BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sbodio JI, Snyder SH, Paul BD. Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. Antioxid Redox Signal 2019;30:1450-99. [PMID: 29634350 DOI: 10.1089/ars.2017.7321] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Epel B, Kao JPY, Eaton SS, Eaton GR, Halpern H. Direct measurement and imaging of redox status with electron paramagnetic resonance (EPR). Antioxid Redox Signal 2023. [PMID: 36680741 DOI: 10.1089/ars.2022.0216] [Reference Citation Analysis]
2 Jiang X, Xu X, Wang B, Song K, Zhang J, Chen Y, Tian Y, Weng J, Liang Y, Ma W. Adverse effects of 2-Methoxyestradiol on mouse oocytes during reproductive aging. Chem Biol Interact 2023;369:110277. [PMID: 36414027 DOI: 10.1016/j.cbi.2022.110277] [Reference Citation Analysis]
3 Voronin MV, Abramova EV, Verbovaya ER, Vakhitova YV, Seredenin SB. Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int J Mol Sci 2023;24. [PMID: 36614266 DOI: 10.3390/ijms24010823] [Reference Citation Analysis]
4 Vrettou S, Wirth B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int J Mol Sci 2022;23. [PMID: 36555492 DOI: 10.3390/ijms232415849] [Reference Citation Analysis]
5 Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Impact of Reactive Species on Amino Acids-Biological Relevance in Proteins and Induced Pathologies. Int J Mol Sci 2022;23. [PMID: 36430532 DOI: 10.3390/ijms232214049] [Reference Citation Analysis]
6 Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022;14. [DOI: 10.3389/fnagi.2022.1003721] [Reference Citation Analysis]
7 Hu J, Bian Q, Ma X, Xu Y, Gao J. A double-edged sword: ROS related therapies in the treatment of psoriasis. Asian J Pharm Sci 2022;17:798-816. [PMID: 36600897 DOI: 10.1016/j.ajps.2022.10.005] [Reference Citation Analysis]
8 Bastian PE, Daca A, Płoska A, Kuban-jankowska A, Kalinowski L, Gorska-ponikowska M. 2-Methoxyestradiol Damages DNA in Glioblastoma Cells by Regulating nNOS and Heat Shock Proteins. Antioxidants 2022;11:2013. [DOI: 10.3390/antiox11102013] [Reference Citation Analysis]
9 Motataianu A, Serban G, Barcutean L, Balasa R. Oxidative Stress in Amyotrophic Lateral Sclerosis: Synergy of Genetic and Environmental Factors. Int J Mol Sci 2022;23:9339. [PMID: 36012603 DOI: 10.3390/ijms23169339] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Paul BD. Cysteine metabolism and hydrogen sulfide signaling in Huntington’s disease. Free Radical Biology and Medicine 2022. [DOI: 10.1016/j.freeradbiomed.2022.05.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 da Rosa-junior NT, Parmeggiani B, Glänzel NM, de Moura Alvorcem L, Brondani M, Britto R, Grings M, Ortiz VD, Turck P, da Rosa Araujo AS, Wajner M, Leipnitz G. Antioxidant system disturbances and mitochondrial dysfunction induced by 3-methyglutaric acid in rat heart are prevented by bezafibrate. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.174950] [Reference Citation Analysis]
12 Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022:S0891-5849(22)00074-0. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022;11:416. [PMID: 35204298 DOI: 10.3390/antiox11020416] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022;23:624. [PMID: 35054808 DOI: 10.3390/ijms23020624] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Singh A, Kukreti R, Kukreti S. Oxidative Stress and Cellular Dysfunction in Neurodegenerative Disease. Neurodegenerative Diseases Biomarkers 2022. [DOI: 10.1007/978-1-0716-1712-0_6] [Reference Citation Analysis]
16 Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106099] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
17 Fernández-espejo E, Gavito AL, Suárez J, Tolosa E, Vilas D, Aldecoa I, Berenguer J, Córdoba-fernández A, Damas-hermoso F, Rodríguez de Fonseca F. Salivary ATP13A2 is a potential marker of therapy-induced motor complications and is expressed by inclusions in submandibulary glands in Parkinson ́s disease. Clinical Parkinsonism & Related Disorders 2022;7:100163. [DOI: 10.1016/j.prdoa.2022.100163] [Reference Citation Analysis]
18 Obulesu M. Efficacy of plant extracts against Friedreich’s ataxia. Plant Extracts in Neurodegenerative Diseases 2022. [DOI: 10.1016/b978-0-323-95762-5.00006-0] [Reference Citation Analysis]
