BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mounzer R, Shkarin P, Papademetris X, Constable T, Ruddle NH, Fahmy TM. Dynamic imaging of lymphatic vessels and lymph nodes using a bimodal nanoparticulate contrast agent. Lymphat Res Biol. 2007;5:151-158. [PMID: 18035933 DOI: 10.1089/lrb.2007.5302] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Kaminskas LM, Boyd BJ. Nanosized Drug Delivery Vectors and the Reticuloendothelial System. In: Prokop A, editor. Intracellular Delivery. Dordrecht: Springer Netherlands; 2011. pp. 155-78. [DOI: 10.1007/978-94-007-1248-5_6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
2 Kaminskas LM, Porter CJ. Targeting the lymphatics using dendritic polymers (dendrimers). Advanced Drug Delivery Reviews 2011;63:890-900. [DOI: 10.1016/j.addr.2011.05.016] [Cited by in Crossref: 81] [Cited by in F6Publishing: 70] [Article Influence: 7.4] [Reference Citation Analysis]
3 Polomska AK, Proulx ST. Imaging technology of the lymphatic system. Adv Drug Deliv Rev 2021;170:294-311. [PMID: 32891679 DOI: 10.1016/j.addr.2020.08.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
4 Criscione JM, Le BL, Stern E, Brennan M, Rahner C, Papademetris X, Fahmy TM. Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 2009;30:3946-55. [DOI: 10.1016/j.biomaterials.2009.04.014] [Cited by in Crossref: 108] [Cited by in F6Publishing: 93] [Article Influence: 8.3] [Reference Citation Analysis]
5 Pan WR, Levy SM, Wang DG. Divergent lymphatic drainage routes from the heel to the inguinal region: anatomic study and clinical implications. Lymphat Res Biol 2014;12:169-74. [PMID: 25229435 DOI: 10.1089/lrb.2014.0004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
6 Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Arch Pharm Res 2018;41:797-814. [PMID: 30074202 DOI: 10.1007/s12272-018-1060-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
7 Kobayashi H, Longmire MR, Ogawa M, Choyke PL. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem Soc Rev 2011;40:4626-48. [PMID: 21607237 DOI: 10.1039/c1cs15077d] [Cited by in Crossref: 166] [Cited by in F6Publishing: 143] [Article Influence: 15.1] [Reference Citation Analysis]
8 Longmire MR, Ogawa M, Choyke PL, Kobayashi H. Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem 2011;22:993-1000. [PMID: 21513351 DOI: 10.1021/bc200111p] [Cited by in Crossref: 123] [Cited by in F6Publishing: 105] [Article Influence: 11.2] [Reference Citation Analysis]
9 Ruddell A, Kirschbaum SB, Ganti SN, Liu CL, Sun RR, Partridge SC. Tumor-induced alterations in lymph node lymph drainage identified by contrast-enhanced MRI. J Magn Reson Imaging 2015;42:145-52. [PMID: 25256593 DOI: 10.1002/jmri.24754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
10 Proulx ST, Luciani P, Dieterich LC, Karaman S, Leroux J, Detmar M. Expansion of the lymphatic vasculature in cancer and inflammation: New opportunities for in vivo imaging and drug delivery. Journal of Controlled Release 2013;172:550-7. [DOI: 10.1016/j.jconrel.2013.04.027] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
11 Yang R, Mao Y, Ye T, Xia S, Wang S, Wang S. Study on enhanced lymphatic exposure of polyamidoamin-alkali blue dendrimer for paclitaxel delivery and influence of the osmotic pressure on the lymphatic targeting. Drug Deliv 2016;23:2617-29. [PMID: 26017243 DOI: 10.3109/10717544.2015.1041577] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
12 Kim H, Shin M, Kim S, Kim I, Park I. The Relation of Visualization of Internal Mammary Lymph Nodes on Lymphoscintigraphy to Axillary Lymph Node Metastases in Breast Cancer. Lymphatic Research and Biology 2014;12:295-300. [DOI: 10.1089/lrb.2013.0039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
13 Müller A, Fries P, Jelvani B, Lux F, Rübe CE, Kremp S, Giovanoli P, Buecker A, Menger MD, Laschke MW, Frueh FS. Magnetic Resonance Lymphography at 9.4 T Using a Gadolinium-Based Nanoparticle in Rats: Investigations in Healthy Animals and in a Hindlimb Lymphedema Model. Invest Radiol 2017;52:725-33. [PMID: 28678084 DOI: 10.1097/RLI.0000000000000398] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
