BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stomberski CT, Hess DT, Stamler JS. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid Redox Signal 2019;30:1331-51. [PMID: 29130312 DOI: 10.1089/ars.2017.7403] [Cited by in Crossref: 78] [Cited by in F6Publishing: 75] [Article Influence: 19.5] [Reference Citation Analysis]
Number Citing Articles
1 Stiti N, Podgórska KA, Bartels D. S-Nitrosation impairs activity of stress-inducible aldehyde dehydrogenases from Arabidopsis thaliana. Plant Science 2020;292:110389. [DOI: 10.1016/j.plantsci.2019.110389] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Hasan MM, Manavalan B, Khatun MS, Kurata H. Prediction of S -nitrosylation sites by integrating support vector machines and random forest. Mol Omics 2019;15:451-8. [DOI: 10.1039/c9mo00098d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 9.3] [Reference Citation Analysis]
3 Kalinina E, Novichkova M. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation. Molecules 2021;26:E435. [PMID: 33467703 DOI: 10.3390/molecules26020435] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
4 Stomberski CT, Zhou HL, Wang L, van den Akker F, Stamler JS. Molecular recognition of S-nitrosothiol substrate by its cognate protein denitrosylase. J Biol Chem 2019;294:1568-78. [PMID: 30538128 DOI: 10.1074/jbc.RA118.004947] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
5 Zhao Q, Zheng K, Ma C, Li J, Zhuo L, Huang W, Chen T, Jiang Y. PTPS Facilitates Compartmentalized LTBP1 S-Nitrosylation and Promotes Tumor Growth under Hypoxia. Mol Cell 2020;77:95-107.e5. [PMID: 31628042 DOI: 10.1016/j.molcel.2019.09.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
6 Hayashida K, Bagchi A, Miyazaki Y, Hirai S, Seth D, Silverman MG, Rezoagli E, Marutani E, Mori N, Magliocca A, Liu X, Berra L, Hindle AG, Donnino MW, Malhotra R, Bradley MO, Stamler JS, Ichinose F. Improvement in Outcomes After Cardiac Arrest and Resuscitation by Inhibition of S-Nitrosoglutathione Reductase. Circulation 2019;139:815-27. [PMID: 30586713 DOI: 10.1161/CIRCULATIONAHA.117.032488] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 6.3] [Reference Citation Analysis]
7 Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med 2021;171:345-64. [PMID: 34019933 DOI: 10.1016/j.freeradbiomed.2021.05.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Qu Y, Konrad C, Anderson C, Qian L, Yin T, Manfredi G, Iadecola C, Zhou P. Prohibitin S-Nitrosylation Is Required for the Neuroprotective Effect of Nitric Oxide in Neuronal Cultures. J Neurosci 2020;40:3142-51. [PMID: 32152200 DOI: 10.1523/JNEUROSCI.1804-19.2020] [Reference Citation Analysis]
9 Premont RT, Singel DJ, Stamler JS. The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Mol Aspects Med 2021;:101056. [PMID: 34852941 DOI: 10.1016/j.mam.2021.101056] [Reference Citation Analysis]
10 Linzner N, Loi VV, Fritsch VN, Antelmann H. Thiol-based redox switches in the major pathogen Staphylococcus aureus. Biol Chem 2021;402:333-61. [PMID: 33544504 DOI: 10.1515/hsz-2020-0272] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Stomberski CT, Anand P, Venetos NM, Hausladen A, Zhou HL, Premont RT, Stamler JS. AKR1A1 is a novel mammalian S-nitroso-glutathione reductase. J Biol Chem 2019;294:18285-93. [PMID: 31649033 DOI: 10.1074/jbc.RA119.011067] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
12 Premont RT, Reynolds JD, Zhang R, Stamler JS. Red Blood Cell-Mediated S-Nitrosohemoglobin-Dependent Vasodilation: Lessons Learned from a β-Globin Cys93 Knock-In Mouse. Antioxid Redox Signal 2021;34:936-61. [PMID: 32597195 DOI: 10.1089/ars.2020.8153] [Reference Citation Analysis]
