BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Han L, Zhang A, Wang H, Pu P, Jiang X, Kang C, Chang J. Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther 2010;21:417-26. [PMID: 19899955 DOI: 10.1089/hum.2009.087] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Dieudonné A, Pignol D, Prévéral S. Magnetosomes: biogenic iron nanoparticles produced by environmental bacteria. Appl Microbiol Biotechnol 2019;103:3637-49. [PMID: 30903215 DOI: 10.1007/s00253-019-09728-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
2 Huang R, Ke W, Han L, Li J, Liu S, Jiang C. Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration. Biomaterials 2011;32:2399-406. [DOI: 10.1016/j.biomaterials.2010.11.079] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 6.5] [Reference Citation Analysis]
3 Wang Q, Wu S, Li X, Zhang T, Yang J, Wang X, Li F, Li Y, Peng Y, Li J. Work Patterns of MamXY Proteins during Magnetosome Formation in Magnetospirillum gryphiswaldense MSR-1. Appl Environ Microbiol 2019;85:e02394-18. [PMID: 30367002 DOI: 10.1128/AEM.02394-18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Rezaei V, Rabiee A, Khademi F. Glioblastoma multiforme: a glance at advanced therapies based on nanotechnology. J Chemother 2020;32:107-17. [PMID: 31984871 DOI: 10.1080/1120009X.2020.1713508] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhou Z, Zhang P, Ren J, Ran H, Zheng Y, Li P, Zhang Q, Zhang M, Wang Z. Synergistic effects of ultrasound-targeted microbubble destruction and TAT peptide on gene transfection: an experimental study in vitro and in vivo. J Control Release 2013;170:437-44. [PMID: 23791980 DOI: 10.1016/j.jconrel.2013.06.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
6 Qi L, Lv X, Zhang T, Jia P, Yan R, Li S, Zou R, Xue Y, Dai L. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Sci Rep 2016;6:26961. [PMID: 27246808 DOI: 10.1038/srep26961] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
7 Wu X, Yang H, Yang W, Chen X, Gao J, Gong X, Wang H, Duan Y, Wei D, Chang J. Nanoparticle-based diagnostic and therapeutic systems for brain tumors. J Mater Chem B 2019;7:4734-50. [DOI: 10.1039/c9tb00860h] [Cited by in Crossref: 25] [Cited by in F6Publishing: 7] [Article Influence: 8.3] [Reference Citation Analysis]
8 Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022:S0168-3659(22)00207-3. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Reference Citation Analysis]
9 Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J 2010;277:4814-27. [PMID: 21078116 DOI: 10.1111/j.1742-4658.2010.07904.x] [Cited by in Crossref: 213] [Cited by in F6Publishing: 199] [Article Influence: 17.8] [Reference Citation Analysis]
10 Maly J, Stanek O, Frolik J, Maly M, Ennen F, Appelhans D, Semeradtova A, Wrobel D, Stofik M, Knapova T, Kuchar M, Stastna LC, Cermak J, Sebo P, Maly P. Biocompatible Size-Defined Dendrimer-Albumin Binding Protein Hybrid Materials as a Versatile Platform for Biomedical Applications. Macromol Biosci 2016;16:553-66. [PMID: 26748571 DOI: 10.1002/mabi.201500332] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
11 Kwiatkowska A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in gene therapy for glioblastoma. Cancers (Basel) 2013;5:1271-305. [PMID: 24202446 DOI: 10.3390/cancers5041271] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 6.0] [Reference Citation Analysis]
12 Somani S, Dufès C. Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine (Lond) 2014;9:2403-14. [PMID: 25413857 DOI: 10.2217/nnm.14.130] [Cited by in Crossref: 44] [Cited by in F6Publishing: 31] [Article Influence: 6.3] [Reference Citation Analysis]
13 Veiseh O, Kievit FM, Ellenbogen RG, Zhang M. Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev 2011;63:582-96. [PMID: 21295093 DOI: 10.1016/j.addr.2011.01.010] [Cited by in Crossref: 92] [Cited by in F6Publishing: 79] [Article Influence: 8.4] [Reference Citation Analysis]
