BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Abbott DH, Rayome BH, Dumesic DA, Lewis KC, Edwards AK, Wallen K, Wilson ME, Appt SE, Levine JE. Clustering of PCOS-like traits in naturally hyperandrogenic female rhesus monkeys. Hum Reprod 2017;32:923-36. [PMID: 28333238 DOI: 10.1093/humrep/dex036] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Bourgneuf C, Bailbé D, Lamazière A, Dupont C, Moldes M, Farabos D, Roblot N, Gauthier C, Mathieu d'Argent E, Cohen-Tannoudji J, Monniaux D, Fève B, Movassat J, di Clemente N, Racine C. The Goto-Kakizaki rat is a spontaneous prototypical rodent model of polycystic ovary syndrome. Nat Commun 2021;12:1064. [PMID: 33594056 DOI: 10.1038/s41467-021-21308-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
2 Abedal-Majed MA, Cupp AS. Livestock animals to study infertility in women. Anim Front 2019;9:28-33. [PMID: 32002260 DOI: 10.1093/af/vfz017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
3 Witchel SF, Oberfield SE, Peña AS. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. J Endocr Soc 2019;3:1545-73. [PMID: 31384717 DOI: 10.1210/js.2019-00078] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 17.3] [Reference Citation Analysis]
4 Abruzzese GA, Crisosto N, De Grava Kempinas W, Sotomayor-zárate R. Developmental programming of the female neuroendocrine system by steroids. J Neuroendocrinol 2018;30:e12632. [DOI: 10.1111/jne.12632] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
5 Abbott DH. Neuronal androgen receptor: Molecular gateway to polycystic ovary syndrome? Proc Natl Acad Sci USA 2017;114:4045-7. [DOI: 10.1073/pnas.1703436114] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
6 Abbott DH, Dumesic DA, Levine JE. Hyperandrogenic origins of polycystic ovary syndrome - implications for pathophysiology and therapy. Expert Rev Endocrinol Metab 2019;14:131-43. [PMID: 30767580 DOI: 10.1080/17446651.2019.1576522] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
7 Parker J, O'Brien C, Gersh FL. Developmental origins and transgenerational inheritance of polycystic ovary syndrome. Aust N Z J Obstet Gynaecol 2021. [PMID: 34403138 DOI: 10.1111/ajo.13420] [Reference Citation Analysis]
8 Lesseur C, Pirrotte P, Pathak KV, Manservisi F, Mandrioli D, Belpoggi F, Panzacchi S, Li Q, Barrett ES, Nguyen RHN, Sathyanarayana S, Swan SH, Chen J. Maternal urinary levels of glyphosate during pregnancy and anogenital distance in newborns in a US multicenter pregnancy cohort. Environ Pollut 2021;280:117002. [PMID: 33812205 DOI: 10.1016/j.envpol.2021.117002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Tonellotto Dos Santos J, Escarião da Nóbrega J Jr, Serrano Mujica LK, Dos Santos Amaral C, Machado FA, Manta MW, Rizzetti TM, Zanella R, Fighera R, Antoniazzi AQ, Gonçalves PBD, Comim FV. Prenatal Androgenization of Ewes as a Model of Hirsutism in Polycystic Ovary Syndrome. Endocrinology 2018;159:4056-64. [PMID: 30376052 DOI: 10.1210/en.2018-00781] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Min Z, Gao Q, Zhen X, Fan Y, Tan T, Li R, Zhao Y, Yu Y. New insights into the genic and metabolic characteristics of induced pluripotent stem cells from polycystic ovary syndrome women. Stem Cell Res Ther 2018;9:210. [PMID: 30092830 DOI: 10.1186/s13287-018-0950-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
11 Tata B, Mimouni NEH, Barbotin AL, Malone SA, Loyens A, Pigny P, Dewailly D, Catteau-Jonard S, Sundström-Poromaa I, Piltonen TT, Dal Bello F, Medana C, Prevot V, Clasadonte J, Giacobini P. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med 2018;24:834-46. [PMID: 29760445 DOI: 10.1038/s41591-018-0035-5] [Cited by in Crossref: 135] [Cited by in F6Publishing: 127] [Article Influence: 33.8] [Reference Citation Analysis]
12 Corrie L, Gulati M, Singh SK, Kapoor B, Khursheed R, Awasthi A, Vishwas S, Chellappan DK, Gupta G, Jha NK, Anand K, Dua K. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci 2021;280:119753. [PMID: 34171379 DOI: 10.1016/j.lfs.2021.119753] [Reference Citation Analysis]
13 Phillips S, Timms P, Jelocnik M. Is Chlamydia to Blame for Koala Reproductive Cysts? Pathogens 2021;10:1140. [PMID: 34578173 DOI: 10.3390/pathogens10091140] [Reference Citation Analysis]
14 Parker J, O’brien C, Hawrelak J, Gersh FL. Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment. IJERPH 2022;19:1336. [DOI: 10.3390/ijerph19031336] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
15 Dumesic DA, Padmanabhan V, Chazenbalk GD, Abbott DH. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod Biol Endocrinol 2022;20:12. [PMID: 35012577 DOI: 10.1186/s12958-021-00878-y] [Reference Citation Analysis]
