468] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
30 Sokol O, Scifoni E, Tinganelli W, Kraft-Weyrather W, Wiedemann J, Maier A, Boscolo D, Friedrich T, Brons S, Durante M, Krämer M. Oxygen beams for therapy: advanced biological treatment planning and experimental verification. Phys Med Biol 2017;62:7798-813. [PMID: 28841579 DOI: 10.1088/1361-6560/aa88a0] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
31 Durante M, Formenti SC. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway. Front Oncol 2018;8:192. [PMID: 29911071 DOI: 10.3389/fonc.2018.00192] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 18.0] [Reference Citation Analysis]
32 Sato T, Hamada N. Model assembly for estimating cell surviving fraction for both targeted and nontargeted effects based on microdosimetric probability densities. PLoS One 2014;9:e114056. [PMID: 25426641 DOI: 10.1371/journal.pone.0114056] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
33 Patel D, Bronk L, Guan F, Peeler CR, Brons S, Dokic I, Abdollahi A, Rittmüller C, Jäkel O, Grosshans D, Mohan R, Titt U. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Med Phys 2017;44:6061-73. [PMID: 28880368 DOI: 10.1002/mp.12568] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
34 Friedrich T, Scholz U, Durante M, Scholz M. RBE of ion beams in hypofractionated radiotherapy (SBRT). Physica Medica 2014;30:588-91. [DOI: 10.1016/j.ejmp.2014.04.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
35 Friedrich T, Grün R, Scholz U, Elsässer T, Durante M, Scholz M. Sensitivity analysis of the relative biological effectiveness predicted by the local effect model. Phys Med Biol 2013;58:6827-49. [DOI: 10.1088/0031-9155/58/19/6827] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
36 Tinganelli W, Ma NY, Von Neubeck C, Maier A, Schicker C, Kraft-Weyrather W, Durante M. Influence of acute hypoxia and radiation quality on cell survival. J Radiat Res 2013;54 Suppl 1:i23-30. [PMID: 23824123 DOI: 10.1093/jrr/rrt065] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
37 Flint DB, Bright SJ, McFadden CH, Konishi T, Ohsawa D, Turner B, Lin SH, Grosshans DR, Chiu HS, Sumazin P, Shaitelman SF, Sawakuchi GO. Cell lines of the same anatomic site and histologic type show large variability in intrinsic radiosensitivity and relative biological effectiveness to protons and carbon ions. Med Phys 2021;48:3243-61. [PMID: 33837540 DOI: 10.1002/mp.14878] [Reference Citation Analysis]
38 Mairani A, Magro G, Dokic I, Valle SM, Tessonnier T, Galm R, Ciocca M, Parodi K, Ferrari A, Jäkel O, Haberer T, Pedroni P, Böhlen TT. Data-driven RBE parameterization for helium ion beams. Phys Med Biol 2016;61:888-905. [PMID: 26740518 DOI: 10.1088/0031-9155/61/2/888] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
39 Kamp F, Wilkens JJ. Application of variance‐based uncertainty and sensitivity analysis to biological modeling in carbon ion treatment plans. Med Phys 2019;46:437-47. [DOI: 10.1002/mp.13306] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
40 Mairani A, Dokic I, Magro G, Tessonnier T, Kamp F, Carlson DJ, Ciocca M, Cerutti F, Sala PR, Ferrari A, Böhlen TT, Jäkel O, Parodi K, Debus J, Abdollahi A, Haberer T. Biologically optimized helium ion plans: calculation approach and its in vitro validation. Phys Med Biol 2016;61:4283-99. [DOI: 10.1088/0031-9155/61/11/4283] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 8.8] [Reference Citation Analysis]
41 Stewart RD, Carlson DJ, Butkus MP, Hawkins R, Friedrich T, Scholz M. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med Phys 2018;45:e925-52. [PMID: 30421808 DOI: 10.1002/mp.13207] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 10.3] [Reference Citation Analysis]
