BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gerdts V, Wilson HL, Meurens F, van Drunen Littel - van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA. Large Animal Models for Vaccine Development and Testing. ILAR Journal 2015;56:53-62. [DOI: 10.1093/ilar/ilv009] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Tesfamariam M, Binette P, Long CM. Preclinical Animal Models for Q Fever Vaccine Development. Front Cell Infect Microbiol 2022;12:828784. [DOI: 10.3389/fcimb.2022.828784] [Reference Citation Analysis]
2 Lim M, Badruddoza AZM, Firdous J, Azad M, Mannan A, Al-Hilal TA, Cho CS, Islam MA. Engineered Nanodelivery Systems to Improve DNA Vaccine Technologies. Pharmaceutics 2020;12:E30. [PMID: 31906277 DOI: 10.3390/pharmaceutics12010030] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 15.0] [Reference Citation Analysis]
3 Sunagar R, Kumar S, Namjoshi P, Rosa SJ, Hazlett KRO, Gosselin EJ. Evaluation of an outbred mouse model for Francisella tularensis vaccine development and testing. PLoS One 2018;13:e0207587. [PMID: 30533047 DOI: 10.1371/journal.pone.0207587] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sellers RS, Nelson K, Bennet B, Wolf J, Tripathi N, Chamanza R, Perron Lepage MF, Adkins K, Laurent S, Troth SP. Scientific and Regulatory Policy Committee Points to Consider*: Approaches to the Conduct and Interpretation of Vaccine Safety Studies for Clinical and Anatomic Pathologists. Toxicol Pathol 2020;48:257-76. [PMID: 31594486 DOI: 10.1177/0192623319875085] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
5 Sarkander J, Hojyo S, Tokoyoda K. Vaccination to gain humoral immune memory. Clin Transl Immunology 2016;5:e120. [PMID: 28090322 DOI: 10.1038/cti.2016.81] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
6 Yong CY, Ong HK, Yeap SK, Ho KL, Tan WS. Recent Advances in the Vaccine Development Against Middle East Respiratory Syndrome-Coronavirus. Front Microbiol 2019;10:1781. [PMID: 31428074 DOI: 10.3389/fmicb.2019.01781] [Cited by in Crossref: 130] [Cited by in F6Publishing: 115] [Article Influence: 43.3] [Reference Citation Analysis]
7 Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021;13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Gilchuk P, Knight FC, Wilson JT, Joyce S. Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols. Methods Mol Biol 2017;1494:321-52. [PMID: 27718206 DOI: 10.1007/978-1-4939-6445-1_25] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
9 Pan D, Liu G, Li B, Jiang J, Chen W, Li W, Zhang L, Hu Y, Xie S, Yang H. MicroRNA-1246 regulates proliferation, invasion, and differentiation in human vascular smooth muscle cells by targeting cystic fibrosis transmembrane conductance regulator (CFTR). Pflugers Arch 2021;473:231-40. [PMID: 33420548 DOI: 10.1007/s00424-020-02498-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Oreskovic Z, Nechvatalova K, Krejci J, Kummer V, Faldyna M. Aspects of intradermal immunization with different adjuvants: The role of dendritic cells and Th1/Th2 response. PLoS One 2019;14:e0211896. [PMID: 30742635 DOI: 10.1371/journal.pone.0211896] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
11 Hammel JH, Zatorski JM, Cook SR, Pompano RR, Munson JM. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics. Adv Drug Deliv Rev 2022;182:114111. [PMID: 35031388 DOI: 10.1016/j.addr.2022.114111] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Neff EP. Keeping large animals contained. Lab Anim (NY) 2019;48:291-3. [PMID: 31537927 DOI: 10.1038/s41684-019-0403-x] [Reference Citation Analysis]
13 Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, Brown LE, Kida H. Selecting and Using the Appropriate Influenza Vaccine for Each Individual. Viruses 2021;13:971. [PMID: 34073843 DOI: 10.3390/v13060971] [Reference Citation Analysis]