16 Santos LCDS, Lapa Neto CJC, Santos AMGD, Marinho KSDN, Nascimento BJD, Alves ER, Teixeir ÁAC, Wanderley-Teixeira V. Immunohistochemical and histophysiological study of prolonged use of nandrolone on reproductive organs and fertility. Biotech Histochem 2021;96:468-86. [PMID: 32981356 DOI: 10.1080/10520295.2020.1822545] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Sudhakaran G, Guru A, Hari Deva Muthu B, Murugan R, Arshad A, Arockiaraj J. Evidence-based hormonal, mutational, and endocrine-disrupting chemical-induced zebrafish as an alternative model to study PCOS condition similar to mammalian PCOS model. Life Sci 2022;291:120276. [PMID: 34990650 DOI: 10.1016/j.lfs.2021.120276] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Abbott DH, Kraynak M, Dumesic DA, Levine JE. In utero Androgen Excess: A Developmental Commonality Preceding Polycystic Ovary Syndrome? Front Horm Res 2019;53:1-17. [PMID: 31499494 DOI: 10.1159/000494899] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
19 McCartney CR, Campbell RE. Abnormal GnRH Pulsatility in Polycystic Ovary Syndrome: Recent Insights. Curr Opin Endocr Metab Res 2020;12:78-84. [PMID: 32676541 DOI: 10.1016/j.coemr.2020.04.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
20 Abbott DH, Rogers J, Dumesic DA, Levine JE. Naturally Occurring and Experimentally Induced Rhesus Macaque Models for Polycystic Ovary Syndrome: Translational Gateways to Clinical Application. Med Sci (Basel) 2019;7:E107. [PMID: 31783681 DOI: 10.3390/medsci7120107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
21 Ryu Y, Kim SW, Kim YY, Ku SY. Animal Models for Human Polycystic Ovary Syndrome (PCOS) Focused on the Use of Indirect Hormonal Perturbations: A Review of the Literature. Int J Mol Sci 2019;20:E2720. [PMID: 31163591 DOI: 10.3390/ijms20112720] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
22 Vázquez-martínez ER, Gómez-viais YI, García-gómez E, Reyes-mayoral C, Reyes-muñoz E, Camacho-arroyo I, Cerbón M. DNA methylation in the pathogenesis of polycystic ovary syndrome. Reproduction 2019;158:R27-40. [DOI: 10.1530/rep-18-0449] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
23 Barbotin AL, Peigné M, Malone SA, Giacobini P. Emerging Roles of Anti-Müllerian Hormone in Hypothalamic-Pituitary Function. Neuroendocrinology 2019;109:218-29. [PMID: 31280262 DOI: 10.1159/000500689] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
24 Silva MSB, Giacobini P. New insights into anti-Müllerian hormone role in the hypothalamic-pituitary-gonadal axis and neuroendocrine development. Cell Mol Life Sci 2021;78:1-16. [PMID: 32564094 DOI: 10.1007/s00018-020-03576-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
25 Gibson AG, Jaime J, Burger LL, Moenter SM. Prenatal Androgen Treatment Does Not Alter the Firing Activity of Hypothalamic Arcuate Kisspeptin Neurons in Female Mice. eNeuro 2021;8:ENEURO. [PMID: 34503965 DOI: 10.1523/ENEURO.0306-21.2021] [Reference Citation Analysis]
26 Abbott DH, Vepraskas SH, Horton TH, Terasawa E, Levine JE. Accelerated Episodic Luteinizing Hormone Release Accompanies Blunted Progesterone Regulation in PCOS-like Female Rhesus Monkeys (Macaca Mulatta) Exposed to Testosterone during Early-to-Mid Gestation. Neuroendocrinology 2018;107:133-46. [PMID: 29949806 DOI: 10.1159/000490570] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
27 Abbott DH. Metformin use in polycystic ovary syndrome pregnancy impacts on offspring obesity. Lancet Child Adolesc Health 2019;3:132-4. [PMID: 30704878 DOI: 10.1016/S2352-4642(19)30001-X] [Reference Citation Analysis]
28 Vanky E, Engen Hanem LG, Abbott DH. Children born to women with polycystic ovary syndrome-short- and long-term impacts on health and development. Fertil Steril 2019;111:1065-75. [PMID: 31056313 DOI: 10.1016/j.fertnstert.2019.03.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
29 Ferreira SR, Goyeneche AA, Heber MF, Abruzzese GA, Telleria CM, Motta AB. Prenatally androgenized female rats develop uterine hyperplasia when adult. Molecular and Cellular Endocrinology 2020;499:110610. [DOI: 10.1016/j.mce.2019.110610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Wang Z, Shen M, Xue P, DiVall SA, Segars J, Wu S. Female Offspring From Chronic Hyperandrogenemic Dams Exhibit Delayed Puberty and Impaired Ovarian Reserve. Endocrinology 2018;159:1242-52. [PMID: 29315373 DOI: 10.1210/en.2017-03078] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
31 Silva MSB, Campbell RE. Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess. Compr Physiol 2022;12:3347-69. [PMID: 35578968 DOI: 10.1002/cphy.c210025] [Reference Citation Analysis]
32 Walters K, Bertoldo M, Handelsman D. Evidence from animal models on the pathogenesis of PCOS. Best Practice & Research Clinical Endocrinology & Metabolism 2018;32:271-81. [DOI: 10.1016/j.beem.2018.03.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
33 Bimber BN, Yan MY, Peterson SM, Ferguson B. mGAP: the macaque genotype and phenotype resource, a framework for accessing and interpreting macaque variant data, and identifying new models of human disease. BMC Genomics 2019;20:176. [PMID: 30841849 DOI: 10.1186/s12864-019-5559-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
34 Stener-Victorin E, Padmanabhan V, Walters KA, Campbell RE, Benrick A, Giacobini P, Dumesic DA, Abbott DH. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocr Rev 2020;41:bnaa010. [PMID: 32310267 DOI: 10.1210/endrev/bnaa010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 45.0] [Reference Citation Analysis]