BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khalil OS. Non-Invasive Glucose Measurement Technologies: An Update from 1999 to the Dawn of the New Millennium. Diabetes Technology & Therapeutics 2004;6:660-97. [DOI: 10.1089/dia.2004.6.660] [Cited by in Crossref: 163] [Cited by in F6Publishing: 99] [Article Influence: 9.1] [Reference Citation Analysis]
Number Citing Articles
1 Wang RK, Tuchin VV. Optical Tissue Clearing to Enhance Imaging Performance for OCT. In: Drexler W, Fujimoto JG, editors. Optical Coherence Tomography. Berlin: Springer Berlin Heidelberg; 2008. pp. 855-86. [DOI: 10.1007/978-3-540-77550-8_28] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
2 Kang JW, Park YS, Chang H, Lee W, Singh SP, Choi W, Galindo LH, Dasari RR, Nam SH, Park J, So PTC. Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Sci Adv 2020;6:eaay5206. [PMID: 32042901 DOI: 10.1126/sciadv.aay5206] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 14.5] [Reference Citation Analysis]
3 Lowery MG, Calfin B, Yeh SJ, Doan T, Shain E, Hanna C, Hohs R, Kantor S, Lindberg J, Khalil OS. Noise contribution to the correlation between temperature-induced localized reflectance of diabetic skin and blood glucose. J Biomed Opt 2006;11:054029. [PMID: 17092178 DOI: 10.1117/1.2360529] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
4 Liakat S, Bors KA, Xu L, Woods CM, Doyle J, Gmachl CF. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomed Opt Express 2014;5:2397-404. [PMID: 25071973 DOI: 10.1364/BOE.5.002397] [Cited by in Crossref: 75] [Cited by in F6Publishing: 9] [Article Influence: 9.4] [Reference Citation Analysis]
5 Caduff A, Talary MS, Mueller M, Dewarrat F, Klisic J, Donath M, Heinemann L, Stahel WA. Non-invasive glucose monitoring in patients with Type 1 diabetes: A Multisensor system combining sensors for dielectric and optical characterisation of skin. Biosensors and Bioelectronics 2009;24:2778-84. [DOI: 10.1016/j.bios.2009.02.001] [Cited by in Crossref: 73] [Cited by in F6Publishing: 38] [Article Influence: 5.6] [Reference Citation Analysis]
6 Abookasis D, Workman JJ. Application of spectra cross-correlation for Type II outliers screening during multivariate near-infrared spectroscopic analysis of whole blood. Chemometrics and Intelligent Laboratory Systems 2011;107:303-11. [DOI: 10.1016/j.chemolab.2011.04.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
7 Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2011;57:e1-e47. [PMID: 21617152 DOI: 10.1373/clinchem.2010.161596] [Cited by in Crossref: 248] [Cited by in F6Publishing: 200] [Article Influence: 22.5] [Reference Citation Analysis]
8 Chen TL, Lo YL, Liao CC, Phan QH. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography. J Biomed Opt 2018;23:1-9. [PMID: 29637760 DOI: 10.1117/1.JBO.23.4.047001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
9 Ren M, Arnold MA. Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra. Anal Bioanal Chem 2007;387:879-88. [DOI: 10.1007/s00216-006-1047-4] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
10 Yang J, Chen Z, Zhang J, Jin J, Chen Y. Quantitative Raman spectrometry: The accurate determination of analytes in solution phase of turbid media. Chemometrics and Intelligent Laboratory Systems 2013;126:6-10. [DOI: 10.1016/j.chemolab.2013.04.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
11 Hou G, Zhang H, Xie G, Xiao K, Wen L, Li S, Tian Y, Jiang L. Ultratrace detection of glucose with enzyme-functionalized single nanochannels. J Mater Chem A 2014;2:19131-5. [DOI: 10.1039/c4ta05013d] [Cited by in Crossref: 34] [Article Influence: 4.3] [Reference Citation Analysis]
12 Zakharov P, Talary MS, Caduff A. A wearable diffuse reflectance sensor for continuous monitoring of cutaneous blood content. Phys Med Biol 2009;54:5301-20. [DOI: 10.1088/0031-9155/54/17/015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