13 Wang X, Zhou W, Gao Z, Lv X. Mass spectrometry analysis of S-nitrosylation of proteins and its role in cancer, cardiovascular and neurodegenerative diseases. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116625] [Reference Citation Analysis]
14 Li M, Mao J, Zhu Y. New Therapeutic Approaches Using Hydrogen Sulfide Donors in Inflammation and Immune Response. Antioxid Redox Signal 2021;35:341-56. [PMID: 33789440 DOI: 10.1089/ars.2020.8249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang J, Choi H, Chung NC, Cao Q, Ng DCM, Mirza B, Scruggs SB, Wang D, Garlid AO, Ping P. Integrated Dissection of Cysteine Oxidative Post-translational Modification Proteome During Cardiac Hypertrophy. J Proteome Res 2018;17:4243-57. [PMID: 30141336 DOI: 10.1021/acs.jproteome.8b00372] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
16 Musaogullari A, Chai YC. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. Int J Mol Sci 2020;21:E8113. [PMID: 33143095 DOI: 10.3390/ijms21218113] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
17 Zhou HL, Premont RT, Stamler JS. The manifold roles of protein S-nitrosylation in the life of insulin. Nat Rev Endocrinol 2021. [PMID: 34789923 DOI: 10.1038/s41574-021-00583-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Nakamura T, Lipton SA. Nitric Oxide-Dependent Protein Post-Translational Modifications Impair Mitochondrial Function and Metabolism to Contribute to Neurodegenerative Diseases. Antioxid Redox Signal 2020;32:817-33. [PMID: 31657228 DOI: 10.1089/ars.2019.7916] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
19 Faienza F, Lambrughi M, Rizza S, Pecorari C, Giglio P, Salamanca Viloria J, Allega MF, Chiappetta G, Vinh J, Pacello F, Battistoni A, Rasola A, Papaleo E, Filomeni G. S-nitrosylation affects TRAP1 structure and ATPase activity and modulates cell response to apoptotic stimuli. Biochem Pharmacol 2020;176:113869. [PMID: 32088262 DOI: 10.1016/j.bcp.2020.113869] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
20 Pande A, Mun BG, Rahim W, Khan M, Lee DS, Lee GM, Al Azzawi TNI, Hussain A, Kim CK, Yun BW. Phytohormonal Regulation Through Protein S-Nitrosylation Under Stress. Front Plant Sci 2022;13:865542. [DOI: 10.3389/fpls.2022.865542] [Reference Citation Analysis]
21 Benhar M. Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Antioxidants (Basel) 2020;9:E309. [PMID: 32290499 DOI: 10.3390/antiox9040309] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
22 Wang J, Mei F, Bai L, Zhou S, Liu D, Yao L, Ahluwalia A, Ghiladi RA, Su L, Shu T, Gong M, Wang X, Zhu L, Cai K, Zhang X. Serum nitrite and nitrate: A potential biomarker for post-covid-19 complications? Free Radic Biol Med 2021;175:216-25. [PMID: 34474106 DOI: 10.1016/j.freeradbiomed.2021.08.237] [Reference Citation Analysis]
23 Rizza S, Filomeni G. Exploiting S-nitrosylation for cancer therapy: facts and perspectives. Biochem J 2020;477:3649-72. [PMID: 33017470 DOI: 10.1042/BCJ20200064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Casin KM, Kohr MJ. An emerging perspective on sex differences: Intersecting S-nitrosothiol and aldehyde signaling in the heart. Redox Biol 2020;31:101441. [PMID: 32007450 DOI: 10.1016/j.redox.2020.101441] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