14 Jiang Q, Lai L, Shen J, Wang Q, Xu F, Tang G. Gene delivery to tumor cells by cationic polymeric nanovectors coupled to folic acid and the cell-penetrating peptide octaarginine. Biomaterials 2011;32:7253-62. [DOI: 10.1016/j.biomaterials.2011.06.015] [Cited by in Crossref: 89] [Cited by in F6Publishing: 83] [Article Influence: 8.1] [Reference Citation Analysis]
15 Giotta Lucifero A, Luzzi S, Brambilla I, Guarracino C, Mosconi M, Foiadelli T, Savasta S. Gene therapies for high-grade gliomas: from the bench to the bedside. Acta Biomed 2020;91:32-50. [PMID: 32608374 DOI: 10.23750/abm.v91i7-S.9953] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
16 Qi L, Wu L, Zheng S, Wang Y, Fu H, Cui D. Cell-Penetrating Magnetic Nanoparticles for Highly Efficient Delivery and Intracellular Imaging of siRNA. Biomacromolecules 2012;13:2723-30. [DOI: 10.1021/bm3006903] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 5.2] [Reference Citation Analysis]
17 Han L, Yang Y, Yue X, Huang K, Liu X, Pu P, Jiang H, Yan W, Jiang T, Kang C. Inactivation of PI3K/AKT signaling inhibits glioma cell growth through modulation of β-catenin-mediated transcription. Brain Res 2010;1366:9-17. [PMID: 20888802 DOI: 10.1016/j.brainres.2010.09.097] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 3.1] [Reference Citation Analysis]
18 Han L, Zhang A, Wang H, Pu P, Kang C, Chang J. Construction of novel brain-targeting gene delivery system by natural magnetic nanoparticles: Novel Brain-Targeting Gene Delivery System. J Appl Polym Sci 2011;121:3446-54. [DOI: 10.1002/app.33995] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
19 Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today 2016;21:766-78. [PMID: 26891979 DOI: 10.1016/j.drudis.2016.02.006] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 9.0] [Reference Citation Analysis]
20 Rai DB, Pooja D, Kulhari H. Dendrimers in gene delivery. Pharmaceutical Applications of Dendrimers. Elsevier; 2020. pp. 211-31. [DOI: 10.1016/b978-0-12-814527-2.00009-3] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discov Today 2015;20:76-85. [PMID: 25277319 DOI: 10.1016/j.drudis.2014.09.017] [Cited by in Crossref: 118] [Cited by in F6Publishing: 111] [Article Influence: 14.8] [Reference Citation Analysis]
22 Tang YS, Wang D, Zhou C, Ma W, Zhang YQ, Liu B, Zhang S. Bacterial magnetic particles as a novel and efficient gene vaccine delivery system. Gene Ther 2012;19:1187-95. [PMID: 22170341 DOI: 10.1038/gt.2011.197] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
23 Ren E, Lei Z, Wang J, Zhang Y, Liu G. Magnetosome Modification: From Bio-Nano Engineering Toward Nanomedicine. Adv Therap 2018;1:1800080. [DOI: 10.1002/adtp.201800080] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
24 Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Bongard JE, Medintz IL. Peptides for specific intracellular delivery and targeting of nanoparticles: implications for developing nanoparticle-mediated drug delivery. Therapeutic Delivery 2010;1:411-33. [DOI: 10.4155/tde.10.27] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 6.1] [Reference Citation Analysis]
25 Resnier P, David S, Lautram N, Delcroix GJ, Clavreul A, Benoit JP, Passirani C. EGFR siRNA lipid nanocapsules efficiently transfect glioma cells in vitro. Int J Pharm 2013;454:748-55. [PMID: 23583841 DOI: 10.1016/j.ijpharm.2013.04.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
26 Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomás H, Shi X. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 2012;33:3025-35. [PMID: 22248990 DOI: 10.1016/j.biomaterials.2011.12.045] [Cited by in Crossref: 177] [Cited by in F6Publishing: 153] [Article Influence: 17.7] [Reference Citation Analysis]
27 Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2012;2:307-24. [PMID: 23741608 DOI: 10.1098/rsfs.2012.0009] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 5.1] [Reference Citation Analysis]
28 Yuan X, Naguib S, Wu Z. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv 2011;8:521-36. [PMID: 21413903 DOI: 10.1517/17425247.2011.559223] [Cited by in Crossref: 77] [Cited by in F6Publishing: 67] [Article Influence: 7.0] [Reference Citation Analysis]
