BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Zhang Y, Ghareeb WM, Lin S, Lu X, Huang Y, Huang S, Xu Z, Chi P. A Comprehensive Repertoire of Transfer RNA-Derived Fragments and Their Regulatory Networks in Colorectal Cancer. J Comput Biol 2020;27:1644-55. [PMID: 32392430 DOI: 10.1089/cmb.2019.0305] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Yang C, Song J, Park S, Ham J, Park W, Park H, An G, Hong T, Kim HS, Song G, Lim W. Targeting Thymidylate Synthase and tRNA-Derived Non-Coding RNAs Improves Therapeutic Sensitivity in Colorectal Cancer. Antioxidants 2022;11:2158. [DOI: 10.3390/antiox11112158] [Reference Citation Analysis]
2 Chu X, He C, Sang B, Yang C, Yin C, Ji M, Qian A, Tian Y. Transfer RNAs-derived small RNAs and their application potential in multiple diseases. Front Cell Dev Biol 2022;10:954431. [DOI: 10.3389/fcell.2022.954431] [Reference Citation Analysis]
3 Zhang G, Kang L, Li P, Ran Q, Chen X, Ji M, Guan H. Genome-wide repertoire of transfer RNA-derived fragments in a mouse model of age-related cataract. Curr Eye Res 2022;:1-22. [PMID: 35930684 DOI: 10.1080/02713683.2022.2110263] [Reference Citation Analysis]
4 Gu X, Zhang Y, Qin X, Ma S, Huang Y, Ju S. Transfer RNA-derived small RNA: an emerging small non-coding RNA with key roles in cancer. Exp Hematol Oncol 2022;11:35. [PMID: 35658952 DOI: 10.1186/s40164-022-00290-1] [Reference Citation Analysis]
5 Xu W, Zheng J, Wang X, Zhou B, Chen H, Li G, Yan F. tRF-Val-CAC-016 modulates the transduction of CACNA1d-mediated MAPK signaling pathways to suppress the proliferation of gastric carcinoma. Cell Commun Signal 2022;20:68. [PMID: 35590368 DOI: 10.1186/s12964-022-00857-9] [Reference Citation Analysis]
6 Tsiakanikas P, Adamopoulos PG, Tsirba D, Artemaki PI, Papadopoulos IN, Kontos CK, Scorilas A. High Expression of a tRNAPro Derivative Associates with Poor Survival and Independently Predicts Colorectal Cancer Recurrence. Biomedicines 2022;10:1120. [DOI: 10.3390/biomedicines10051120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Zahra S, Singh A, Poddar N, Kumar S. Transfer RNA-derived non-coding RNAs (tncRNAs): Hidden regulation of plants' transcriptional regulatory circuits. Comput Struct Biotechnol J 2021;19:5278-91. [PMID: 34630945 DOI: 10.1016/j.csbj.2021.09.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Zahra S, Singh A, Poddar N, Kumar S. Transfer RNA-derived non-coding RNAs (tncRNAs): Uncovering hidden regulators of transcriptional regulatory circuits in plants.. [DOI: 10.1101/2021.04.08.438949] [Reference Citation Analysis]
9 Chen B, Liu S, Wang H, Li G, Lu X, Xu H. Differential Expression Profiles and Function Prediction of Transfer RNA-Derived Fragments in High-Grade Serous Ovarian Cancer. Biomed Res Int 2021;2021:5594081. [PMID: 33860037 DOI: 10.1155/2021/5594081] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhang Y, Qian H, He J, Gao W. Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res 2020;8:52. [PMID: 33072328 DOI: 10.1186/s40364-020-00233-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]