13 Cameron BD, Anumula H. Development of a real-time corneal birefringence compensated glucose sensing polarimeter. Diabetes Technol Ther 2006;8:156-64. [PMID: 16734546 DOI: 10.1089/dia.2006.8.156] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
14 S PK, A S. Optimization of the Transverse Electric Photonic Strip Waveguide Biosensor for Detecting Diabetes Mellitus from Bulk Sensitivity. J Healthc Eng 2021;2021:6081570. [PMID: 34868524 DOI: 10.1155/2021/6081570] [Reference Citation Analysis]
15 Zakharov P, Talary MS, Kolm I, Caduff A. Full-field optical coherence tomography for the rapid estimation of epidermal thickness: study of patients with diabetes mellitus type 1. Physiol Meas 2010;31:193-205. [PMID: 20016116 DOI: 10.1088/0967-3334/31/2/006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
16 Arnold MA, Liu L, Olesberg JT. Selectivity assessment of noninvasive glucose measurements based on analysis of multivariate calibration vectors. J Diabetes Sci Technol 2007;1:454-62. [PMID: 19885107 DOI: 10.1177/193229680700100402] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
17 Liu L, Arnold MA. Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra. Anal Bioanal Chem 2009;393:669-77. [PMID: 19009286 DOI: 10.1007/s00216-008-2475-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
18 Wang S, Sherlock T, Salazar B, Sudheendran N, Manapuram RK, Kourentzi K, Ruchhoeft P, Willson RC, Larin KV. Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors. IEEE Sens J 2013;13:4534-41. [PMID: 26413034 DOI: 10.1109/JSEN.2013.2270008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 1.9] [Reference Citation Analysis]
19 Moyer J, Wilson D, Finkelshtein I, Wong B, Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther 2012;14:398-402. [PMID: 22376082 DOI: 10.1089/dia.2011.0262] [Cited by in Crossref: 198] [Cited by in F6Publishing: 157] [Article Influence: 19.8] [Reference Citation Analysis]
20 Wu M, Liu R, Xu K. Near-Infrared Diffuse Reflectance Measurement Method Based on Temperature-Insensitive Radial Distance. Appl Spectrosc 2018;72:1021-8. [PMID: 29712437 DOI: 10.1177/0003702818766555] [Reference Citation Analysis]
21 Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F. Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol 2010;4:1540-62. [PMID: 21129353 DOI: 10.1177/193229681000400632] [Cited by in Crossref: 167] [Cited by in F6Publishing: 121] [Article Influence: 13.9] [Reference Citation Analysis]
22 Groenendaal W, von Basum G, Schmidt KA, Hilbers PA, van Riel NA. Quantifying the composition of human skin for glucose sensor development. J Diabetes Sci Technol 2010;4:1032-40. [PMID: 20920423 DOI: 10.1177/193229681000400502] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
23 Barman I, Singh GP, Dasari RR, Feld MS. Turbidity-corrected Raman spectroscopy for blood analyte detection. Anal Chem 2009;81:4233-40. [PMID: 19413337 DOI: 10.1021/ac8025509] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
24 Barman I, Kong CR, Singh GP, Dasari RR, Feld MS. Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics. Anal Chem 2010;82:6104-14. [PMID: 20575513 DOI: 10.1021/ac100810e] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
25 Liang F, Pan T, Sevick-muraca EM. Measurements of FRET in a Glucose-sensitive Affinity System with Frequency-domain Lifetime Spectroscopy. Photochem Photobiol 2005;81:1386. [DOI: 10.1562/2005-02-14-ra-440] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
26 Yoshida S, Yoshida M, Yamamoto M, Takeda J. Optical screening of diabetes mellitus using non-invasive Fourier-transform infrared spectroscopy technique for human lip. Journal of Pharmaceutical and Biomedical Analysis 2013;76:169-76. [DOI: 10.1016/j.jpba.2012.12.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