14 Sotoudeh N, Noormohammadi Z, Habibi-Anbouhi M, Kazemi-Lomedasht F, Behdani M. Evaluation of Laboratory Application of Camelid Sera Containing Heavy-Chain Polyclonal Antibody Against Recombinant Cytotoxic T-Lymphocyte-Associated Protein-4. Monoclon Antib Immunodiagn Immunother 2019;38:235-41. [PMID: 31718460 DOI: 10.1089/mab.2019.0031] [Reference Citation Analysis]
15 Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020;158:116-39. [PMID: 32987094 DOI: 10.1016/j.addr.2020.09.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
16 Blakney AK, McKay PF, Bouton CR, Hu K, Samnuan K, Shattock RJ. Innate Inhibiting Proteins Enhance Expression and Immunogenicity of Self-Amplifying RNA. Mol Ther 2021;29:1174-85. [PMID: 33352107 DOI: 10.1016/j.ymthe.2020.11.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Nguyen A, Schwalbe N. Apples and oranges? Can second generation vaccines become as low cost as generic medicines? Vaccine 2019;37:2910-4. [DOI: 10.1016/j.vaccine.2019.04.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Bertho N, Meurens F. The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Mol Immunol 2021;135:254-67. [PMID: 33933817 DOI: 10.1016/j.molimm.2021.03.014] [Reference Citation Analysis]
19 Mukhopadhyay L, Yadav PD, Gupta N, Mohandas S, Patil DY, Shete-Aich A, Panda S, Bhargava B. Comparison of the immunogenicity & protective efficacy of various SARS-CoV-2 vaccine candidates in non-human primates. Indian J Med Res 2021;153:93-114. [PMID: 33361645 DOI: 10.4103/ijmr.IJMR_4431_20] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
20 de Pinho RB, de Oliveira Silva MT, Bezerra FSB, Borsuk S. Vaccines for caseous lymphadenitis: up-to-date and forward-looking strategies. Appl Microbiol Biotechnol 2021;105:2287-96. [PMID: 33651132 DOI: 10.1007/s00253-021-11191-4] [Reference Citation Analysis]
21 Bae H, Lee JY, Song G, Lim W. Function of CCL5 in maternal-fetal interface of pig during early pregnancy. Dev Comp Immunol 2020;103:103503. [PMID: 31563460 DOI: 10.1016/j.dci.2019.103503] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
22 Darbellay J, Cox B, Lai K, Delgado-Ortega M, Wheler C, Wilson D, Walker S, Starrak G, Hockley D, Huang Y, Mutwiri G, Potter A, Gilmour M, Safronetz D, Gerdts V, Karniychuk U. Zika Virus Causes Persistent Infection in Porcine Conceptuses and may Impair Health in Offspring. EBioMedicine 2017;25:73-86. [PMID: 29097124 DOI: 10.1016/j.ebiom.2017.09.021] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
23 Lavan M, Byrn SR, Knipp G. Pediatric Formulations: Knowledge Gaps Limiting the Expedited Preclinical to Clinical Translation in Children. AAPS PharmSciTech 2019;20:73. [PMID: 30631973 DOI: 10.1208/s12249-018-1253-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
24 Birch CPD, Chambers MA, Lesellier S. A combined measure of tuberculous lesions for assessing the efficacy of vaccination against tuberculosis (Mycobacterium bovis) in European badgers (Meles meles) supports the 3Rs principle of reduction. Vaccine 2021;39:1661-6. [PMID: 31733947 DOI: 10.1016/j.vaccine.2019.10.079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
25 Lee LYY, Izzard L, Hurt AC. A Review of DNA Vaccines Against Influenza. Front Immunol 2018;9:1568. [PMID: 30038621 DOI: 10.3389/fimmu.2018.01568] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
26 González-Mora A, Calvillo-Rodríguez KM, Hernández-Pérez J, Rito-Palomares M, Martínez-Torres AC, Benavides J. Evaluation of the Immune Response of a Candidate Phage-Based Vaccine against Rhipicephalus microplus (Cattle Tick). Pharmaceutics 2021;13:2018. [PMID: 34959300 DOI: 10.3390/pharmaceutics13122018] [Reference Citation Analysis]