19 Amanullah A. Post-transcriptional regulation. Post-Transcriptional Gene Regulation in Human Disease 2022. [DOI: 10.1016/b978-0-323-91305-8.00001-6] [Reference Citation Analysis]
20 Jeong ES, Bajgai J, You IS, Rahman MH, Fadriquela A, Sharma S, Kwon HU, Lee SY, Kim CS, Lee KJ. Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model. Int J Mol Sci 2021;22:13313. [PMID: 34948107 DOI: 10.3390/ijms222413313] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Malard E, Valable S, Bernaudin M, Pérès E, Chatre L. The Reactive Species Interactome in the Brain. Antioxid Redox Signal 2021;35:1176-206. [PMID: 34498917 DOI: 10.1089/ars.2020.8238] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
22 Bono S, Feligioni M, Corbo M. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Mol Neurodegener 2021;16:71. [PMID: 34663413 DOI: 10.1186/s13024-021-00479-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
23 Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 2021;81:3691-707. [PMID: 34547234 DOI: 10.1016/j.molcel.2021.08.018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 50] [Article Influence: 17.0] [Reference Citation Analysis]
24 Paul BD. Signaling Overlap between the Golgi Stress Response and Cysteine Metabolism in Huntington's Disease. Antioxidants (Basel) 2021;10:1468. [PMID: 34573100 DOI: 10.3390/antiox10091468] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc Natl Acad Sci U S A 2021;118:e2024358118. [PMID: 34400495 DOI: 10.1073/pnas.2024358118] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 32.5] [Reference Citation Analysis]
26 Crochemore C, Cimmaruta C, Fernandez Molina C, Ricchetti M. Reactive species in progeroid syndromes and ageing-related processes. Antioxid Redox Signal 2021. [PMID: 34428933 DOI: 10.1089/ars.2020.8242] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Kane EI, Waters KL, Spratt DE. Intersection of Redox Chemistry and Ubiquitylation: Post-Translational Modifications Required for Maintaining Cellular Homeostasis and Neuroprotection. Cells 2021;10:2121. [PMID: 34440890 DOI: 10.3390/cells10082121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Bourgognon JM, Spiers JG, Robinson SW, Scheiblich H, Glynn P, Ortori C, Bradley SJ, Tobin AB, Steinert JR. Inhibition of neuroinflammatory nitric oxide signaling suppresses glycation and prevents neuronal dysfunction in mouse prion disease. Proc Natl Acad Sci U S A 2021;118:e2009579118. [PMID: 33653950 DOI: 10.1073/pnas.2009579118] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
29 Han M, Lee D, Lee SH, Kim TH. Oxidative Stress and Antioxidant Pathway in Allergic Rhinitis. Antioxidants (Basel) 2021;10:1266. [PMID: 34439514 DOI: 10.3390/antiox10081266] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
30 Weismiller HA, Holub TJ, Krzesinski BJ, Margittai M. A thiol-based intramolecular redox switch in four-repeat tau controls fibril assembly and disassembly. J Biol Chem 2021;297:101021. [PMID: 34339733 DOI: 10.1016/j.jbc.2021.101021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
31 Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021;35:531-50. [PMID: 33957758 DOI: 10.1089/ars.2021.0081] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
32 Giovinazzo D, Bursac B, Sbodio JI, Nalluru S, Vignane T, Snowman AM, Albacarys LM, Sedlak TW, Torregrossa R, Whiteman M, Filipovic MR, Snyder SH, Paul BD. Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci U S A 2021;118:e2017225118. [PMID: 33431651 DOI: 10.1073/pnas.2017225118] [Cited by in Crossref: 47] [Cited by in F6Publishing: 55] [Article Influence: 23.5] [Reference Citation Analysis]
33 Gajić M, Džambaski Z, Ilić BS, Kocić G, Bondžić BP, Šmelcerović A. Synthesis and analysis of 4-oxothiazolidines as potential dual inhibitors of deoxyribonuclease I and xanthine oxidase. Chem Biol Interact 2021;345:109536. [PMID: 34058176 DOI: 10.1016/j.cbi.2021.109536] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Palha MS, Legenzov EA, Dirda NDA, Rosen GM, Kao JPY. New Disulfide-Linked Dinitroxides and the Kinetics of Their Reaction with Glutathione. Appl Magn Reson 2021;52:945-55. [DOI: 10.1007/s00723-021-01332-3] [Reference Citation Analysis]