29 Nakase I, Tanaka G, Futaki S. Cell-penetrating peptides (CPPs) as a vector for the delivery of siRNAs into cells. Mol Biosyst 2013;9:855-61. [PMID: 23306408 DOI: 10.1039/c2mb25467k] [Cited by in Crossref: 71] [Cited by in F6Publishing: 63] [Article Influence: 7.9] [Reference Citation Analysis]
30 Chis AA, Dobrea CM, Rus LL, Frum A, Morgovan C, Butuca A, Totan M, Juncan AM, Gligor FG, Arseniu AM. Dendrimers as Non-Viral Vectors in Gene-Directed Enzyme Prodrug Therapy. Molecules 2021;26:5976. [PMID: 34641519 DOI: 10.3390/molecules26195976] [Reference Citation Analysis]
31 Gorain B, Choudhury H, Pandey M, Mohd Amin MCI, Singh B, Gupta U, Kesharwani P. Dendrimers as Effective Carriers for the Treatment of Brain Tumor. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Elsevier; 2018. pp. 267-305. [DOI: 10.1016/b978-0-12-812218-1.00010-5] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
32 Raucher D. Tumor targeting peptides: novel therapeutic strategies in glioblastoma. Curr Opin Pharmacol 2019;47:14-9. [PMID: 30776641 DOI: 10.1016/j.coph.2019.01.006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
33 Malhotra M, Toulouse A, Godinho BM, Mc Carthy DJ, Cryan JF, O'Driscoll CM. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. Mol Biosyst 2015;11:2635-57. [PMID: 26135606 DOI: 10.1039/c5mb00278h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
34 Ghaghada KB, Colen RR, Hawley CR, Patel N, Mukundan S. Liposomal Contrast Agents in Brain Tumor Imaging. Neuroimaging Clinics of North America 2010;20:367-78. [DOI: 10.1016/j.nic.2010.05.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
35 Yu D, Khan OF, Suvà ML, Dong B, Panek WK, Xiao T, Wu M, Han Y, Ahmed AU, Balyasnikova IV, Zhang HF, Sun C, Langer R, Anderson DG, Lesniak MS. Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression. Proc Natl Acad Sci U S A 2017;114:E6147-56. [PMID: 28696296 DOI: 10.1073/pnas.1701911114] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 12.8] [Reference Citation Analysis]
36 Wanjale MV, Kumar GSV. Peptides as a therapeutic avenue for nanocarrier-aided targeting of glioma. Expert Opin Drug Deliv 2017;14:811-24. [PMID: 27690671 DOI: 10.1080/17425247.2017.1242574] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
37 Gil ES, Wu L, Xu L, Lowe TL. β-Cyclodextrin-poly(β-Amino Ester) Nanoparticles for Sustained Drug Delivery across the Blood–Brain Barrier. Biomacromolecules 2012;13:3533-41. [DOI: 10.1021/bm3008633] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
38 Surekha B, Kommana NS, Dubey SK, Kumar AP, Shukla R, Kesharwani P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids and Surfaces B: Biointerfaces 2021;204:111837. [DOI: 10.1016/j.colsurfb.2021.111837] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
39 Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther 2021;15:2269-87. [PMID: 34079226 DOI: 10.2147/DDDT.S308578] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Beloor J, Zeller S, Choi CS, Lee SK, Kumar P. Cationic cell-penetrating peptides as vehicles for siRNA delivery. Ther Deliv 2015;6:491-507. [PMID: 25996046 DOI: 10.4155/tde.15.2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
41 Liu N, Zhang L, Wang Z, Cheng Y, Zhang P, Wang X, Wen W, Yang H, Liu H, Jin W, Zhang Y, Tu Y. MicroRNA-101 inhibits proliferation, migration and invasion of human glioblastoma by targeting SOX9. Oncotarget 2017;8:19244-54. [PMID: 27911279 DOI: 10.18632/oncotarget.13706] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
42 Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015;115:5274-300. [DOI: 10.1021/cr500542t] [Cited by in Crossref: 264] [Cited by in F6Publishing: 224] [Article Influence: 37.7] [Reference Citation Analysis]
43 Gatson NN, Chiocca EA, Kaur B. Anti-angiogenic gene therapy in the treatment of malignant gliomas. Neurosci Lett 2012;527:62-70. [PMID: 22906922 DOI: 10.1016/j.neulet.2012.08.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