42 Glowa C, Peschke P, Brons S, Debus J, Karger CP. Intrinsic and extrinsic tumor characteristics are of minor relevance for the efficacy of split-dose carbon ion irradiation in three experimental prostate tumors. Radiotherapy and Oncology 2019;133:120-4. [DOI: 10.1016/j.radonc.2018.12.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
43 Chanrion M, Sauerwein W, Jelen U, Wittig A, Engenhart-cabillic R, Beuve M. The influence of the local effect model parameters on the prediction of the tumor control probability for prostate cancer. Phys Med Biol 2014;59:3019-40. [DOI: 10.1088/0031-9155/59/12/3019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
44 Konings K, Vandevoorde C, Belmans N, Vermeesen R, Baselet B, Walleghem MV, Janssen A, Isebaert S, Baatout S, Haustermans K, Moreels M. The Combination of Particle Irradiation With the Hedgehog Inhibitor GANT61 Differently Modulates the Radiosensitivity and Migration of Cancer Cells Compared to X-Ray Irradiation. Front Oncol 2019;9:391. [PMID: 31139573 DOI: 10.3389/fonc.2019.00391] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
45 Selva A, De Nadal V, Cherubini R, Colautti P, Conte V. TOWARDS THE USE OF NANODOSIMETRY TO PREDICT CELL SURVIVAL. Radiat Prot Dosimetry 2019;183:192-6. [PMID: 30566675 DOI: 10.1093/rpd/ncy274] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Mein S, Klein C, Kopp B, Magro G, Harrabi S, Karger CP, Haberer T, Debus J, Abdollahi A, Dokic I, Mairani A. Assessment of RBE-Weighted Dose Models for Carbon Ion Therapy Toward Modernization of Clinical Practice at HIT: In Vitro, in Vivo, and in Patients. Int J Radiat Oncol Biol Phys 2020;108:779-91. [PMID: 32504659 DOI: 10.1016/j.ijrobp.2020.05.041] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
47 Giovannini G, Böhlen T, Cabal G, Bauer J, Tessonnier T, Frey K, Debus J, Mairani A, Parodi K. Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios. Radiat Oncol 2016;11:68. [PMID: 27185038 DOI: 10.1186/s13014-016-0642-6] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
48 Abolfath R, Peeler CR, Newpower M, Bronk L, Grosshans D, Mohan R. A model for relative biological effectiveness of therapeutic proton beams based on a global fit of cell survival data. Sci Rep 2017;7:8340. [PMID: 28827691 DOI: 10.1038/s41598-017-08622-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
49 Cunha M, Monini C, Testa E, Beuve M. NanOx, a new model to predict cell survival in the context of particle therapy. Phys Med Biol 2017;62:1248-68. [PMID: 27995904 DOI: 10.1088/1361-6560/aa54c9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 4.4] [Reference Citation Analysis]
50 Matsui T, Nuryadi E, Komatsu S, Hirota Y, Shibata A, Oike T, Nakano T. Robustness of Clonogenic Assays as a Biomarker for Cancer Cell Radiosensitivity. Int J Mol Sci 2019;20:E4148. [PMID: 31450688 DOI: 10.3390/ijms20174148] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
51 Suetens A, Moreels M, Quintens R, Soors E, Buset J, Chiriotti S, Tabury K, Gregoire V, Baatout S. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation. J Radiat Res 2015;56:11-21. [PMID: 25190155 DOI: 10.1093/jrr/rru070] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
52 Jones B. Fast neutron energy based modelling of biological effectiveness with implications for proton and ion beams. Phys Med Biol 2021;66:045028. [PMID: 33472183 DOI: 10.1088/1361-6560/abddd0] [Reference Citation Analysis]
53 Mohamad O, Makishima H, Kamada T. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers (Basel) 2018;10:E66. [PMID: 29509684 DOI: 10.3390/cancers10030066] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 10.3] [Reference Citation Analysis]