27 Madar-Balakirski N, Rosner A, Melamed S, Politi B, Steiner M, Tamir H, Yahalom-Ronen Y, Bar-David E, Ben-Shmuel A, Sittner A, Glinert I, Weiss S, Bar-Haim E, Cohen H, Elia U, Achdout H, Erez N, Rotem S, Lazar S, Nyska A, Yitzhaki S, Beth-Din A, Levy H, Paran N, Israely T, Marcus H. Preliminary nonclinical safety and immunogenicity of an rVSV-ΔG-SARS-CoV-2-S vaccine in mice, hamsters, rabbits and pigs. Arch Toxicol 2022;96:859-75. [PMID: 35032184 DOI: 10.1007/s00204-021-03214-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Vaure C, Grégoire-Barou V, Courtois V, Chautard E, Dégletagne C, Liu Y. Göttingen Minipigs as a Model to Evaluate Longevity, Functionality, and Memory of Immune Response Induced by Pertussis Vaccines. Front Immunol 2021;12:613810. [PMID: 33815369 DOI: 10.3389/fimmu.2021.613810] [Reference Citation Analysis]
29 Arunachalam AB, Vile S, Rosas A. A Mouse Immunogenicity Model for the Evaluation of Meningococcal Conjugate Vaccines. Front Immunol 2022;13:814088. [DOI: 10.3389/fimmu.2022.814088] [Reference Citation Analysis]
30 Pratti JE, Ramos TD, Pereira JC, da Fonseca-Martins AM, Maciel-Oliveira D, Oliveira-Silva G, de Mello MF, Chaves SP, Gomes DC, Diaz BL, Rossi-Bergmann B, de Matos Guedes HL. Efficacy of intranasal LaAg vaccine against Leishmania amazonensis infection in partially resistant C57Bl/6 mice. Parasit Vectors 2016;9:534. [PMID: 27716449 DOI: 10.1186/s13071-016-1822-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
31 Käser T, Pasternak JA, Delgado-Ortega M, Hamonic G, Lai K, Erickson J, Walker S, Dillon JR, Gerdts V, Meurens F. Chlamydia suis and Chlamydia trachomatis induce multifunctional CD4 T cells in pigs. Vaccine 2017;35:91-100. [PMID: 27894718 DOI: 10.1016/j.vaccine.2016.11.050] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
32 Riitho V, Walters AA, Somavarapu S, Lamp B, Rümenapf T, Krey T, Rey FA, Oviedo-Orta E, Stewart GR, Locker N, Steinbach F, Graham SP. Design and evaluation of the immunogenicity and efficacy of a biomimetic particulate formulation of viral antigens. Sci Rep 2017;7:13743. [PMID: 29062078 DOI: 10.1038/s41598-017-13915-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
33 Graham SP, McLean RK, Spencer AJ, Belij-Rammerstorfer S, Wright D, Ulaszewska M, Edwards JC, Hayes JWP, Martini V, Thakur N, Conceicao C, Dietrich I, Shelton H, Waters R, Ludi A, Wilsden G, Browning C, Bialy D, Bhat S, Stevenson-Leggett P, Hollinghurst P, Gilbride C, Pulido D, Moffat K, Sharpe H, Allen E, Mioulet V, Chiu C, Newman J, Asfor AS, Burman A, Crossley S, Huo J, Owens RJ, Carroll M, Hammond JA, Tchilian E, Bailey D, Charleston B, Gilbert SC, Tuthill TJ, Lambe T. Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. NPJ Vaccines 2020;5:69. [PMID: 32793398 DOI: 10.1038/s41541-020-00221-3] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 28.0] [Reference Citation Analysis]
34 Smith BI, Govoni KE. Use of Agriculturally Important Animals as Models in Biomedical Research. Adv Exp Med Biol 2022;1354:315-33. [PMID: 34807449 DOI: 10.1007/978-3-030-85686-1_16] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 McLean RK, Graham SP. Vaccine Development for Nipah Virus Infection in Pigs. Front Vet Sci 2019;6:16. [PMID: 30778392 DOI: 10.3389/fvets.2019.00016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
36 Bordoloi D, Xiao P, Choi H, Ho M, Perales-Puchalt A, Khoshnejad M, Kim JJ, Humeau L, Srinivasan A, Weiner DB, Muthumani K. Immunotherapy of prostate cancer using novel synthetic DNA vaccines targeting multiple tumor antigens. Genes Cancer 2021;12:51-64. [PMID: 33884106 DOI: 10.18632/genesandcancer.214] [Reference Citation Analysis]