27 Weissman Z, Goldberg D. Self-referenced, microdegree, optical rotation polarimeter for biomedical applications: an analysis. J Biomed Opt 2016;21:71104. [PMID: 26720051 DOI: 10.1117/1.JBO.21.7.071104] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
28 Goodarzi M, Sharma S, Ramon H, Saeys W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. TrAC Trends in Analytical Chemistry 2015;67:147-58. [DOI: 10.1016/j.trac.2014.12.005] [Cited by in Crossref: 72] [Cited by in F6Publishing: 28] [Article Influence: 10.3] [Reference Citation Analysis]
29 Tuchina DK, Shi R, Bashkatov AN, Genina EA, Zhu D, Luo Q, Tuchin VV. Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. J Biophoton 2015;8:332-46. [DOI: 10.1002/jbio.201400138] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
30 Groenendaal W, Schmidt KA, von Basum G, van Riel NA, Hilbers PA. Modeling glucose and water dynamics in human skin. Diabetes Technol Ther 2008;10:283-93. [PMID: 18715202 DOI: 10.1089/dia.2007.0290] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
31 Taormina CR, Baca JT, Asher SA, Grabowski JJ, Finegold DN. Analysis of tear glucose concentration with electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 2007;18:332-6. [PMID: 17084090 DOI: 10.1016/j.jasms.2006.10.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 64] [Article Influence: 4.5] [Reference Citation Analysis]
32 Alexeeva NV, Arnold MA. Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin. J Diabetes Sci Technol 2010;4:1041-54. [PMID: 20920424 DOI: 10.1177/193229681000400503] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
33 Kuranov RV, Sapozhnikova VV, Prough DS, Cicenaite I, Esenaliev RO. Prediction capability of optical coherence tomography for blood glucose concentration monitoring. J Diabetes Sci Technol 2007;1:470-7. [PMID: 19885109 DOI: 10.1177/193229680700100404] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
34 Arnold MA, Olesberg JT, Small GW. Near-Infrared Spectroscopy for Noninvasive Glucose Sensing. In: Cunningham DD, Stenken JA, editors. In Vivo Glucose Sensing. Hoboken: John Wiley & Sons, Inc.; 2009. pp. 357-90. [DOI: 10.1002/9780470567319.ch13] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
35 Caduff A, Talary MS, Zakharov P. Cutaneous Blood Perfusion as a Perturbing Factor for Noninvasive Glucose Monitoring. Diabetes Technology & Therapeutics 2010;12:1-9. [DOI: 10.1089/dia.2009.0095] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
36 Talary MS, Dewarrat F, Huber D, Caduff A. In vivo life sign application of dielectric spectroscopy and non-invasive glucose monitoring. Journal of Non-Crystalline Solids 2007;353:4515-7. [DOI: 10.1016/j.jnoncrysol.2007.03.038] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
37 Kondepati VR, Heise HM. Recent progress in analytical instrumentation for glycemic control in diabetic and critically ill patients. Anal Bioanal Chem 2007;388:545-63. [DOI: 10.1007/s00216-007-1229-8] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 3.3] [Reference Citation Analysis]
38 Harman-Boehm I, Gal A, Raykhman AM, Zahn JD, Naidis E, Mayzel Y. Noninvasive glucose monitoring: a novel approach. J Diabetes Sci Technol 2009;3:253-60. [PMID: 20144356 DOI: 10.1177/193229680900300205] [Cited by in Crossref: 44] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
39 Ullah H, Hussain F, Ikram M. Optical coherence tomography for glucose monitoring in blood. Appl Phys B 2015;120:355-66. [DOI: 10.1007/s00340-015-6144-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
40 Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM; National Academy of Clinical Biochemistry., Evidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2011;34:e61-99. [PMID: 21617108 DOI: 10.2337/dc11-9998] [Cited by in Crossref: 262] [Cited by in F6Publishing: 229] [Article Influence: 23.8] [Reference Citation Analysis]
