BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Y, Qiang M, Wei Y, He R. A novel molecular mechanism for nitrated {alpha}-synuclein-induced cell death. J Mol Cell Biol 2011;3:239-49. [PMID: 21733982 DOI: 10.1093/jmcb/mjr011] [Cited by in Crossref: 59] [Cited by in F6Publishing: 38] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Cobb MM, Ravisankar A, Skibinski G, Finkbeiner S. iPS cells in the study of PD molecular pathogenesis. Cell Tissue Res 2018;373:61-77. [PMID: 29234887 DOI: 10.1007/s00441-017-2749-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
2 Martínez-orozco H, Mariño L, Uceda AB, Ortega-castro J, Vilanova B, Frau J, Adrover M. Nitration and Glycation Diminish the α-Synuclein Role in the Formation and Scavenging of Cu 2+ -Catalyzed Reactive Oxygen Species. ACS Chem Neurosci 2019;10:2919-30. [DOI: 10.1021/acschemneuro.9b00142] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
3 Limegrover CS, Yurko R, Izzo NJ, LaBarbera KM, Rehak C, Look G, Rishton G, Safferstein H, Catalano SM. Sigma-2 receptor antagonists rescue neuronal dysfunction induced by Parkinson's patient brain-derived α-synuclein. J Neurosci Res 2021;99:1161-76. [PMID: 33480104 DOI: 10.1002/jnr.24782] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhang S, Shi C, Mao C, Song B, Hou H, Wu J, Liu X, Luo H, Sun S, Xu Y. Plasma Homocysteine, Vitamin B12 and Folate Levels in Multiple System Atrophy: A Case-Control Study. PLoS One 2015;10:e0136468. [PMID: 26291976 DOI: 10.1371/journal.pone.0136468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
5 Hunt JB Jr, Nash KR, Placides D, Moran P, Selenica ML, Abuqalbeen F, Ratnasamy K, Slouha N, Rodriguez-Ospina S, Savlia M, Ranaweera Y, Reid P, Dickey CA, Uricia R, Yang CG, Sandusky LA, Gordon MN, Morgan D, Lee DC. Sustained Arginase 1 Expression Modulates Pathological Tau Deposits in a Mouse Model of Tauopathy. J Neurosci 2015;35:14842-60. [PMID: 26538654 DOI: 10.1523/JNEUROSCI.3959-14.2015] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
6 Franco MC, Estévez AG. Tyrosine nitration as mediator of cell death. Cell Mol Life Sci 2014;71:3939-50. [PMID: 24947321 DOI: 10.1007/s00018-014-1662-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
7 Sabadashka M, Nagalievska M, Sybirna N. Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell. Cell Biol Int 2021;45:481-97. [PMID: 31908104 DOI: 10.1002/cbin.11301] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Beyer K, Ariza A. Alpha-Synuclein Posttranslational Modification and Alternative Splicing as a Trigger for Neurodegeneration. Mol Neurobiol 2013;47:509-24. [DOI: 10.1007/s12035-012-8330-5] [Cited by in Crossref: 85] [Cited by in F6Publishing: 78] [Article Influence: 8.5] [Reference Citation Analysis]
9 Alam P, Bousset L, Melki R, Otzen DE. α-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem 2019;150:522-34. [PMID: 31254394 DOI: 10.1111/jnc.14808] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 22.3] [Reference Citation Analysis]
10 Verzini S, Shah M, Theillet FX, Belsom A, Bieschke J, Wanker EE, Rappsilber J, Binolfi A, Selenko P. Megadalton-sized Dityrosine Aggregates of α-Synuclein Retain High Degrees of Structural Disorder and Internal Dynamics. J Mol Biol 2020;432:166689. [PMID: 33211011 DOI: 10.1016/j.jmb.2020.10.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Roshan MH, Tambo A, Pace NP. Potential Role of Caffeine in the Treatment of Parkinson's Disease. Open Neurol J 2016;10:42-58. [PMID: 27563362 DOI: 10.2174/1874205X01610010042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
12 Joshi N, Raveendran A, Nagotu S. Chaperones and Proteostasis: Role in Parkinson's Disease. Diseases 2020;8:E24. [PMID: 32580484 DOI: 10.3390/diseases8020024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
