BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Leeper NJ, Maegdefessel L. Non-coding RNAs: key regulators of smooth muscle cell fate in vascular disease. Cardiovasc Res 2018;114:611-21. [PMID: 29300828 DOI: 10.1093/cvr/cvx249] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 He X, Li X, Han Y, Chen G, Xu T, Cai D, Sun Y, Wang S, Lai Y, Teng Z, Huang S, Liao W, Liao Y, Bin J, Xiu J. CircRNA Chordc1 protects mice from abdominal aortic aneurysm by contributing to the phenotype and growth of vascular smooth muscle cells. Mol Ther Nucleic Acids 2022;27:81-98. [PMID: 34938608 DOI: 10.1016/j.omtn.2021.11.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Wu Y, Cai F, Lu Y, Hu Y, Wang Q. lncRNA RP11-531A24.3 inhibits the migration and proliferation of vascular smooth muscle cells by downregulating ANXA2 expression. Exp Ther Med 2021;22:1439. [PMID: 34721681 DOI: 10.3892/etm.2021.10874] [Reference Citation Analysis]
3 Hildebrandt A, Kirchner B, Meidert AS, Brandes F, Lindemann A, Doose G, Doege A, Weidenhagen R, Reithmair M, Schelling G, Pfaffl MW. Detection of Atherosclerosis by Small RNA-Sequencing Analysis of Extracellular Vesicle Enriched Serum Samples. Front Cell Dev Biol 2021;9:729061. [PMID: 34712662 DOI: 10.3389/fcell.2021.729061] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
4 Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021;2:79-94. [PMID: 34617061 DOI: 10.1016/j.jvssci.2021.04.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Melton E, Qiu H. Interleukin-1β in Multifactorial Hypertension: Inflammation, Vascular Smooth Muscle Cell and Extracellular Matrix Remodeling, and Non-Coding RNA Regulation. Int J Mol Sci 2021;22:8639. [PMID: 34445357 DOI: 10.3390/ijms22168639] [Reference Citation Analysis]
6 Han Y, Ali MK, Dua K, Spiekerkoetter E, Mao Y. Role of Long Non-Coding RNAs in Pulmonary Arterial Hypertension. Cells 2021;10:1892. [PMID: 34440661 DOI: 10.3390/cells10081892] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
7 Dlouha D, Ivak P, Netuka I, Benesova S, Tucanova Z, Hubacek JA. An Integrative Study of Aortic mRNA/miRNA Longitudinal Changes in Long-Term LVAD Support. Int J Mol Sci 2021;22:7414. [PMID: 34299034 DOI: 10.3390/ijms22147414] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Zhao X, Cheng S, Li S, Li J, Bai X, Xi J. CDKN2B-AS1 Aggravates the Pathogenesis of Human Thoracic Aortic Dissection by Sponge to miR-320d. J Cardiovasc Pharmacol 2020;76:592-601. [PMID: 33165136 DOI: 10.1097/FJC.0000000000000907] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
9 Hou S, Chen D, Liu J, Chen S, Zhang X, Zhang Y, Li M, Pan W, Zhou D, Guan L, Ge J. Profiling and Molecular Mechanism Analysis of Long Non-Coding RNAs and mRNAs in Pulmonary Arterial Hypertension Rat Models. Front Pharmacol 2021;12:709816. [PMID: 34267668 DOI: 10.3389/fphar.2021.709816] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Ding X, Wang X, Han L, Zhao Z, Jia S, Tuo Y. CircRNA DOCK1 Regulates miR-409-3p/MCL1 Axis to Modulate Proliferation and Apoptosis of Human Brain Vascular Smooth Muscle Cells. Front Cell Dev Biol 2021;9:655628. [PMID: 34109173 DOI: 10.3389/fcell.2021.655628] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
11 Antoniades C, Antonopoulos AS, Deanfield J. Imaging residual inflammatory cardiovascular risk. Eur Heart J 2020;41:748-58. [PMID: 31317172 DOI: 10.1093/eurheartj/ehz474] [Cited by in Crossref: 11] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
12 Zou L, Xia PF, Chen L, Hou YY. XIST knockdown suppresses vascular smooth muscle cell proliferation and induces apoptosis by regulating miR-1264/WNT5A/β-catenin signaling in aneurysm. Biosci Rep 2021;41:BSR20201810. [PMID: 33501488 DOI: 10.1042/BSR20201810] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
13 Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. Mol Ther Nucleic Acids 2021;23:1136-60. [PMID: 33664994 DOI: 10.1016/j.omtn.2021.01.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
14 Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021;10:131. [PMID: 33445441 DOI: 10.3390/cells10010131] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