41 Sharma S, Goodarzi M, Delanghe J, Ramon H, Saeys W. Using Experimental Data Designs and Multivariate Modeling to Assess the Effect of Glycated Serum Protein Concentration on Glucose Prediction from Near-Infrared Spectra of Human Serum. Appl Spectrosc 2014;68:398-405. [DOI: 10.1366/13-07217] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
42 Buckingham B, Caswell K, Wilson DM. Real-time continuous glucose monitoring: . Current Opinion in Endocrinology, Diabetes and Obesity 2007;14:288-95. [DOI: 10.1097/med.0b013e32825a675e] [Cited by in Crossref: 35] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
43 Singh SP, Mukherjee S, Galindo LH, So PTC, Dasari RR, Khan UZ, Kannan R, Upendran A, Kang JW. Evaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing. Anal Bioanal Chem 2018;410:6469-75. [PMID: 30046865 DOI: 10.1007/s00216-018-1244-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
44 Suzuki Y, Maruo K, Zhang AW, Shimogaki K, Ogawa H, Hirayama F. Preliminary evaluation of optical glucose sensing in red cell concentrations using near-infrared diffuse-reflectance spectroscopy. J Biomed Opt 2012;17:017004. [PMID: 22352670 DOI: 10.1117/1.JBO.17.1.017004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
45 Huber D, Talary M, Dewarrat F, Caduff A. The compensation of perturbing temperature fluctuation in glucose monitoring technologies based on impedance spectroscopy. Med Biol Eng Comput 2007;45:863-76. [PMID: 17661101 DOI: 10.1007/s11517-007-0229-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
46 Klonoff DC. Continuous Glucose Monitoring Technology Delivers Detailed Diabetes Data. Point of Care: The Journal of Near-Patient Testing & Technology 2006;5:105-11. [DOI: 10.1097/01.poc.0000232577.13891.d3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
47 Tura A, Sbrignadello S, Cianciavicchia D, Pacini G, Ravazzani P. A low frequency electromagnetic sensor for indirect measurement of glucose concentration: in vitro experiments in different conductive solutions. Sensors (Basel) 2010;10:5346-58. [PMID: 22219665 DOI: 10.3390/s100605346] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
48 Barman I, Dingari NC, Singh GP, Soares JS, Dasari RR, Smulko JM. Investigation of noise-induced instabilities in quantitative biological spectroscopy and its implications for noninvasive glucose monitoring. Anal Chem 2012;84:8149-56. [PMID: 22950485 DOI: 10.1021/ac301200n] [Cited by in Crossref: 37] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
49 Amir O, Weinstein D, Zilberman S, Less M, Perl-Treves D, Primack H, Weinstein A, Gabis E, Fikhte B, Karasik A. Continuous noninvasive glucose monitoring technology based on "occlusion spectroscopy". J Diabetes Sci Technol 2007;1:463-9. [PMID: 19885108 DOI: 10.1177/193229680700100403] [Cited by in Crossref: 62] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
50 Zakharov P, Dewarrat F, Caduff A, Talary MS. The effect of blood content on the optical and dielectric skin properties. Physiol Meas 2011;32:131-49. [DOI: 10.1088/0967-3334/32/1/009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
51 Liu J, Liu R, Xu K. Accuracy of Noninvasive Glucose Sensing Based on Near-Infrared Spectroscopy. Appl Spectrosc 2015;69:1313-8. [PMID: 26647054 DOI: 10.1366/14-07728] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
52 Pandey R, Dingari NC, Spegazzini N, Dasari RR, Horowitz GL, Barman I. Emerging trends in optical sensing of glycemic markers for diabetes monitoring. Trends Analyt Chem 2015;64:100-8. [PMID: 25598563 DOI: 10.1016/j.trac.2014.09.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
53 Zhang R, Liu S, Jin H, Luo Y, Zheng Z, Gao F, Zheng Y. Noninvasive Electromagnetic Wave Sensing of Glucose. Sensors (Basel) 2019;19:E1151. [PMID: 30866459 DOI: 10.3390/s19051151] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