44 Wang H, Su W, Wang S, Wang X, Liao Z, Kang C, Han L, Chang J, Wang G, Pu P. Smart multifunctional core–shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model. Nanoscale 2012;4:6501. [DOI: 10.1039/c2nr31263h] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
45 Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends in Molecular Medicine 2012;18:385-93. [DOI: 10.1016/j.molmed.2012.04.012] [Cited by in Crossref: 459] [Cited by in F6Publishing: 444] [Article Influence: 45.9] [Reference Citation Analysis]
46 Han L, Yue X, Zhou X, Lan FM, You G, Zhang W, Zhang KL, Zhang CZ, Cheng JQ, Yu SZ. MicroRNA-21 expression is regulated by β-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS Neurosci Ther. 2012;18:573-583. [PMID: 22630347 DOI: 10.1111/j.1755-5949.2012.00344.x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 7.0] [Reference Citation Analysis]
47 Zhou J, Atsina KB, Himes BT, Strohbehn GW, Saltzman WM. Novel delivery strategies for glioblastoma. Cancer J 2012;18:89-99. [PMID: 22290262 DOI: 10.1097/PPO.0b013e318244d8ae] [Cited by in Crossref: 84] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
48 Ung N, Yang I. Nanotechnology to augment immunotherapy for the treatment of glioblastoma multiforme. J Neurooncol 2015;123:473-81. [DOI: 10.1007/s11060-015-1814-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
49 Tong L, Zhao M, Zhu S, Chen J. Synthesis and application of superparamagnetic iron oxide nanoparticles in targeted therapy and imaging of cancer. Front Med 2011;5:379-87. [PMID: 22198749 DOI: 10.1007/s11684-011-0162-6] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.0] [Reference Citation Analysis]
50 Panek WK, Khan OF, Yu D, Lesniak MS. Multiplexed nanomedicine for brain tumors: nanosized Hercules to tame our Lernaean Hydra inside? Nanomedicine (Lond) 2017;12:2435-9. [PMID: 28971724 DOI: 10.2217/nnm-2017-0260] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
51 Zheng W, Cao C, Liu Y, Yu Q, Zheng C, Sun D, Ren X, Liu J. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomaterialia 2015;11:368-80. [DOI: 10.1016/j.actbio.2014.08.035] [Cited by in Crossref: 79] [Cited by in F6Publishing: 73] [Article Influence: 11.3] [Reference Citation Analysis]
52 Shin MC, Zhang J, Min KA, Lee K, Byun Y, David AE, He H, Yang VC. Cell-penetrating peptides: achievements and challenges in application for cancer treatment. J Biomed Mater Res A 2014;102:575-87. [PMID: 23852939 DOI: 10.1002/jbm.a.34859] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 8.4] [Reference Citation Analysis]
53 Samal J, Rebelo AL, Pandit A. A window into the brain: Tools to assess pre-clinical efficacy of biomaterials-based therapies on central nervous system disorders. Advanced Drug Delivery Reviews 2019;148:68-145. [DOI: 10.1016/j.addr.2019.01.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
54 Aigner A, Kögel D. Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs? Nanomedicine (Lond) 2018;13:89-103. [PMID: 29199893 DOI: 10.2217/nnm-2017-0230] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
55 Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opinion on Drug Delivery 2012;9:671-86. [DOI: 10.1517/17425247.2012.682726] [Cited by in Crossref: 110] [Cited by in F6Publishing: 103] [Article Influence: 11.0] [Reference Citation Analysis]
56 Qiu Y, Lam JK, Leung SW, Liang W. Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside. Molecules 2016;21:E1249. [PMID: 27657028 DOI: 10.3390/molecules21091249] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
57 Kotakadi SM, Borelli DPR, Nannepaga JS. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front Bioeng Biotechnol 2022;10:789016. [DOI: 10.3389/fbioe.2022.789016] [Reference Citation Analysis]
58 Shcharbin D, Janaszewska A, Klajnert-maculewicz B, Ziemba B, Dzmitruk V, Halets I, Loznikova S, Shcharbina N, Milowska K, Ionov M, Shakhbazau A, Bryszewska M. How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. Journal of Controlled Release 2014;181:40-52. [DOI: 10.1016/j.jconrel.2014.02.021] [Cited by in Crossref: 68] [Cited by in F6Publishing: 61] [Article Influence: 8.5] [Reference Citation Analysis]