25 Liu C, Park CM, Wang D, Xian M. Phosphite Esters: Reagents for Exploring S-Nitrosothiol Chemistry. Org Lett 2018;20:7860-3. [PMID: 30520644 DOI: 10.1021/acs.orglett.8b03393] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Liu Y, Croft KD, Hodgson JM, Mori T, Ward NC. Mechanisms of the protective effects of nitrate and nitrite in cardiovascular and metabolic diseases. Nitric Oxide 2020;96:35-43. [PMID: 31954804 DOI: 10.1016/j.niox.2020.01.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
27 Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D, Furuta S. S-Nitrosylation in Tumor Microenvironment. Int J Mol Sci 2021;22:4600. [PMID: 33925645 DOI: 10.3390/ijms22094600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Zhou HL, Zhang R, Anand P, Stomberski CT, Qian Z, Hausladen A, Wang L, Rhee EP, Parikh SM, Karumanchi SA, Stamler JS. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 2019;565:96-100. [PMID: 30487609 DOI: 10.1038/s41586-018-0749-z] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 16.5] [Reference Citation Analysis]
29 Scheiblich H, Steinert JR. Nitrergic modulation of neuronal excitability in the mouse hippocampus is mediated via regulation of Kv2 and voltage-gated sodium channels. Hippocampus 2021;31:1020-38. [PMID: 34047430 DOI: 10.1002/hipo.23366] [Reference Citation Analysis]
30 Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and Its Roles in Inflammation. Front Immunol 2022;13:831168. [DOI: 10.3389/fimmu.2022.831168] [Reference Citation Analysis]
31 Nakamura T, Oh CK, Liao L, Zhang X, Lopez KM, Gibbs D, Deal AK, Scott HR, Spencer B, Masliah E, Rissman RA, Yates JR 3rd, Lipton SA. Noncanonical transnitrosylation network contributes to synapse loss in Alzheimer's disease. Science 2021;371:eaaw0843. [PMID: 33273062 DOI: 10.1126/science.aaw0843] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
32 Bibli SI, Fleming I. Oxidative post translational modifications: a focus on cysteine S-sulfhydration and the regulation of endothelial fitness. Antioxid Redox Signal 2021. [PMID: 34346251 DOI: 10.1089/ars.2021.0162] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Mongirdienė A, Skrodenis L, Varoneckaitė L, Mierkytė G, Gerulis J. Reactive Oxygen Species Induced Pathways in Heart Failure Pathogenesis and Potential Therapeutic Strategies. Biomedicines 2022;10:602. [DOI: 10.3390/biomedicines10030602] [Reference Citation Analysis]
34 Girotti AW, Fahey JM, Korytowski W. Negative effects of tumor cell nitric oxide on anti-glioblastoma photodynamic therapy. J Cancer Metastasis Treat 2020;6:52. [PMID: 33564720 DOI: 10.20517/2394-4722.2020.107] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Jensen B, Fago A. A Novel Possible Role for Met Hemoglobin as Carrier of Hydrogen Sulfide in the Blood. Antioxidants & Redox Signaling 2020;32:258-65. [DOI: 10.1089/ars.2019.7877] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
36 Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Novikova NN, Topunov AF. Protective Effect of Dinitrosyl Iron Complexes Bound with Hemoglobin on Oxidative Modification by Peroxynitrite. Int J Mol Sci 2021;22:13649. [PMID: 34948445 DOI: 10.3390/ijms222413649] [Reference Citation Analysis]
37 Maiocchi SL, Ku J, Thai T, Chan E, Rees MD, Thomas SR. Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2021;221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Fernando V, Zheng X, Walia Y, Sharma V, Letson J, Furuta S. S-Nitrosylation: An Emerging Paradigm of Redox Signaling. Antioxidants (Basel) 2019;8:E404. [PMID: 31533268 DOI: 10.3390/antiox8090404] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