13 Roy M, Nath AK, Pal I, Dey SG. Second Sphere Interactions in Amyloidogenic Diseases. Chem Rev 2022. [PMID: 35471949 DOI: 10.1021/acs.chemrev.1c00941] [Reference Citation Analysis]
14 Xu YJ, Qiang M, Zhang JL, Liu Y, He RQ. Reactive carbonyl compounds (RCCs) cause aggregation and dysfunction of fibrinogen. Protein Cell 2012;3:627-40. [PMID: 22836718 DOI: 10.1007/s13238-012-2057-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
15 Lopes da Fonseca T, Villar-Piqué A, Outeiro TF. The Interplay between Alpha-Synuclein Clearance and Spreading. Biomolecules 2015;5:435-71. [PMID: 25874605 DOI: 10.3390/biom5020435] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 7.7] [Reference Citation Analysis]
16 Sun F, Deng Y, Han X, Liu Q, Zhang P, Manzoor R, Ma H. A secret that underlies Parkinson's disease: The damaging cycle. Neurochem Int 2019;129:104484. [PMID: 31173779 DOI: 10.1016/j.neuint.2019.104484] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
17 Jones LH. Chemistry and biology of biomolecule nitration. Chem Biol 2012;19:1086-92. [PMID: 22999877 DOI: 10.1016/j.chembiol.2012.07.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
18 Qiang M, Xu Y, Lu Y, He Y, Han C, Liu Y, He R. Autofluorescence of MDA-modified proteins as an in vitro and in vivo probe in oxidative stress analysis. Protein Cell 2014;5:484-7. [PMID: 24691907 DOI: 10.1007/s13238-014-0052-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
19 Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014;10:852-67. [PMID: 24670306 DOI: 10.4161/hv.28578] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
20 Burai R, Ait-Bouziad N, Chiki A, Lashuel HA. Elucidating the Role of Site-Specific Nitration of α-Synuclein in the Pathogenesis of Parkinson's Disease via Protein Semisynthesis and Mutagenesis. J Am Chem Soc 2015;137:5041-52. [PMID: 25768729 DOI: 10.1021/ja5131726] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 10.0] [Reference Citation Analysis]
21 Kleinknecht A, Popova B, Lázaro DF, Pinho R, Valerius O, Outeiro TF, Braus GH. C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease. PLoS Genet 2016;12:e1006098. [PMID: 27341336 DOI: 10.1371/journal.pgen.1006098] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
22 Kim C, Cho ED, Kim HK, You S, Lee HJ, Hwang D, Lee SJ. β1-integrin-dependent migration of microglia in response to neuron-released α-synuclein. Exp Mol Med 2014;46:e91. [PMID: 24743837 DOI: 10.1038/emm.2014.6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
23 Chen B, Wen X, Jiang H, Wang J, Song N, Xie J. Interactions between iron and α-synuclein pathology in Parkinson's disease. Free Radic Biol Med 2019;141:253-60. [PMID: 31233777 DOI: 10.1016/j.freeradbiomed.2019.06.024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
24 Kim WS, Kågedal K, Halliday GM. Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 2014;6:73. [PMID: 25580161 DOI: 10.1186/s13195-014-0073-2] [Cited by in Crossref: 186] [Cited by in F6Publishing: 152] [Article Influence: 23.3] [Reference Citation Analysis]
25 Tang W, Wang H, Zhao X, Liu S, Kong SK, Ho A, Chen T, Feng H, He H. Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo. Cell Rep 2022;38:110486. [PMID: 35263591 DOI: 10.1016/j.celrep.2022.110486] [Reference Citation Analysis]
26 Zhu J, Gao W, Shan X, Wang C, Wang H, Shao Z, Dou S, Jiang Y, Wang C, Cheng B. Apelin-36 mediates neuroprotective effects by regulating oxidative stress, autophagy and apoptosis in MPTP-induced Parkinson's disease model mice. Brain Res 2020;1726:146493. [PMID: 31586624 DOI: 10.1016/j.brainres.2019.146493] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
27 Vicente Miranda H, Cássio R, Correia-Guedes L, Gomes MA, Chegão A, Miranda E, Soares T, Coelho M, Rosa MM, Ferreira JJ, Outeiro TF. Posttranslational modifications of blood-derived alpha-synuclein as biochemical markers for Parkinson's disease. Sci Rep 2017;7:13713. [PMID: 29057912 DOI: 10.1038/s41598-017-14175-5] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