54 Caduff A, Dewarrat F, Talary M, Stalder G, Heinemann L, Feldman Y. Non-invasive glucose monitoring in patients with diabetes: A novel system based on impedance spectroscopy. Biosensors and Bioelectronics 2006;22:598-604. [DOI: 10.1016/j.bios.2006.01.031] [Cited by in Crossref: 85] [Cited by in F6Publishing: 46] [Article Influence: 5.3] [Reference Citation Analysis]
55 Wagner J, Malchoff C, Abbott G. Invasiveness as a barrier to self-monitoring of blood glucose in diabetes. Diabetes Technol Ther 2005;7:612-9. [PMID: 16120035 DOI: 10.1089/dia.2005.7.612] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 3.4] [Reference Citation Analysis]
56 Liu J, Zhu C, Jiang J, Xu K. Scattering-independent glucose absorption measurement using a spectrally resolved reflectance setup with specialized variable source-detector separations. Biomed Opt Express 2018;9:5903-14. [PMID: 31065402 DOI: 10.1364/BOE.9.005903] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
57 Wang RK, Tuchin VV. Optical Tissue Clearing to Enhance Imaging Performance for OCT. In: Drexler W, Fujimoto JG, editors. Optical Coherence Tomography. Cham: Springer International Publishing; 2015. pp. 1455-87. [DOI: 10.1007/978-3-319-06419-2_49] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
58 Phan Q, Lo Y. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip. Opt Express 2017;25:15179. [DOI: 10.1364/oe.25.015179] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
59 Camou S, Haga T, Tajima T, Tamechika E. Detection of aqueous glucose based on a cavity size- and optical-wavelength-independent continuous-wave photoacoustic technique. Anal Chem 2012;84:4718-24. [PMID: 22548281 DOI: 10.1021/ac203331w] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
60 Parab J, Sequeira M, Lanjewar M, Pinto C, Naik G. Backpropagation Neural Network-Based Machine Learning Model for Prediction of Blood Urea and Glucose in CKD Patients. IEEE J Transl Eng Health Med 2021;9:4900608. [PMID: 34055499 DOI: 10.1109/JTEHM.2021.3079714] [Reference Citation Analysis]
61 Kumar S, Kumar S, Ali MA, Anand P, Agrawal VV, John R, Maji S, Malhotra BD. Microfluidic-integrated biosensors: Prospects for point-of-care diagnostics. Biotechnology Journal 2013;8:1267-79. [DOI: 10.1002/biot.201200386] [Cited by in Crossref: 101] [Cited by in F6Publishing: 75] [Article Influence: 11.2] [Reference Citation Analysis]
62 Genina EA, Bashkatov AN, Tuchin VV. Tissue optical immersion clearing. Expert Rev Med Devices 2010;7:825-42. [PMID: 21050092 DOI: 10.1586/erd.10.50] [Cited by in Crossref: 132] [Cited by in F6Publishing: 95] [Article Influence: 12.0] [Reference Citation Analysis]
63 Dingari NC, Barman I, Singh GP, Kang JW, Dasari RR, Feld MS. Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements. Anal Bioanal Chem 2011;400:2871-80. [PMID: 21509482 DOI: 10.1007/s00216-011-5004-5] [Cited by in Crossref: 58] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
64 Werth A, Liakat S, Dong A, Woods CM, Gmachl CF. Implementation of an integrating sphere for the enhancement of noninvasive glucose detection using quantum cascade laser spectroscopy. Appl Phys B 2018;124. [DOI: 10.1007/s00340-018-6946-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
65 So CF, Choi KS, Wong TK, Chung JW. Recent advances in noninvasive glucose monitoring. Med Devices (Auckl) 2012;5:45-52. [PMID: 23166457 DOI: 10.2147/MDER.S28134] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
66 Marbach R, Lampen P, Heise M. Near-Infrared Reflection Spectroscopy for Noninvasive Monitoring of Glucose — Established and Novel Strategies for Multivariate Calibration. In: Tuchin V, editor. Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues. Taylor & Francis; 2008. pp. 115-56. [DOI: 10.1201/9781584889755.ch5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