39 Shi X, Qiu H. Post-Translational S-Nitrosylation of Proteins in Regulating Cardiac Oxidative Stress. Antioxidants (Basel) 2020;9:E1051. [PMID: 33126514 DOI: 10.3390/antiox9111051] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Cabral FV, Pelegrino MT, Seabra AB, Ribeiro MS. Nitric-oxide releasing chitosan nanoparticles towards effective treatment of cutaneous leishmaniasis. Nitric Oxide 2021;113-114:31-8. [PMID: 33940194 DOI: 10.1016/j.niox.2021.04.008] [Reference Citation Analysis]
41 Knany A, Engelman R, Hariri HA, Biswal S, Wolfenson H, Benhar M. S-nitrosocysteine and glutathione depletion synergize to induce cell death in human tumor cells: Insights into the redox and cytotoxic mechanisms. Free Radic Biol Med 2020;160:566-74. [PMID: 32898624 DOI: 10.1016/j.freeradbiomed.2020.08.026] [Reference Citation Analysis]
42 Mule SN, Manchola NC, de Oliveira GS, Pereira M, Magalhães RDM, Teixeira AA, Colli W, Alves MJM, Palmisano G. Proteome-wide modulation of S-nitrosylation in Trypanosoma cruzi trypomastigotes upon interaction with the host extracellular matrix. J Proteomics 2021;231:104020. [PMID: 33096306 DOI: 10.1016/j.jprot.2020.104020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Lee H, Choi JW, Choi MS. Role of Nitric Oxide and Protein S-Nitrosylation in Ischemia-Reperfusion Injury. Antioxidants 2022;11:57. [DOI: 10.3390/antiox11010057] [Reference Citation Analysis]
44 Hajouj H, Khattib A, Atrahimovich D, Musa S, Khatib S. S-Nitrosylation of Paraxonase 1 (PON1) Elevates Its Hydrolytic and Antioxidant Activities. Biomolecules 2022;12:414. [DOI: 10.3390/biom12030414] [Reference Citation Analysis]
45 Miao H, Chen S, Ding R. Evaluation of the Molecular Mechanisms of Sepsis Using Proteomics. Front Immunol 2021;12:733537. [PMID: 34745104 DOI: 10.3389/fimmu.2021.733537] [Reference Citation Analysis]
46 Zhou M, Chen JY, Chao ML, Zhang C, Shi ZG, Zhou XC, Xie LP, Sun SX, Huang ZR, Luo SS, Ji Y. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin 2021. [PMID: 34011968 DOI: 10.1038/s41401-021-00674-9] [Reference Citation Analysis]
47 Casin KM, Calvert JW. Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. Cells 2021;10:2388. [PMID: 34572037 DOI: 10.3390/cells10092388] [Reference Citation Analysis]
48 Mukherjee S. Cysteine modifications (oxPTM) and protein sulphenylation-mediated sulfenome expression in plants: evolutionary conserved signaling networks? Plant Signal Behav 2021;16:1831792. [PMID: 33300450 DOI: 10.1080/15592324.2020.1831792] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Chen L, Wu R, Feng J, Feng T, Wang C, Hu J, Zhan N, Li Y, Ma X, Ren B, Zhang J, Song CP, Li J, Zhou JM, Zuo J. Transnitrosylation Mediated by the Non-canonical Catalase ROG1 Regulates Nitric Oxide Signaling in Plants. Dev Cell 2020;53:444-457.e5. [PMID: 32330424 DOI: 10.1016/j.devcel.2020.03.020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
50 Castillo OA, Herrera G, Manriquez C, Rojas AF, González DR. Pharmacological Inhibition of S-Nitrosoglutathione Reductase Reduces Cardiac Damage Induced by Ischemia-Reperfusion. Antioxidants (Basel) 2021;10:555. [PMID: 33918310 DOI: 10.3390/antiox10040555] [Reference Citation Analysis]
51 Bignon E, Allega MF, Lucchetta M, Tiberti M, Papaleo E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front Oncol 2018;8:272. [PMID: 30155439 DOI: 10.3389/fonc.2018.00272] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