14 Yang R, Xia S, Ye T, Yao J, Zhang R, Wang S, Wang S. Synthesis of a novel polyamidoamine dendrimer conjugating with alkali blue as a lymphatic tracer and study on the lymphatic targeting in vivo. Drug Deliv 2016;23:2298-308. [PMID: 25406493 DOI: 10.3109/10717544.2014.979515] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
15 Chaney EJ, Tang L, Tong R, Cheng J, Boppart SA. Lymphatic Biodistribution of Polylactide Nanoparticles. Mol Imaging 2010;9:7290.2010.00012. [DOI: 10.2310/7290.2010.00012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
16 Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: Maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. Journal of Controlled Release 2014;193:241-56. [DOI: 10.1016/j.jconrel.2014.04.051] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 7.8] [Reference Citation Analysis]
17 Criscione JM, Dobrucki LW, Zhuang ZW, Papademetris X, Simons M, Sinusas AJ, Fahmy TM. Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging. Bioconjug Chem 2011;22:1784-92. [PMID: 21851119 DOI: 10.1021/bc200162r] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 4.0] [Reference Citation Analysis]
18 Frueh FS, Körbel C, Gassert L, Müller A, Gousopoulos E, Lindenblatt N, Giovanoli P, Laschke MW, Menger MD. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb. Sci Rep 2016;6:34673. [PMID: 27698469 DOI: 10.1038/srep34673] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
19 Wu T, Zheng WL, Zhang SZ, Sun JH, Yuan H. Bimodal visualization of colorectal uptake of nanoparticles in dimethylhydrazine-treated mice. World J Gastroenterol 2011; 17(31): 3614-3622 [PMID: 21987608 DOI: 10.3748/wjg.v17.i31.3614] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
20 Partridge SC, Kurland BF, Liu CL, Ho RJ, Ruddell A. Tumor-induced lymph node alterations detected by MRI lymphography using gadolinium nanoparticles. Sci Rep 2015;5:15641. [PMID: 26497382 DOI: 10.1038/srep15641] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
21 Sheng F, Inoue Y, Kiryu S, Watanabe M, Ohtomo K. Interstitial MR lymphography in mice with gadopentetate dimeglumine and gadoxetate disodium. J Magn Reson Imaging 2011;33:490-7. [DOI: 10.1002/jmri.22422] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
22 Ruddell A, Harrell MI, Minoshima S, Maravilla KR, Iritani BM, White SW, Partridge SC. Dynamic contrast-enhanced magnetic resonance imaging of tumor-induced lymph flow. Neoplasia 2008;10:706-13, 1 p following 713. [PMID: 18592009 DOI: 10.1593/neo.08342] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 3.1] [Reference Citation Analysis]
23 Inoue Y, Masutani Y, Kiryu S, Haishi T, Yoshikawa K, Watanabe M, Shimada M, Ohtomo K. Integrated Lymphography using Fluorescence Imaging and Magnetic Resonance Imaging in Intact Mice. Mol Imaging 2011;10:7290.2010.00049. [DOI: 10.2310/7290.2010.00049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Hall MA, Robinson H, Chan W, Sevick-Muraca EM. Detection of lymphangiogenesis by near-infrared fluorescence imaging and responses to VEGF-C during healing in a mouse full-dermis thickness wound model. Wound Repair Regen 2013;21:604-15. [PMID: 23758174 DOI: 10.1111/wrr.12063] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
25 Mounzer RH, Svendsen OS, Baluk P, Bergman CM, Padera TP, Wiig H, Jain RK, McDonald DM, Ruddle NH. Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 2010;116:2173-82. [PMID: 20566898 DOI: 10.1182/blood-2009-12-256065] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 4.9] [Reference Citation Analysis]
26 Pollmann C, Hägerling R, Kiefer F. Visualization of lymphatic vessel development, growth, and function. Adv Anat Embryol Cell Biol 2014;214:167-86. [PMID: 24276894 DOI: 10.1007/978-3-7091-1646-3_13] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]