35 Vasavda C, Snyder SH, Paul BD. Quantitative measurement of reactive oxygen species in ex vivo mouse brain slices. STAR Protoc 2021;2:100332. [PMID: 33598661 DOI: 10.1016/j.xpro.2021.100332] [Reference Citation Analysis]
36 Fernández-Espejo E, Rodriguez de Fonseca F, Suárez J, Martín de Pablos Á. Cerebrospinal fluid lactoperoxidase level is enhanced in idiopathic Parkinson's disease, and correlates with levodopa equivalent daily dose. Brain Res 2021;1761:147411. [PMID: 33676939 DOI: 10.1016/j.brainres.2021.147411] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
37 Dennis AG, Almaguer-Mederos LE, Raúl RA, Roberto RL, Luis VP, Dany CA, Yanetza GZ, Yaimeé VM, Annelié ED, Arnoy PA, Reydenis TV. Redox Imbalance Associates with Clinical Worsening in Spinocerebellar Ataxia Type 2. Oxid Med Cell Longev 2021;2021:9875639. [PMID: 33688396 DOI: 10.1155/2021/9875639] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2020;14:581950. [PMID: 33679322 DOI: 10.3389/fncel.2020.581950] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
39 Khoder-Agha F, Kietzmann T. The glyco-redox interplay: Principles and consequences on the role of reactive oxygen species during protein glycosylation. Redox Biol 2021;42:101888. [PMID: 33602616 DOI: 10.1016/j.redox.2021.101888] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
40 Bastian P, Dulski J, Roszmann A, Jacewicz D, Kuban-Jankowska A, Slawek J, Wozniak M, Gorska-Ponikowska M. Regulation of Mitochondrial Dynamics in Parkinson's Disease-Is 2-Methoxyestradiol a Missing Piece? Antioxidants (Basel) 2021;10:248. [PMID: 33562035 DOI: 10.3390/antiox10020248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
41 Konno T, Melo EP, Chambers JE, Avezov E. Intracellular Sources of ROS/H(2)O(2) in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells 2021;10. [PMID: 33504070 DOI: 10.3390/cells10020233] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 15.0] [Reference Citation Analysis]
42 Click RE. Potential alteration of tumor microenvironments by β-mercaptoethanol. Future Oncol 2021;17:315-31. [PMID: 33356533 DOI: 10.2217/fon-2020-0801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2021;8:86-132. [PMID: 33490374 DOI: 10.3934/Neuroscience.2021005] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 16.0] [Reference Citation Analysis]
44 Martinez-Banaclocha M. Proteomic Complexity in Parkinson's Disease: A Redox Signaling Perspective of the Pathophysiology and Progression. Neuroscience 2021;453:287-300. [PMID: 33212217 DOI: 10.1016/j.neuroscience.2020.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
45 Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020;14:530219. [PMID: 33250703 DOI: 10.3389/fnins.2020.530219] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 14.7] [Reference Citation Analysis]
46 Madireddy S, Madireddy S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci. 2020;10. [PMID: 33081261 DOI: 10.3390/brainsci10100742] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
47 S Narasimhan KK, Devarajan A, Karan G, Sundaram S, Wang Q, van Groen T, Monte FD, Rajasekaran NS. Reductive stress promotes protein aggregation and impairs neurogenesis. Redox Biol 2020;37:101739. [PMID: 33242767 DOI: 10.1016/j.redox.2020.101739] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
48 Sies H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants (Basel) 2020;9:E852. [PMID: 32927924 DOI: 10.3390/antiox9090852] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 23.3] [Reference Citation Analysis]
49 Finelli MJ. Redox Post-translational Modifications of Protein Thiols in Brain Aging and Neurodegenerative Conditions-Focus on S-Nitrosation. Front Aging Neurosci 2020;12:254. [PMID: 33088270 DOI: 10.3389/fnagi.2020.00254] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
50 Danielski LG, Giustina AD, Bonfante S, de Souza Goldim MP, Joaquim L, Metzker KL, Biehl EB, Vieira T, de Medeiros FD, da Rosa N, Generoso J, Simoes L, Farias HR, da Silva Lemos I, Giridharan V, Rezin GT, Fortunato JJ, Bitencourt RM, Streck EL, Dal-Pizzol F, Barichello T, Petronilho F. NLRP3 Activation Contributes to Acute Brain Damage Leading to Memory Impairment in Sepsis-Surviving Rats. Mol Neurobiol 2020;57:5247-62. [PMID: 32870491 DOI: 10.1007/s12035-020-02089-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