54 Bronk L, Guan F, Patel D, Ma D, Kroger B, Wang X, Tran K, Yiu J, Stephan C, Debus J, Abdollahi A, Jäkel O, Mohan R, Titt U, Grosshans DR. Mapping the Relative Biological Effectiveness of Proton, Helium and Carbon Ions with High-Throughput Techniques. Cancers (Basel) 2020;12:E3658. [PMID: 33291477 DOI: 10.3390/cancers12123658] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
55 Missiaggia M, Cartechini G, Scifoni E, Rovituso M, Tommasino F, Verroi E, Durante M, La Tessa C. Microdosimetric measurements as a tool to assess potential in-field and out-of-field toxicity regions in proton therapy. Phys Med Biol 2020;65:245024. [PMID: 32554886 DOI: 10.1088/1361-6560/ab9e56] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
56 Tommasino F, Durante M. Proton radiobiology. Cancers (Basel). 2015;7:353-381. [PMID: 25686476 DOI: 10.3390/cancers7010353] [Cited by in Crossref: 148] [Cited by in F6Publishing: 113] [Article Influence: 24.7] [Reference Citation Analysis]
57 Manganaro L, Russo G, Bourhaleb F, Fausti F, Giordanengo S, Monaco V, Sacchi R, Vignati A, Cirio R, Attili A. 'Survival': a simulation toolkit introducing a modular approach for radiobiological evaluations in ion beam therapy. Phys Med Biol 2018;63:08NT01. [PMID: 29537391 DOI: 10.1088/1361-6560/aab697] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
58 Hirano Y, Kodaira S, Souda H, Matsumura A, Torikoshi M. Linear energy transfer (LET) spectra and survival fraction distribution based on the CR-39 plastic charged-particle detector in a spread-out Bragg peak irradiation by a 12C beam. Phys Med Biol 2018;63:185006. [PMID: 30113018 DOI: 10.1088/1361-6560/aadaa6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
59 Friedrich T. Proton RBE dependence on dose in the setting of hypofractionation. Br J Radiol 2020;93:20190291. [PMID: 31437004 DOI: 10.1259/bjr.20190291] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
60 Zaichkina SI, Rozanova OM, Smirnova EN, Dyukina AR, Belyakova TA, Strelnikova NS, Sorokina SS, Pikalov VA. Assessment of the Biological Efficiency of 450 MeV/Nucleon Accelerated Carbon Ions in the U-70 Accelerator According to the Criterion of Mouse Survival. BIOPHYSICS 2019;64:991-8. [DOI: 10.1134/s000635091906023x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Durante M. New challenges in high-energy particle radiobiology. Br J Radiol 2014;87:20130626. [PMID: 24198199 DOI: 10.1259/bjr.20130626] [Cited by in Crossref: 85] [Cited by in F6Publishing: 72] [Article Influence: 12.1] [Reference Citation Analysis]
62 Durante M, Golubev A, Park W, Trautmann C. Applied nuclear physics at the new high-energy particle accelerator facilities. Physics Reports 2019;800:1-37. [DOI: 10.1016/j.physrep.2019.01.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
63 Eley JG, Friedrich T, Homann KL, Howell RM, Scholz M, Durante M, Newhauser WD. Comparative Risk Predictions of Second Cancers After Carbon-Ion Therapy Versus Proton Therapy. Int J Radiat Oncol Biol Phys 2016;95:279-86. [PMID: 27084647 DOI: 10.1016/j.ijrobp.2016.02.032] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
64 Kanematsu N, Matsufuji N, Inaniwa T. Estimation of linear energy transfer distribution for broad-beam carbon-ion radiotherapy at the National Institute of Radiological Sciences, Japan. Radiol Phys Technol 2018;11:242-7. [PMID: 29470773 DOI: 10.1007/s12194-018-0444-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Durante M, Paganetti H. Nuclear physics in particle therapy: a review. Rep Prog Phys 2016;79:096702. [DOI: 10.1088/0034-4885/79/9/096702] [Cited by in Crossref: 126] [Cited by in F6Publishing: 85] [Article Influence: 25.2] [Reference Citation Analysis]