67 Aihara M, Kubota N, Minami T, Shirakawa R, Sakurai Y, Hayashi T, Iwamoto M, Takamoto I, Kubota T, Suzuki R, Usami S, Jinnouchi H, Aihara M, Yamauchi T, Sakata T, Kadowaki T. Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood. J Diabetes Investig 2021;12:266-76. [PMID: 32621777 DOI: 10.1111/jdi.13344] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
68 Aye T, Block J, Buckingham B. Toward closing the loop: an update on insulin pumps and continuous glucose monitoring systems. Endocrinol Metab Clin North Am 2010;39:609-24. [PMID: 20723823 DOI: 10.1016/j.ecl.2010.05.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
69 Kim S, Melikyan H, Kim J, Babajanyan A, Lee J, Enkhtur L, Friedman B, Lee K. Noninvasive in vitro measurement of pig-blood d-glucose by using a microwave cavity sensor. Diabetes Research and Clinical Practice 2012;96:379-84. [DOI: 10.1016/j.diabres.2012.01.018] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
70 Bai C, Graham TL, Arnold MA. Assessing and Advancing Technology for the Noninvasive Measurement of Clinical Glucose. Analytical Letters 2008;41:2773-93. [DOI: 10.1080/00032710802418885] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
71 Alexeeva NV, Arnold MA. Near-infrared microspectroscopic analysis of rat skin tissue heterogeneity in relation to noninvasive glucose sensing. J Diabetes Sci Technol 2009;3:219-32. [PMID: 20144353 DOI: 10.1177/193229680900300202] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
72 Bagheri Z, Massudi R, Ghanavi J. Noninvasive glucose measurement by fluorescence quenching of non toxic gold nanoparticles. Optics & Laser Technology 2014;58:135-8. [DOI: 10.1016/j.optlastec.2013.11.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
73 Tura A. Noninvasive glycaemia monitoring: background, traditional findings, and novelties in the recent clinical trials. Curr Opin Clin Nutr Metab Care 2008;11:607-12. [PMID: 18685457 DOI: 10.1097/MCO.0b013e328309ec3a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
74 Tura A, Sbrignadello S, Barison S, Conti S, Pacini G. Impedance spectroscopy of solutions at physiological glucose concentrations. Biophysical Chemistry 2007;129:235-41. [DOI: 10.1016/j.bpc.2007.06.001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
75 Baca JT, Finegold DN, Asher SA. Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 2007;5:280-93. [PMID: 17938838 DOI: 10.1016/s1542-0124(12)70094-0] [Cited by in Crossref: 98] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
76 Tuchin VV. Optical clearing of tissues and blood using the immersion method. J Phys D: Appl Phys 2005;38:2497-518. [DOI: 10.1088/0022-3727/38/15/001] [Cited by in Crossref: 162] [Cited by in F6Publishing: 83] [Article Influence: 9.5] [Reference Citation Analysis]
77 Villena Gonzales W, Mobashsher AT, Abbosh A. The Progress of Glucose Monitoring-A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors (Basel) 2019;19:E800. [PMID: 30781431 DOI: 10.3390/s19040800] [Cited by in Crossref: 125] [Cited by in F6Publishing: 57] [Article Influence: 41.7] [Reference Citation Analysis]
78 Khalil OS. Noninvasive photonic-crystal material for sensing glucose in tears. Clin Chem 2004;50:2236-7. [PMID: 15563483 DOI: 10.1373/clinchem.2004.042978] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
79 Labib M, Hedström M, Amin M, Mattiasson B. Competitive capacitive biosensing technique (CCBT): a novel technique for monitoring low molecular mass analytes using glucose assay as a model study. Anal Bioanal Chem 2010;397:1217-24. [PMID: 20401723 DOI: 10.1007/s00216-010-3641-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