51 Muñoz P, Ardiles ÁO, Pérez-Espinosa B, Núñez-Espinosa C, Paula-Lima A, González-Billault C, Espinosa-Parrilla Y. Redox modifications in synaptic components as biomarkers of cognitive status, in brain aging and disease. Mech Ageing Dev 2020;189:111250. [PMID: 32433996 DOI: 10.1016/j.mad.2020.111250] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
52 Chen Y, Gong K, Xu Q, Meng J, Long T, Chang C, Wang Z, Liu W. Phosphoglycerate Mutase 5 Knockdown Alleviates Neuronal Injury After Traumatic Brain Injury Through Drp1-Mediated Mitochondrial Dysfunction. Antioxid Redox Signal 2021;34:154-70. [PMID: 32253918 DOI: 10.1089/ars.2019.7982] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
53 La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020;10:E702. [PMID: 32369911 DOI: 10.3390/biom10050702] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
54 Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021;34:421-38. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
55 Paul BD, Snyder SH. Dysregulated hydrogen sulfide metabolism links aberrant neuronal stress responses and neurodegeneration in Huntington's disease. The FASEB Journal 2020;34:1-1. [DOI: 10.1096/fasebj.2020.34.s1.02150] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
56 Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 2020;21:363-83. [PMID: 32231263 DOI: 10.1038/s41580-020-0230-3] [Cited by in Crossref: 1094] [Cited by in F6Publishing: 1154] [Article Influence: 364.7] [Reference Citation Analysis]
57 Veskoukis AS, Tsatsakis A, Kouretas D. Approaching reactive species in the frame of their clinical significance: A toxicological appraisal. Food Chem Toxicol 2020;138:111206. [PMID: 32113950 DOI: 10.1016/j.fct.2020.111206] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
58 Muthuraman A, Rishitha N, Paramakrishnan N, Mahendran B, Ramesh M. Role of Lipid Peroxidation Process in Neurodegenerative Disorders. Lipid Peroxidation Research 2020. [DOI: 10.5772/intechopen.81188] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Mayorga OAS, da Costa YFG, da Silva JB, Scio E, Ferreira ALP, de Sousa OV, Alves MS. Kalanchoe brasiliensis Cambess., a Promising Natural Source of Antioxidant and Antibiotic Agents against Multidrug-Resistant Pathogens for the Treatment of Salmonella Gastroenteritis. Oxid Med Cell Longev 2019;2019:9245951. [PMID: 31827708 DOI: 10.1155/2019/9245951] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
60 Madireddy S, Madireddy S. Protection from the Pathogenesis of Neurodegenerative Disorders, including Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, Huntington’s Disease, and Parkinson’s Diseases, through the Mitigation of Reactive Oxygen Species. J Neurosci Neurol Disord 2019;3:148-161. [DOI: 10.29328/journal.jnnd.1001026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
61 Greco V, Longone P, Spalloni A, Pieroni L, Urbani A. Crosstalk Between Oxidative Stress and Mitochondrial Damage: Focus on Amyotrophic Lateral Sclerosis. Adv Exp Med Biol 2019;1158:71-82. [PMID: 31452136 DOI: 10.1007/978-981-13-8367-0_5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
62 Milanese C, Payán-gómez C, Mastroberardino PG. Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson’s disease. Current Opinion in Physiology 2019;9:73-8. [DOI: 10.1016/j.cophys.2019.04.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
63 Tang BL. Neuroprotection by glucose-6-phosphate dehydrogenase and the pentose phosphate pathway. J Cell Biochem 2019;120:14285-95. [PMID: 31127649 DOI: 10.1002/jcb.29004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
64 Paul BD, Snyder SH. Impaired Redox Signaling in Huntington's Disease: Therapeutic Implications. Front Mol Neurosci 2019;12:68. [PMID: 30941013 DOI: 10.3389/fnmol.2019.00068] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
65 Aivazidis S, Anderson CC, Roede JR. Toxicant-mediated redox control of proteostasis in neurodegeneration. Curr Opin Toxicol 2019;13:22-34. [PMID: 31602419 DOI: 10.1016/j.cotox.2018.12.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]