66 Mokari M, Moeini H, Soleimani M, Fereidouni E. Calculation and comparison of the direct and indirect DNA damage induced by low energy electrons using default and CPA100 cross section models within Geant4-DNA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2020;480:56-66. [DOI: 10.1016/j.nimb.2020.08.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Gillmann C, Jäkel O, Schlampp I, Karger CP. Temporal lobe reactions after carbon ion radiation therapy: comparison of relative biological effectiveness-weighted tolerance doses predicted by local effect models I and IV. Int J Radiat Oncol Biol Phys 2014;88:1136-41. [PMID: 24661667 DOI: 10.1016/j.ijrobp.2013.12.039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
68 Buizza G, Molinelli S, D'Ippolito E, Fontana G, Pella A, Valvo F, Preda L, Orecchia R, Baroni G, Paganelli C. MRI-based tumour control probability in skull-base chordomas treated with carbon-ion therapy. Radiother Oncol 2019;137:32-7. [PMID: 31051372 DOI: 10.1016/j.radonc.2019.04.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
69 Mohan R, Held KD, Story MD, Grosshans D, Capala J. Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2018;100:816-31. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
70 Li X, Zhang W, Wang X, Chen X, Pan H, Ruan Y, Khaledi N, Wei T, He X, Zhuo W, Shao C, Pan Y, Shi L, Fu S, Wang X. Charged particle radiobiology beamline using tandem accelerator-based MeV protons and carbon ions: a pilot study on the track-end radiation quality, variable biological effectiveness and Bayesian beam dosimetry. Phys Med Biol 2019;64:165004. [PMID: 31096198 DOI: 10.1088/1361-6560/ab21fa] [Reference Citation Analysis]
71 Malo ME, Bryan RA, Shuryak I, Dadachova E. Morphological changes in melanized and non-melanized Cryptococcus neoformans cells post exposure to sparsely and densely ionizing radiation demonstrate protective effect of melanin. Fungal Biol 2018;122:449-56. [PMID: 29801788 DOI: 10.1016/j.funbio.2017.08.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
72 Dai T, Zhang H, Liu X, Dai Z, He P, Ma Y, Shen G, Chen W, Li Q. Nanodosimetric understanding to the dependence of the relationship between dose-averaged lineal energy on nanoscale and LET on ion species. Australas Phys Eng Sci Med 2020. [PMID: 31909818 DOI: 10.1007/s13246-020-00840-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Chaudhary P, Marshall TI, Perozziello FM, Manti L, Currell FJ, Hanton F, McMahon SJ, Kavanagh JN, Cirrone GA, Romano F, Prise KM, Schettino G. Relative biological effectiveness variation along monoenergetic and modulated Bragg peaks of a 62-MeV therapeutic proton beam: a preclinical assessment. Int J Radiat Oncol Biol Phys 2014;90:27-35. [PMID: 24986743 DOI: 10.1016/j.ijrobp.2014.05.010] [Cited by in Crossref: 122] [Cited by in F6Publishing: 116] [Article Influence: 17.4] [Reference Citation Analysis]
74 Osu N, Kobayashi D, Shirai K, Musha A, Sato H, Hirota Y, Shibata A, Oike T, Ohno T. Relative Biological Effectiveness of Carbon Ions for Head-and-Neck Squamous Cell Carcinomas According to Human Papillomavirus Status. J Pers Med 2020;10:E71. [PMID: 32722522 DOI: 10.3390/jpm10030071] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
75 Friedrich T, Ilicic K, Greubel C, Girst S, Reindl J, Sammer M, Schwarz B, Siebenwirth C, Walsh DWM, Schmid TE, Scholz M, Dollinger G. DNA damage interactions on both nanometer and micrometer scale determine overall cellular damage. Sci Rep 2018;8:16063. [PMID: 30375461 DOI: 10.1038/s41598-018-34323-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
76 Kalospyros SA, Nikitaki Z, Kyriakou I, Kokkoris M, Emfietzoglou D, Georgakilas AG. A Mathematical Radiobiological Model (MRM) to Predict Complex DNA Damage and Cell Survival for Ionizing Particle Radiations of Varying Quality. Molecules 2021;26:840. [PMID: 33562730 DOI: 10.3390/molecules26040840] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Bellinzona VE, Cordoni F, Missiaggia M, Tommasino F, Scifoni E, La Tessa C, Attili A. Linking Microdosimetric Measurements to Biological Effectiveness in Ion Beam Therapy: A Review of Theoretical Aspects of MKM and Other Models. Front Phys 2021;8:578492. [DOI: 10.3389/fphy.2020.578492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? Life Sci Space Res (Amst) 2021;30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Reference Citation Analysis]