52 Hosseininasab V, McQuilken AC, Bakhoda AG, Bertke JA, Timerghazin QK, Warren TH. Lewis Acid Coordination Redirects S-Nitrosothiol Signaling Output. Angew Chem Int Ed Engl 2020;59:10854-8. [PMID: 32090399 DOI: 10.1002/anie.202001450] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Pieretti JC, Junho CVC, Carneiro-Ramos MS, Seabra AB. H2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res 2020;161:105121. [PMID: 32798649 DOI: 10.1016/j.phrs.2020.105121] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Ianiri G, Coelho MA, Ruchti F, Sparber F, McMahon TJ, Fu C, Bolejack M, Donovan O, Smutney H, Myler P, Dietrich F, Fox D 3rd, LeibundGut-Landmann S, Heitman J. HGT in the human and skin commensal Malassezia: A bacterially derived flavohemoglobin is required for NO resistance and host interaction. Proc Natl Acad Sci U S A 2020;117:15884-94. [PMID: 32576698 DOI: 10.1073/pnas.2003473117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
55 Nakamura T, Oh CK, Zhang X, Lipton SA. Protein S-nitrosylation and oxidation contribute to protein misfolding in neurodegeneration. Free Radic Biol Med 2021;172:562-77. [PMID: 34224817 DOI: 10.1016/j.freeradbiomed.2021.07.002] [Reference Citation Analysis]
56 Seth P, Hsieh PN, Jamal S, Wang L, Gygi SP, Jain MK, Coller J, Stamler JS. Regulation of MicroRNA Machinery and Development by Interspecies S-Nitrosylation. Cell 2019;176:1014-1025.e12. [PMID: 30794773 DOI: 10.1016/j.cell.2019.01.037] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 17.0] [Reference Citation Analysis]
57 Zaręba-kozioł M, Burdukiewicz M, Wysłouch-cieszyńska A. Intracellular Protein S-Nitrosylation—A Cells Response to Extracellular S100B and RAGE Receptor. Biomolecules 2022;12:613. [DOI: 10.3390/biom12050613] [Reference Citation Analysis]
58 Fujii J, Homma T, Miyata S, Takahashi M. Pleiotropic Actions of Aldehyde Reductase (AKR1A). Metabolites 2021;11:343. [PMID: 34073440 DOI: 10.3390/metabo11060343] [Reference Citation Analysis]
59 Tagliani A, Rossi J, Marchand CH, De Mia M, Tedesco D, Gurrieri L, Meloni M, Falini G, Trost P, Lemaire SD, Fermani S, Zaffagnini M. Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Redox Biol 2021;38:101806. [PMID: 33316743 DOI: 10.1016/j.redox.2020.101806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Monteiro HP, Rodrigues EG, Amorim Reis AK, Longo LS, Ogata FT, Moretti AI, da Costa PE, Teodoro AC, Toledo MS, Stern A. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective. Nitric Oxide 2019;89:1-13. [DOI: 10.1016/j.niox.2019.04.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
61 Liu Q, Gu T, Su LY, Jiao L, Qiao X, Xu M, Xie T, Yang LX, Yu D, Xu L, Chen C, Yao YG. GSNOR facilitates antiviral innate immunity by restricting TBK1 cysteine S-nitrosation. Redox Biol 2021;47:102172. [PMID: 34678655 DOI: 10.1016/j.redox.2021.102172] [Reference Citation Analysis]
62 Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, Touyz RM. Oxidative Stress and Hypertension. Circ Res 2021;128:993-1020. [PMID: 33793335 DOI: 10.1161/CIRCRESAHA.121.318063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
63 Helmer RA, Martinez-Zaguilan R, Kaur G, Smith LA, Dufour JM, Chilton BS. Helicase-like transcription factor-deletion from the tumor microenvironment in a cell line-derived xenograft model of colorectal cancer reprogrammed the human transcriptome-S-nitroso-proteome to promote inflammation and redirect metastasis. PLoS One 2021;16:e0251132. [PMID: 34010296 DOI: 10.1371/journal.pone.0251132] [Reference Citation Analysis]