15 Wang J, Hu X, Hu X, Gao F, Li M, Cui Y, Wei X, Qin Y, Zhang C, Zhao Y, Gao Y. MicroRNA-520c-3p targeting of RelA/p65 suppresses atherosclerotic plaque formation. Int J Biochem Cell Biol 2021;131:105873. [PMID: 33166679 DOI: 10.1016/j.biocel.2020.105873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Mi S, Wang P, Lin L. miR-188-3p Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Targeting Fibroblast Growth Factor 1 (FGF1). Med Sci Monit 2020;26:e924394. [PMID: 33020467 DOI: 10.12659/MSM.924394] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
17 He X, Lian Z, Yang Y, Wang Z, Fu X, Liu Y, Li M, Tian J, Yu T, Xin H. Long Non-coding RNA PEBP1P2 Suppresses Proliferative VSMCs Phenotypic Switching and Proliferation in Atherosclerosis. Mol Ther Nucleic Acids 2020;22:84-98. [PMID: 32916601 DOI: 10.1016/j.omtn.2020.08.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
18 Tian J, Fu Y, Li Q, Xu Y, Xi X, Zheng Y, Yu L, Wang Z, Yu B, Tian J. Differential Expression and Bioinformatics Analysis of CircRNA in PDGF-BB-Induced Vascular Smooth Muscle Cells. Front Genet 2020;11:530. [PMID: 32547599 DOI: 10.3389/fgene.2020.00530] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
19 Maguire EM, Xiao Q. Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia. FEBS J 2020;287:5260-83. [DOI: 10.1111/febs.15357] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
20 Chen C, Huang Z, Mo X, Song Y, Li X, Li X, Zhang M. The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Cancer Res 2020;39:91. [PMID: 32430042 DOI: 10.1186/s13046-020-01594-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 42] [Article Influence: 11.0] [Reference Citation Analysis]
21 Xu Z, Zuo Z, Dong D, Liu J, Tang Y, Gu Y, Liu H. Downregulated lncRNA UCA1 accelerates proliferation and migration of vascular smooth muscle cells by epigenetic regulation of MMP9. Exp Ther Med 2020;19:3589-94. [PMID: 32346422 DOI: 10.3892/etm.2020.8639] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Knappich C, Spin JM, Eckstein HH, Tsao PS, Maegdefessel L. Involvement of Myeloid Cells and Noncoding RNA in Abdominal Aortic Aneurysm Disease. Antioxid Redox Signal 2020;33:602-20. [PMID: 31989839 DOI: 10.1089/ars.2020.8035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Shen YH, LeMaire SA, Webb NR, Cassis LA, Daugherty A, Lu HS. Aortic Aneurysms and Dissections Series. Arterioscler Thromb Vasc Biol 2020;40:e37-46. [PMID: 32101472 DOI: 10.1161/ATVBAHA.120.313991] [Cited by in Crossref: 8] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
24 Kumar S, Boon RA, Maegdefessel L, Dimmeler S, Jo H. Role of Noncoding RNAs in the Pathogenesis of Abdominal Aortic Aneurysm. Circ Res 2019;124:619-30. [PMID: 30763215 DOI: 10.1161/CIRCRESAHA.118.312438] [Cited by in Crossref: 29] [Cited by in F6Publishing: 45] [Article Influence: 9.7] [Reference Citation Analysis]
25 Small HY, Guzik TJ. High impact Cardiovascular Research: beyond the heart and vessels. Cardiovasc Res 2019;115:e166-71. [PMID: 31697316 DOI: 10.1093/cvr/cvz272] [Reference Citation Analysis]
26 Wu ZY, Trenner M, Boon RA, Spin JM, Maegdefessel L. Long noncoding RNAs in key cellular processes involved in aortic aneurysms. Atherosclerosis 2020;292:112-8. [PMID: 31785492 DOI: 10.1016/j.atherosclerosis.2019.11.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
27 Jin Q, Zhao Z, Zhao Q, Yu X, Yan L, Zhang Y, Luo Q, Liu Z. Long noncoding RNAs: emerging roles in pulmonary hypertension. Heart Fail Rev 2020;25:795-815. [DOI: 10.1007/s10741-019-09866-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
28 Wang X, Li D, Chen H, Wei X, Xu X. Expression of Long Noncoding RNA LIPCAR Promotes Cell Proliferation, Cell Migration, and Change in Phenotype of Vascular Smooth Muscle Cells. Med Sci Monit 2019;25:7645-51. [PMID: 31603865 DOI: 10.12659/MSM.915681] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
29 He X, Wang S, Li M, Zhong L, Zheng H, Sun Y, Lai Y, Chen X, Wei G, Si X, Han Y, Huang S, Li X, Liao W, Liao Y, Bin J. Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis. Theranostics 2019;9:5558-76. [PMID: 31534503 DOI: 10.7150/thno.34463] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 11.7] [Reference Citation Analysis]