79 Wang Y, Guan H, Xie DF, Xie Y, Liu XD, Wang Q, Sui L, Song M, Zhang H, Zhou J, Zhou PK. Proteomic Analysis Implicates Dominant Alterations of RNA Metabolism and the Proteasome Pathway in the Cellular Response to Carbon-Ion Irradiation. PLoS One 2016;11:e0163896. [PMID: 27711237 DOI: 10.1371/journal.pone.0163896] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
80 Conte V, Bianchi A, Selva A, Petringa G, Cirrone GAP, Parisi A, Vanhavere F, Colautti P. Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC. Phys Med 2019;64:114-22. [PMID: 31515010 DOI: 10.1016/j.ejmp.2019.06.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
81 Sørensen BS, Horsman MR, Alsner J, Overgaard J, Durante M, Scholz M, Friedrich T, Bassler N. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol 2015;54:1623-30. [PMID: 26271798 DOI: 10.3109/0284186X.2015.1069890] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
82 Grün R, Friedrich T, Traneus E, Scholz M. Is the dose‐averaged LET a reliable predictor for the relative biological effectiveness? Med Phys 2019;46:1064-74. [DOI: 10.1002/mp.13347] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
83 Hirano Y, Kodaira S, Souda H, Osaki K, Torikoshi M. Estimations of relative biological effectiveness of secondary fragments in carbon ion irradiation of water using CR‐39 plastic detector and microdosimetric kinetic model. Med Phys 2020;47:781-9. [DOI: 10.1002/mp.13916] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
84 Polster L, Schuemann J, Rinaldi I, Burigo L, McNamara AL, Stewart RD, Attili A, Carlson DJ, Sato T, Ramos Méndez J, Faddegon B, Perl J, Paganetti H. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Phys Med Biol 2015;60:5053-70. [PMID: 26061666 DOI: 10.1088/0031-9155/60/13/5053] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 7.5] [Reference Citation Analysis]
85 Chen Y, Li J, Li C, Qiu R, Wu Z. A modified microdosimetric kinetic model for relative biological effectiveness calculation. Phys Med Biol 2018;63:015008. [DOI: 10.1088/1361-6560/aa9a68] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
86 Durante M, Reppingen N, Held KD. Immunologically augmented cancer treatment using modern radiotherapy. Trends in Molecular Medicine 2013;19:565-82. [DOI: 10.1016/j.molmed.2013.05.007] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 8.3] [Reference Citation Analysis]
87 Manganaro L, Russo G, Cirio R, Dalmasso F, Giordanengo S, Monaco V, Muraro S, Sacchi R, Vignati A, Attili A. A Monte Carlo approach to the microdosimetric kinetic model to account for dose rate time structure effects in ion beam therapy with application in treatment planning simulations. Med Phys 2017;44:1577-89. [DOI: 10.1002/mp.12133] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
88 Horst F, Schardt D, Iwase H, Schuy C, Durante M, Weber U. Physical characterization of3He ion beams for radiotherapy and comparison with4He. Phys Med Biol 2021;66. [PMID: 33730702 DOI: 10.1088/1361-6560/abef88] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
89 Paganetti H, Blakely E, Carabe-Fernandez A, Carlson DJ, Das IJ, Dong L, Grosshans D, Held KD, Mohan R, Moiseenko V, Niemierko A, Stewart RD, Willers H. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med Phys. 2019;46:e53-e78. [PMID: 30661238 DOI: 10.1002/mp.13390] [Cited by in Crossref: 82] [Cited by in F6Publishing: 71] [Article Influence: 41.0] [Reference Citation Analysis]