28 Lu J, Miao J, Su T, Liu Y, He R. Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - General Subjects 2013;1830:4102-16. [DOI: 10.1016/j.bbagen.2013.04.028] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 6.4] [Reference Citation Analysis]
29 He Y, Yu Z, Chen S. Alpha-Synuclein Nitration and Its Implications in Parkinson’s Disease. ACS Chem Neurosci 2019;10:777-82. [DOI: 10.1021/acschemneuro.8b00288] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
30 Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, Landreth G, Lee DC, Low D, Lynch MA, Monsonego A, O'Banion MK, Pekny M, Puschmann T, Russek-Blum N, Sandusky LA, Selenica ML, Takata K, Teeling J, Town T, Van Eldik LJ. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 2016;138:653-93. [PMID: 27248001 DOI: 10.1111/jnc.13667] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 15.8] [Reference Citation Analysis]
31 Schildknecht S, Gerding HR, Karreman C, Drescher M, Lashuel HA, Outeiro TF, Di Monte DA, Leist M. Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. J Neurochem 2013;125:491-511. [PMID: 23452040 DOI: 10.1111/jnc.12226] [Cited by in Crossref: 89] [Cited by in F6Publishing: 83] [Article Influence: 9.9] [Reference Citation Analysis]
32 Matsuo K, Cheng A, Yabuki Y, Takahata I, Miyachi H, Fukunaga K. Inhibition of MPTP-induced α-synuclein oligomerization by fatty acid-binding protein 3 ligand in MPTP-treated mice. Neuropharmacology 2019;150:164-74. [PMID: 30930168 DOI: 10.1016/j.neuropharm.2019.03.029] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
33 Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson's Disease Due to Altered Endolysosomal Biology With Variable Lewy Body Pathology: A Hypothesis. Front Neurosci 2020;14:556. [PMID: 32581693 DOI: 10.3389/fnins.2020.00556] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
34 Bell R, Vendruscolo M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 2021;12:661117. [PMID: 34335440 DOI: 10.3389/fneur.2021.661117] [Reference Citation Analysis]
35 Chen H, Zhao Y, Chen Y, Li Y. Exploring the Roles of Post-Translational Modifications in the Pathogenesis of Parkinson’s Disease Using Synthetic and Semisynthetic Modified α-Synuclein. ACS Chem Neurosci 2019;10:910-21. [DOI: 10.1021/acschemneuro.8b00447] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
36 Long T, Liu L, Tao Y, Zhang W, Quan J, Zheng J, Hegemann JD, Uesugi M, Yao W, Tian H, Wang H. Light-Controlled Tyrosine Nitration of Proteins. Angew Chem Int Ed Engl 2021;60:13414-22. [PMID: 33847040 DOI: 10.1002/anie.202102287] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Smith LM, Klaver AC, Coffey MP, Dang L, Loeffler DA. Effects of intravenous immunoglobulin on alpha synuclein aggregation and neurotoxicity. Int Immunopharmacol 2012;14:550-7. [PMID: 23026444 DOI: 10.1016/j.intimp.2012.09.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
38 Jensen SK, Yong VW. Microglial modulation as a mechanism behind the promotion of central nervous system well-being by physical exercise. Clin Exp Neuroimmunol 2014;5:188-201. [DOI: 10.1111/cen3.12093] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
39 Schaffert LN, Carter WG. Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci 2020;10:E232. [PMID: 32290481 DOI: 10.3390/brainsci10040232] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
40 Nash Y, Schmukler E, Trudler D, Pinkas-Kramarski R, Frenkel D. DJ-1 deficiency impairs autophagy and reduces alpha-synuclein phagocytosis by microglia. J Neurochem 2017;143:584-94. [PMID: 28921554 DOI: 10.1111/jnc.14222] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 9.6] [Reference Citation Analysis]