37 Käser T, Renois F, Wilson HL, Cnudde T, Gerdts V, Dillon JR, Jungersen G, Agerholm JS, Meurens F. Contribution of the swine model in the study of human sexually transmitted infections. Infect Genet Evol 2018;66:346-60. [PMID: 29175001 DOI: 10.1016/j.meegid.2017.11.022] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
38 Guinan J, Lopez BS. Generating Bovine Monocyte-Derived Dendritic Cells for Experimental and Clinical Applications Using Commercially Available Serum-Free Medium. Front Immunol 2020;11:591185. [PMID: 33178224 DOI: 10.3389/fimmu.2020.591185] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Navarro-Alvarez N, Gonçalves BMM, Andrews AR, Sachs DH, Huang CA. A CFA-Induced Model of Inflammatory Skin Disease in Miniature Swine. Int J Inflam 2018;2018:6916920. [PMID: 30034774 DOI: 10.1155/2018/6916920] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Li C, Wang F, Li R, Ishfaq M, Chen H, Liu F, Liu Y. Hematologic and biochemical reference intervals for 1-month-old specific-pathogen-free Landrace pigs. Vet Clin Pathol 2021;50:76-80. [PMID: 33550680 DOI: 10.1111/vcp.12972] [Reference Citation Analysis]
41 Hudson Reichenberg LC, Garg R, Fernalld R, Bost KL, Piller KJ. Systemic cytokine and chemokine responses in immunized mice challenged with staphylococcal enterotoxin B. Toxicon 2017;133:82-90. [PMID: 28478060 DOI: 10.1016/j.toxicon.2017.05.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
42 Engert LC, Weiler U, Pfaffinger B, Stefanski V, Schmucker SS. Diurnal rhythms in peripheral blood immune cell numbers of domestic pigs. Dev Comp Immunol 2018;79:11-20. [PMID: 29017838 DOI: 10.1016/j.dci.2017.10.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
43 Pavel STI, Yetiskin H, Uygut MA, Aslan AF, Aydın G, İnan Ö, Kaplan B, Ozdarendeli A. Development of an Inactivated Vaccine against SARS CoV-2. Vaccines (Basel) 2021;9:1266. [PMID: 34835197 DOI: 10.3390/vaccines9111266] [Reference Citation Analysis]
44 Levast B, Hogan D, van Kessel J, Strom S, Walker S, Zhu J, Meurens F, Gerdts V. Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro. Front Vet Sci 2019;6:233. [PMID: 31355218 DOI: 10.3389/fvets.2019.00233] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
45 Paquin A, Onabajo OO, Tang W, Prokunina-Olsson L. Comparative Functional Analysis of 12 Mammalian IFN-λ4 Orthologs. J Interferon Cytokine Res 2016;36:30-6. [PMID: 26308395 DOI: 10.1089/jir.2015.0096] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
46 Li S, Lee KH, Zhang W. Multiepitope Fusion Antigen: MEFA, an Epitope- and Structure-Based Vaccinology Platform for Multivalent Vaccine Development. Methods Mol Biol 2022;2414:151-69. [PMID: 34784037 DOI: 10.1007/978-1-0716-1900-1_10] [Reference Citation Analysis]
47 Ramesh AK, Parreño V, Schmidt PJ, Lei S, Zhong W, Jiang X, Emelko MB, Yuan L. Evaluation of the 50% Infectious Dose of Human Norovirus Cin-2 in Gnotobiotic Pigs: A Comparison of Classical and Contemporary Methods for Endpoint Estimation. Viruses 2020;12:E955. [PMID: 32872283 DOI: 10.3390/v12090955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
48 Tremblay N, Freppel W, Sow AA, Chatel-Chaix L. The Interplay between Dengue Virus and the Human Innate Immune System: A Game of Hide and Seek. Vaccines (Basel) 2019;7:E145. [PMID: 31658677 DOI: 10.3390/vaccines7040145] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
49 Azizi A. Protective Efficacy of Candidate Vaccines Prior to Human Clinical Trials. Journal of Pharmaceutical Sciences 2018;107:2992-4. [DOI: 10.1016/j.xphs.2018.08.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