90 Kawahara D, Nakano H, Ozawa S, Saito A, Kimura T, Suzuki T, Tsuneda M, Tanaka S, Ohno Y, Murakami Y, Nagata Y. Relative biological effectiveness study of Lipiodol based on microdosimetric-kinetic model. Phys Med 2018;46:89-95. [PMID: 29519415 DOI: 10.1016/j.ejmp.2018.01.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
91 Schuemann J, Bassler N, Inaniwa T. Computational models and tools. Med Phys 2018;45:e1073-85. [PMID: 30421814 DOI: 10.1002/mp.12521] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
92 McMahon SJ, Prise KM. A Mechanistic DNA Repair and Survival Model (Medras): Applications to Intrinsic Radiosensitivity, Relative Biological Effectiveness and Dose-Rate. Front Oncol 2021;11:689112. [PMID: 34268120 DOI: 10.3389/fonc.2021.689112] [Reference Citation Analysis]
93 Stokkevåg CH, Fukahori M, Nomiya T, Matsufuji N, Engeseth GM, Hysing LB, Ytre-Hauge KS, Rørvik E, Szostak A, Muren LP. Modelling of organ-specific radiation-induced secondary cancer risks following particle therapy. Radiother Oncol 2016;120:300-6. [PMID: 27424291 DOI: 10.1016/j.radonc.2016.07.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
94 Siddique S, Chow JCL. Artificial intelligence in radiotherapy. Rep Pract Oncol Radiother. 2020;25:656-666. [PMID: 32617080 DOI: 10.1016/j.rpor.2020.03.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
95 Parisi A, Chiriotti S, De Saint-Hubert M, Van Hoey O, Vandevoorde C, Beukes P, de Kock EA, Symons J, Camero JN, Slabbert J, Mégret P, Debrot E, Bolst D, Rosenfeld A, Vanhavere F. A novel methodology to assess linear energy transfer and relative biological effectiveness in proton therapy using pairs of differently doped thermoluminescent detectors. Phys Med Biol 2019;64:085005. [PMID: 30650402 DOI: 10.1088/1361-6560/aaff20] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
96 Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol 2017;63:01TR02. [PMID: 28976361 DOI: 10.1088/1361-6560/aa9102] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 15.0] [Reference Citation Analysis]
97 Petrović IM, Ristić Fira AM, Keta OD, Petković VD, Petringa G, Cirrone P, Cuttone G. A radiobiological study of carbon ions of different linear energy transfer in resistant human malignant cell lines. International Journal of Radiation Biology 2020;96:1400-12. [DOI: 10.1080/09553002.2020.1820609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
98 McNamara A L, Willers H, Paganetti H. Modelling variable proton relative biological effectiveness for treatment planning. Br J Radiol 2020;93:20190334. [PMID: 31738081 DOI: 10.1259/bjr.20190334] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
99 Jeynes JCG, Merchant MJ, Barazzuol L, Barry M, Guest D, Palitsin VV, Grime GW, Tullis IDC, Barber PR, Vojnovic B, Kirkby KJ. “Broadbeam” irradiation of mammalian cells using a vertical microbeam facility. Radiat Environ Biophys 2013;52:513-21. [DOI: 10.1007/s00411-013-0487-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
100 Monini C, Alphonse G, Rodriguez-Lafrasse C, Testa É, Beuve M. Comparison of biophysical models with experimental data for three cell lines in response to irradiation with monoenergetic ions. Phys Imaging Radiat Oncol 2019;12:17-21. [PMID: 33458290 DOI: 10.1016/j.phro.2019.10.004] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
101 Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, Li J. Modelling of Cellular Survival Following Radiation-Induced DNA Double-Strand Breaks. Sci Rep 2018;8:16202. [PMID: 30385845 DOI: 10.1038/s41598-018-34159-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