64 Zhu Q, Xing L, Hou Q, Liu R, Zhang W. Proteomics identification of differential S-nitrosylated proteins between the beef with intermediate and high ultimate pH using isobaric iodoTMT switch assay. Meat Science 2021;172:108321. [DOI: 10.1016/j.meatsci.2020.108321] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Sutter CH, Rainwater HM, Sutter TR. Contributions of Nitric Oxide to AHR-Ligand-Mediated Keratinocyte Differentiation. Int J Mol Sci 2020;21:E5680. [PMID: 32784365 DOI: 10.3390/ijms21165680] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Guillem AM, Krizman EN, Robinson MB. Rapid Regulation of Glutamate Transport: Where Do We Go from Here? Neurochem Res 2021. [PMID: 33893911 DOI: 10.1007/s11064-021-03329-7] [Reference Citation Analysis]
67 Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 2019;10:2195. [PMID: 31097712 DOI: 10.1038/s41467-019-10182-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
68 Feng J, Chen L, Zuo J. Protein S ‐Nitrosylation in plants: Current progresses and challenges. J Integr Plant Biol 2019;61:1206-23. [DOI: 10.1111/jipb.12780] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
69 Shi K, Liu Z, Wang J, Zhu S, Huang D. Nitric oxide modulates sugar metabolism and maintains the quality of red raspberry during storage. Scientia Horticulturae 2019;256:108611. [DOI: 10.1016/j.scienta.2019.108611] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
70 López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2020;176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
71 Zhang T, Ma M, Chen T, Zhang L, Fan L, Zhang W, Wei B, Li S, Xuan W, Noctor G, Han Y. Glutathione‐dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H 2 O 2. Plant Cell Environ 2020;43:1175-91. [DOI: 10.1111/pce.13727] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
72 Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021;56:525-38. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Potter MN, Green JR, Mutus B. Fluorescein isothiocyanate, a platform for the selective and sensitive detection of S-Nitrosothiols and hydrogen sulfide. Talanta 2022;237:122981. [PMID: 34736702 DOI: 10.1016/j.talanta.2021.122981] [Reference Citation Analysis]
74 Basu S, Ricart K, Gladwin MT, Patel RP, Kim-Shapiro DB. Tri-iodide and vanadium chloride based chemiluminescent methods for quantification of nitrogen oxides. Nitric Oxide 2022:S1089-8603(22)00022-2. [PMID: 35124204 DOI: 10.1016/j.niox.2022.01.006] [Reference Citation Analysis]
75 Li Q, Veron D, Tufro A. S-Nitrosylation of RhoGAP Myosin9A Is Altered in Advanced Diabetic Kidney Disease. Front Med (Lausanne) 2021;8:679518. [PMID: 34336885 DOI: 10.3389/fmed.2021.679518] [Reference Citation Analysis]
76 Liu W, Song J, Du X, Zhou Y, Li Y, Li R, Lyu L, He Y, Hao J, Ben J, Wang W, Shi H, Wang Q. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater 2019;91:195-208. [PMID: 31034948 DOI: 10.1016/j.actbio.2019.04.053] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 9.7] [Reference Citation Analysis]
77 Chiaradia E, Tancini B, Emiliani C, Delo F, Pellegrino RM, Tognoloni A, Urbanelli L, Buratta S. Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021;10:1763. [PMID: 34359933 DOI: 10.3390/cells10071763] [Reference Citation Analysis]
78 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020;324:211-9. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
79 Lin S, He C. Development of Nonheme {FeNO}7 Complexes Based on the Pyrococcus furiosus Rubredoxin for Red-Light-Controllable Nitric Oxide Release. Inorg Chem 2021;60:14364-70. [PMID: 34503329 DOI: 10.1021/acs.inorgchem.1c02089] [Reference Citation Analysis]