30 Bochaton-Piallat ML, Bäck M. Novel concepts for the role of smooth muscle cells in vascular disease: towards a new smooth muscle cell classification. Cardiovasc Res 2018;114:477-80. [PMID: 29408963 DOI: 10.1093/cvr/cvy031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
31 Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in Atherosclerosis. Arterioscler Thromb Vasc Biol 2018;38:e159-70. [PMID: 30354259 DOI: 10.1161/ATVBAHA.118.310227] [Cited by in Crossref: 43] [Cited by in F6Publishing: 73] [Article Influence: 14.3] [Reference Citation Analysis]
32 Lai Y, Li J, Zhong L, He X, Si X, Sun Y, Chen Y, Zhong J, Hu Y, Li B, Liao W, Liu C, Liao Y, Xiu J, Bin J. The pseudogene PTENP1 regulates smooth muscle cells as a competing endogenous RNA. Clin Sci (Lond) 2019;133:1439-55. [PMID: 31235554 DOI: 10.1042/CS20190156] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
33 Chao CT, Yeh HY, Yuan TH, Chiang CK, Chen HW. MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications. J Cell Mol Med 2019;23:5884-94. [PMID: 31301111 DOI: 10.1111/jcmm.14535] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
34 Winter C, Soehnlein O, Maegdefessel L. TIMPing the Aorta: Smooth Muscle Cell-Specific Deletion of BMAL1 Limits Murine Abdominal Aortic Aneurysm Development. Arterioscler Thromb Vasc Biol 2018;38:982-3. [PMID: 29695531 DOI: 10.1161/ATVBAHA.118.310857] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Wu G, Jose PA, Zeng C. Noncoding RNAs in the Regulatory Network of Hypertension. Hypertension 2018;72:1047-59. [PMID: 30354825 DOI: 10.1161/HYPERTENSIONAHA.118.11126] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
36 Zhang B, Zhang G, Wei T, Yang Z, Tan W, Mo Z, Liu J, Li D, Wei Y, Zhang L, Webster KA, Wei J. MicroRNA-25 Protects Smooth Muscle Cells against Corticosterone-Induced Apoptosis. Oxid Med Cell Longev 2019;2019:2691514. [PMID: 30992737 DOI: 10.1155/2019/2691514] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
37 Yang X, Li Z, Zhang L, Wu X, Kang Q, Li L. Retracted Article: Knockdown of long non-coding RNA OIP5-AS1 suppresses cell proliferation and migration in ox-LDL-induced human vascular smooth muscle cells (hVMSCs) through targeting miR-152-3p/PAPPA axis. RSC Adv 2019;9:32499-509. [DOI: 10.1039/c9ra06614d] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
38 Torres-Fonseca M, Galan M, Martinez-Lopez D, Cañes L, Roldan-Montero R, Alonso J, Reyero-Postigo T, Orriols M, Mendez-Barbero N, Sirvent M, Blanco-Colio LM, Martínez J, Martin-Ventura JL, Rodríguez C; En representación del Grupo de trabajo de Biología Vascular de la Sociedad Española de Arteriosclerosis. Pathophisiology of abdominal aortic aneurysm: biomarkers and novel therapeutic targets. Clin Investig Arterioscler 2019;31:166-77. [PMID: 30528271 DOI: 10.1016/j.arteri.2018.10.002] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
39 Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019;196:15-43. [PMID: 30439455 DOI: 10.1016/j.pharmthera.2018.11.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 64] [Article Influence: 10.0] [Reference Citation Analysis]
40 Portelli SS, Robertson EN, Malecki C, Liddy KA, Hambly BD, Jeremy RW. Epigenetic influences on genetically triggered thoracic aortic aneurysm. Biophys Rev 2018;10:1241-56. [PMID: 30267337 DOI: 10.1007/s12551-018-0460-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Li M, Wang YF, Yang XC, Xu L, Li WM, Xia K, Zhang DP, Wu RN, Gan T. Circulating Long Noncoding RNA LIPCAR Acts as a Novel Biomarker in Patients with ST-Segment Elevation Myocardial Infarction. Med Sci Monit 2018;24:5064-70. [PMID: 30030914 DOI: 10.12659/MSM.909348] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
42 Small HY; FCVB Young Investigators. Recognizing young investigators at Frontiers in Cardiovascular Biology 2018. Cardiovasc Res 2018;114:e53-5. [PMID: 29800378 DOI: 10.1093/cvr/cvy102] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]