102 Parisi A, Sato T, Matsuya Y, Kase Y, Magrin G, Verona C, Tran L, Rosenfeld A, Bianchi A, Olko P, Struelens L, Vanhavere F. Development of a new microdosimetric biological weighting function for the RBE10 assessment in case of the V79 cell line exposed to ions from 1H to 238U. Phys Med Biol 2020;65:235010. [PMID: 33274727 DOI: 10.1088/1361-6560/abbf96] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
103 Dokic I, Mairani A, Niklas M, Zimmermann F, Chaudhri N, Krunic D, Tessonnier T, Ferrari A, Parodi K, Jäkel O, Debus J, Haberer T, Abdollahi A. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget 2016;7:56676-89. [PMID: 27494855 DOI: 10.18632/oncotarget.10996] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 14.0] [Reference Citation Analysis]
104 Dong C, He M, Tu W, Konishi T, Liu W, Xie Y, Dang B, Li W, Uchihori Y, Hei TK, Shao C. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation. Cancer Lett 2015;363:92-100. [PMID: 25896631 DOI: 10.1016/j.canlet.2015.04.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
105 Rørvik E, Thörnqvist S, Stokkevåg CH, Dahle TJ, Fjaera LF, Ytre-Hauge KS. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra. Med Phys 2017;44:2586-94. [PMID: 28295379 DOI: 10.1002/mp.12216] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
106 Grün R, Friedrich T, Krämer M, Scholz M. Systematics of relative biological effectiveness measurements for proton radiation along the spread out Bragg peak: experimental validation of the local effect model. Phys Med Biol 2017;62:890-908. [PMID: 28072575 DOI: 10.1088/1361-6560/62/3/890] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
107 Kalholm F, Grzanka L, Traneus E, Bassler N. A systematic review on the usage of averaged LET in radiation biology for particle therapy. Radiother Oncol 2021;161:211-21. [PMID: 33894298 DOI: 10.1016/j.radonc.2021.04.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
108 Kamp F, Cabal G, Mairani A, Parodi K, Wilkens JJ, Carlson DJ. Fast Biological Modeling for Voxel-based Heavy Ion Treatment Planning Using the Mechanistic Repair-Misrepair-Fixation Model and Nuclear Fragment Spectra. International Journal of Radiation Oncology*Biology*Physics 2015;93:557-68. [DOI: 10.1016/j.ijrobp.2015.07.2264] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
109 McMahon SJ, McNamara AL, Schuemann J, Paganetti H, Prise KM. A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Sci Rep 2017;7:10790. [PMID: 28883414 DOI: 10.1038/s41598-017-10820-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
110 Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020;12:E3022. [PMID: 33080914 DOI: 10.3390/cancers12103022] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 22.0] [Reference Citation Analysis]
111 Jones B. A Simpler Energy Transfer Efficiency Model to Predict Relative Biological Effect for Protons and Heavier Ions. Front Oncol 2015;5:184. [PMID: 26322274 DOI: 10.3389/fonc.2015.00184] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
112 Dong C, He M, Ren R, Xie Y, Yuan D, Dang B, Li W, Shao C. Role of the MAPK pathway in the observed bystander effect in lymphocytes co-cultured with macrophages irradiated with γ-rays or carbon ions. Life Sci 2015;127:19-25. [PMID: 25748424 DOI: 10.1016/j.lfs.2015.02.017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
113 Dell'Oro M, Short M, Wilson P, Bezak E. Normal tissue tolerance amongst paediatric brain tumour patients- current evidence in proton radiotherapy. Crit Rev Oncol Hematol 2021;164:103415. [PMID: 34242771 DOI: 10.1016/j.critrevonc.2021.103415] [Reference Citation Analysis]
114 Chatzipapas KP, Papadimitroulas P, Emfietzoglou D, Kalospyros SA, Hada M, Georgakilas AG, Kagadis GC. Ionizing Radiation and Complex DNA Damage: Quantifying the Radiobiological Damage Using Monte Carlo Simulations. Cancers (Basel) 2020;12:E799. [PMID: 32225023 DOI: 10.3390/cancers12040799] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]