59 Thakur A, Fitzpatrick S, Zaman A, Kugathasan K, Muirhead B, Hortelano G, Sheardown H. Strategies for ocular siRNA delivery: Potential and limitations of non-viral nanocarriers. J Biol Eng 2012;6:7. [PMID: 22686441 DOI: 10.1186/1754-1611-6-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
60 Mehta A, Ghaghada K, Mukundan S Jr. Molecular Imaging of Brain Tumors Using Liposomal Contrast Agents and Nanoparticles. Magn Reson Imaging Clin N Am 2016;24:751-63. [PMID: 27742115 DOI: 10.1016/j.mric.2016.06.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
61 Kulhari H, Telukutla SR, Pooja D, Shukla R, Sistla R, Bansal V, Adams DJ. Peptide grafted and self-assembled poly(γ-glutamic acid)-phenylalanine nanoparticles targeting camptothecin to glioma. Nanomedicine 2017;12:1661-74. [DOI: 10.2217/nnm-2017-0067] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
62 Coquery N, Pannetier N, Farion R, Herbette A, Azurmendi L, Clarencon D, Bauge S, Josserand V, Rome C, Coll JL, Sun JS, Barbier EL, Dutreix M, Remy CC. Distribution and radiosensitizing effect of cholesterol-coupled Dbait molecule in rat model of glioblastoma. PLoS One 2012;7:e40567. [PMID: 22815765 DOI: 10.1371/journal.pone.0040567] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
63 Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: a review. J Nanobiotechnology 2021;19:255. [PMID: 34425832 DOI: 10.1186/s12951-021-01002-3] [Reference Citation Analysis]
64 Mehta A, Shervington A, Howl J, Jones S, Shervington L. Can RNAi-mediated hsp90α knockdown in combination with 17-AAG be a therapy for glioma? FEBS Open Bio 2013;3:271-8. [PMID: 23905009 DOI: 10.1016/j.fob.2013.06.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
65 Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev 2011;63:1300-31. [PMID: 21893135 DOI: 10.1016/j.addr.2011.08.002] [Cited by in Crossref: 224] [Cited by in F6Publishing: 184] [Article Influence: 20.4] [Reference Citation Analysis]
66 Santander-ortega MJ, Uchegbu IF, A. G. Schätzlein. Dendrimer-Based Gene Delivery Systems: Administration Routes and In Vivo Evaluation. In: Cheng Y, editor. Dendrimer-Based Drug Delivery Systems. Hoboken: John Wiley & Sons, Inc.; 2012. pp. 329-54. [DOI: 10.1002/9781118275238.ch9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
67 Xiao T, Hou W, Cao X, Wen S, Shen M, Shi X. Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. Biomater Sci 2013;1:1172-80. [PMID: 32481939 DOI: 10.1039/c3bm60138b] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
68 Paulmurugan R, Malhotra M, Massoud TF. The protean world of non-coding RNAs in glioblastoma. J Mol Med (Berl) 2019;97:909-25. [PMID: 31129756 DOI: 10.1007/s00109-019-01798-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
69 Pae J, Pooga M. Peptide-mediated delivery: an overview of pathways for efficient internalization. Ther Deliv 2014;5:1203-22. [PMID: 25491671 DOI: 10.4155/tde.14.72] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
70 Kuzajewska D, Wszołek A, Żwierełło W, Kirczuk L, Maruszewska A. Magnetotactic Bacteria and Magnetosomes as Smart Drug Delivery Systems: A New Weapon on the Battlefield with Cancer? Biology (Basel) 2020;9:E102. [PMID: 32438567 DOI: 10.3390/biology9050102] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
71 Mehta A, Shervington L, Munje C, Shervington A. A novel therapeutic strategy for the treatment of glioma, combining chemical and molecular targeting of hsp90a. Cancers (Basel) 2011;3:4228-44. [PMID: 24213135 DOI: 10.3390/cancers3044228] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
72 Zhou X, Ren Y, Liu A, Jin R, Jiang Q, Huang Y, Kong L, Wang X, Zhang L. WP1066 sensitizes oral squamous cell carcinoma cells to cisplatin by targeting STAT3/miR-21 axis. Sci Rep 2014;4:7461. [PMID: 25514838 DOI: 10.1038/srep07461] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]