80 Shokrekhodaei M, Quinones S. Review of Non-invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors (Basel) 2020;20:E1251. [PMID: 32106464 DOI: 10.3390/s20051251] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 18.5] [Reference Citation Analysis]
81 Cheng J, Ji Z, Li M, Dai J. Study of a noninvasive blood glucose detection model using the near-infrared light based on SA-NARX. Biomedical Signal Processing and Control 2020;56:101694. [DOI: 10.1016/j.bspc.2019.101694] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
82 Yadav J, Rani A, Singh V, Murari BM. Levenberg–Marquardt-Based Non-Invasive Blood Glucose Measurement System. IETE Journal of Research 2017;64:116-23. [DOI: 10.1080/03772063.2017.1351313] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
83 Ricci F, Caprio F, Poscia A, Valgimigli F, Messeri D, Lepori E, Dall'Oglio G, Palleschi G, Moscone D. Toward continuous glucose monitoring with planar modified biosensors and microdialysis. Study of temperature, oxygen dependence and in vivo experiment. Biosens Bioelectron 2007;22:2032-9. [PMID: 17000099 DOI: 10.1016/j.bios.2006.08.041] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 2.0] [Reference Citation Analysis]
84 Poh AH, Adikan FRM, Moghavvemi M. The past, present, and prospective on UV-VIS-NIR skin photonics and spectroscopy-a wavelength guide. Med Biol Eng Comput 2020;58:1159-75. [PMID: 32319030 DOI: 10.1007/s11517-019-02077-9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
85 Pai PP, Sanki PK, Sarangi S, Banerjee S. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system. Rev Sci Instrum 2015;86:064901. [PMID: 26133859 DOI: 10.1063/1.4922416] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
86 Smith JL, Rice MJ. Why Have So Many Intravascular Glucose Monitoring Devices Failed? J Diabetes Sci Technol 2015;9:782-91. [PMID: 26129733 DOI: 10.1177/1932296815587013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
87 Chaiken J, Deng B, Bussjager RJ, Shaheen G, Rice D, Stehlik D, Fayos J. Instrument for near infrared emission spectroscopic probing of human fingertips in vivo. Rev Sci Instrum 2010;81:034301. [PMID: 20370200 DOI: 10.1063/1.3314290] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
88 Genina EA, Bashkatov AN, Larin KV, Tuchin VV. Light-Tissue Interaction at Optical Clearing. In: Pavone FS, editor. Laser Imaging and Manipulation in Cell Biology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. pp. 113-64. [DOI: 10.1002/9783527632053.ch7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
89 Ferrante do Amaral CE, Wolf B. Current development in non-invasive glucose monitoring. Med Eng Phys 2008;30:541-9. [PMID: 17942360 DOI: 10.1016/j.medengphy.2007.06.003] [Cited by in Crossref: 171] [Cited by in F6Publishing: 82] [Article Influence: 11.4] [Reference Citation Analysis]
90 Pandey R, Paidi SK, Valdez TA, Zhang C, Spegazzini N, Dasari RR, Barman I. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy. Acc Chem Res 2017;50:264-72. [PMID: 28071894 DOI: 10.1021/acs.accounts.6b00472] [Cited by in Crossref: 116] [Cited by in F6Publishing: 66] [Article Influence: 23.2] [Reference Citation Analysis]
91 Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 2012;750:16-27. [PMID: 23062426 DOI: 10.1016/j.aca.2012.03.043] [Cited by in Crossref: 342] [Cited by in F6Publishing: 177] [Article Influence: 34.2] [Reference Citation Analysis]
92 Kinnunen M, Myllylä R, Vainio S. Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography. J Biomed Opt 2008;13:021111. [PMID: 18465960 DOI: 10.1117/1.2904957] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
93 Maruo K, Oota T, Tsurugi M, Nakagawa T, Arimoto H, Tamura M, Ozaki Y, Yamada Y. New Methodology to Obtain a Calibration Model for Noninvasive Near-Infrared Blood Glucose Monitoring. Appl Spectrosc 2006;60:441-9. [DOI: 10.1366/000370206776593780] [Cited by in Crossref: 40] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