50 Oreskovic Z, Kudlackova H, Krejci J, Nechvatalova K, Faldyna M. Oil-based adjuvants delivered intradermally induce high primary IgG2 immune response in swine. Res Vet Sci 2017;114:41-3. [PMID: 28319826 DOI: 10.1016/j.rvsc.2017.03.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
51 Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. Environ Sci Pollut Res Int 2021;28:46999-7023. [PMID: 34272669 DOI: 10.1007/s11356-021-14941-z] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Xiao X, Li K, Ma X, Liu B, He X, Yang S, Wang W, Jiang B, Cai J. Mucosal-Associated Invariant T Cells Expressing the TRAV1-TRAJ33 Chain Are Present in Pigs. Front Immunol 2019;10:2070. [PMID: 31552029 DOI: 10.3389/fimmu.2019.02070] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
53 Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019;10:873. [PMID: 31130923 DOI: 10.3389/fmicb.2019.00873] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
54 Witt AN, Green RD, Winterborn AN. A Meta-Analysis of Rhesus Macaques (Macaca mulatta), Cynomolgus Macaques (Macaca fascicularis), African green monkeys (Chlorocebus aethiops), and Ferrets (Mustela putorius furo) as Large Animal Models for COVID-19. Comp Med 2021;71:433-41. [PMID: 34588096 DOI: 10.30802/AALAS-CM-21-000032] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Moreau E, Meurens F. Interleukins and large domestic animals, a bibliometric analysis. Heliyon 2017;3:e00321. [PMID: 28653038 DOI: 10.1016/j.heliyon.2017.e00321] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
56 Dubreil L, Ledevin M, Hervet C, Menard D, Philippe C, Michel FJ, Larcher T, Meurens F, Bertho N. The Internal Conduit System of the Swine Inverted Lymph Node. Front Immunol 2022;13:869384. [DOI: 10.3389/fimmu.2022.869384] [Reference Citation Analysis]
57 Aceves-Sánchez MJ, Flores-Valdez MA. Mice continue to be a good model for preliminary assessment of tuberculosis vaccine candidates. Hum Vaccin Immunother 2017;13:634-5. [PMID: 27764574 DOI: 10.1080/21645515.2016.1248010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
58 Christoforidou Z, Mora Ortiz M, Poveda C, Abbas M, Walton G, Bailey M, Lewis MC. Sexual Dimorphism in Immune Development and in Response to Nutritional Intervention in Neonatal Piglets. Front Immunol 2019;10:2705. [PMID: 31921096 DOI: 10.3389/fimmu.2019.02705] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
59 Cordoba G, Sørensen TM, Holm A, Bjørnvad CR, Bjerrum L, Jessen LR. Exploring the feasibility and synergistic value of the One Health approach in clinical research: protocol for a prospective observational study of diagnostic pathways in human and canine patients with suspected urinary tract infection. Pilot Feasibility Stud 2015;1:38. [PMID: 27965816 DOI: 10.1186/s40814-015-0036-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
60 Sharun K, Tiwari R, Patel SK, Karthik K, Iqbal Yatoo M, Malik YS, Singh KP, Panwar PK, Harapan H, Singh RK, Dhama K. Coronavirus disease 2019 (COVID-19) in domestic animals and wildlife: advances and prospects in the development of animal models for vaccine and therapeutic research. Hum Vaccin Immunother 2020;16:3043-54. [PMID: 32915100 DOI: 10.1080/21645515.2020.1807802] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
61 Lara-Puente JH, Carreño JM, Sun W, Suárez-Martínez A, Ramírez-Martínez L, Quezada-Monroy F, Paz-De la Rosa G, Vigueras-Moreno R, Singh G, Rojas-Martínez O, Chagoya-Cortés HE, Sarfati-Mizrahi D, Soto-Priante E, López-Macías C, Krammer F, Castro-Peralta F, Palese P, García-Sastre A, Lozano-Dubernard B. Safety and Immunogenicity of a Newcastle Disease Virus Vector-Based SARS-CoV-2 Vaccine Candidate, AVX/COVID-12-HEXAPRO (Patria), in Pigs. mBio 2021;12:e0190821. [PMID: 34544278 DOI: 10.1128/mBio.01908-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]