80 Amal H, Gong G, Yang H, Joughin BA, Wang X, Knutson CG, Kartawy M, Khaliulin I, Wishnok JS, Tannenbaum SR. Low Doses of Arsenic in a Mouse Model of Human Exposure and in Neuronal Culture Lead to S-Nitrosylation of Synaptic Proteins and Apoptosis via Nitric Oxide. Int J Mol Sci 2020;21:E3948. [PMID: 32486366 DOI: 10.3390/ijms21113948] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
81 Dyer RR, Ford KI, Robinson RAS. The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease. Methods Enzymol 2019;626:499-538. [PMID: 31606089 DOI: 10.1016/bs.mie.2019.08.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
82 Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021;35:531-50. [PMID: 33957758 DOI: 10.1089/ars.2021.0081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Sebag SC, Zhang Z, Qian Q, Li M, Zhu Z, Harata M, Li W, Zingman LV, Liu L, Lira VA, Potthoff MJ, Bartelt A, Yang L. ADH5-mediated NO bioactivity maintains metabolic homeostasis in brown adipose tissue. Cell Rep 2021;37:110003. [PMID: 34788615 DOI: 10.1016/j.celrep.2021.110003] [Reference Citation Analysis]
84 Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ Res 2020;126:129-58. [PMID: 31590598 DOI: 10.1161/CIRCRESAHA.119.315626] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
85 Nagane M, Yasui H, Kuppusamy P, Yamashita T, Inanami O. DNA damage response in vascular endothelial senescence: Implication for radiation-induced cardiovascular diseases. J Radiat Res 2021;62:564-73. [PMID: 33912932 DOI: 10.1093/jrr/rrab032] [Reference Citation Analysis]
86 Koval M, Cwiek A, Carr T, Good ME, Lohman AW, Isakson BE. Pannexin 1 as a driver of inflammation and ischemia-reperfusion injury. Purinergic Signal 2021. [PMID: 34251590 DOI: 10.1007/s11302-021-09804-8] [Reference Citation Analysis]
87 Chatterji A, Sengupta R. Stability of S-nitrosothiols and S-nitrosylated proteins: A struggle for cellular existence! J Cell Biochem 2021;122:1579-93. [PMID: 34472139 DOI: 10.1002/jcb.30139] [Reference Citation Analysis]
88 Siragusa M, Thöle J, Bibli SI, Luck B, Loot AE, de Silva K, Wittig I, Heidler J, Stingl H, Randriamboavonjy V, Kohlstedt K, Brüne B, Weigert A, Fisslthaler B, Fleming I. Nitric oxide maintains endothelial redox homeostasis through PKM2 inhibition. EMBO J 2019;38:e100938. [PMID: 31328803 DOI: 10.15252/embj.2018100938] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
89 Hardeland R. Melatonin, Its Metabolites and Their Interference with Reactive Nitrogen Compounds. Molecules 2021;26:4105. [PMID: 34279445 DOI: 10.3390/molecules26134105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
90 Liu R, Zhu T, Chen X, Wang Z, Yang Z, Ren A, Shi L, Yu H, Zhao M. GSNOR regulates ganoderic acid content in Ganoderma lucidum under heat stress through S-nitrosylation of catalase. Commun Biol 2022;5:32. [PMID: 35017648 DOI: 10.1038/s42003-021-02988-0] [Reference Citation Analysis]
91 Premont RT, Stamler JS. Essential Role of Hemoglobin βCys93 in Cardiovascular Physiology. Physiology (Bethesda) 2020;35:234-43. [PMID: 32490751 DOI: 10.1152/physiol.00040.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
92 Hendinejad N, Timerghazin QK. Biological control of S-nitrosothiol reactivity: potential role of sigma-hole interactions. Phys Chem Chem Phys 2020;22:6595-605. [PMID: 32159182 DOI: 10.1039/c9cp06377c] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]