94 Barman I, Kong CR, Dingari NC, Dasari RR, Feld MS. Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose. Anal Chem 2010;82:9719-26. [PMID: 21050004 DOI: 10.1021/ac101754n] [Cited by in Crossref: 64] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
95 Tura A, Sbrignadello S, Barison S, Conti S, Pacini G. Dielectric properties of water and blood samples with glucose at different concentrations. In: Jarm T, Kramar P, Zupanic A, editors. 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007. Berlin: Springer Berlin Heidelberg; 2007. pp. 194-7. [DOI: 10.1007/978-3-540-73044-6_48] [Cited by in Crossref: 3] [Reference Citation Analysis]
96 Kino S, Tanaka Y, Matsuura Y. Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe. J Biomed Opt 2014;19:057010. [PMID: 24849387 DOI: 10.1117/1.JBO.19.5.057010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
97 Yamakoshi K, Yamakoshi Y. Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry. J Biomed Opt 2006;11:054028. [DOI: 10.1117/1.2360919] [Cited by in Crossref: 58] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
98 Talary M, Dewarrat F, Huber D, Falco-jonasson L, Caduff A. Non-Invasive Impedance based Continuous Glucose Monitoring System. In: Scharfetter H, Merwa R, editors. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography. Berlin: Springer Berlin Heidelberg; 2007. pp. 636-9. [DOI: 10.1007/978-3-540-73841-1_164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
99 Yadav J, Rani A, Singh V, Murari BM. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomedical Signal Processing and Control 2015;18:214-27. [DOI: 10.1016/j.bspc.2015.01.005] [Cited by in Crossref: 151] [Cited by in F6Publishing: 38] [Article Influence: 21.6] [Reference Citation Analysis]
100 Delgado-Arenas HF, Rodríguez-López A, Rivera F, Ramos KJ, Reséndiz-Ramírez R, Antano-Lopez R. Effect of electrode geometry on the electrolyte resistance measurement over the surface of a skin phantom in a noninvasive manner. Bioelectrochemistry 2019;130:107337. [PMID: 31400566 DOI: 10.1016/j.bioelechem.2019.107337] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
101 Labib M, Hedström M, Amin M, Mattiasson B. A novel competitive capacitive glucose biosensor based on concanavalin A-labeled nanogold colloids assembled on a polytyramine-modified gold electrode. Analytica Chimica Acta 2010;659:194-200. [DOI: 10.1016/j.aca.2009.11.028] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
102 Tura A, Maran A, Pacini G. Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Research and Clinical Practice 2007;77:16-40. [DOI: 10.1016/j.diabres.2006.10.027] [Cited by in Crossref: 174] [Cited by in F6Publishing: 82] [Article Influence: 11.6] [Reference Citation Analysis]
103 Camou S, Tamechika E. Simulation tool for the prediction of compound dependence of CW-photoacoustic-based sensor using dual optical excitation. Sensors and Actuators B: Chemical 2013;189:224-9. [DOI: 10.1016/j.snb.2013.04.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
104 Harman-Boehm I, Gal A, Raykhman AM, Naidis E, Mayzel Y. Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors. J Diabetes Sci Technol 2010;4:583-95. [PMID: 20513324 DOI: 10.1177/193229681000400312] [Cited by in Crossref: 44] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
105 Kottmann J, Rey JM, Luginbühl J, Reichmann E, Sigrist MW. Glucose sensing in human epidermis using mid-infrared photoacoustic detection. Biomed Opt Express 2012;3:667-80. [PMID: 22574256 DOI: 10.1364/BOE.3.000667] [Cited by in Crossref: 80] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
106 Klonoff DC, Nguyen KT, Xu NY, Arnold MA. Noninvasive Glucose Monitoring: In God We Trust-All Others Bring Data. J Diabetes Sci Technol 2021;15:1211-5. [PMID: 34672216 DOI: 10.1177/19322968211046326] [Reference Citation Analysis]