BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014;21:1389-421. [PMID: 24960279 DOI: 10.1089/ars.2014.6018] [Cited by in Crossref: 89] [Cited by in F6Publishing: 75] [Article Influence: 11.1] [Reference Citation Analysis]
Number Citing Articles
1 Skryhan K, Cuesta-Seijo JA, Nielsen MM, Marri L, Mellor SB, Glaring MA, Jensen PE, Palcic MM, Blennow A. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1. PLoS One 2015;10:e0136997. [PMID: 26367870 DOI: 10.1371/journal.pone.0136997] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
2 Feitosa-Araujo E, de Souza Chaves I, Florian A, da Fonseca-Pereira P, Condori Apfata JA, Heyneke E, Medeiros DB, Pires MV, Mettler-Altmann T, Neuhaus HE, Palmieri F, Araï Jo WL, Obata T, Weber APM, Linka N, Fernie AR, Nunes-Nesi A. Downregulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis. Plant Cell Physiol 2020;61:897-908. [PMID: 32065636 DOI: 10.1093/pcp/pcaa017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
3 Medeiros DB, Aarabi F, Martinez Rivas FJ, Fernie AR. The knowns and unknowns of intracellular partitioning of carbon and nitrogen, with focus on the organic acid-mediated interplay between mitochondrion and chloroplast. J Plant Physiol 2021;266:153521. [PMID: 34537467 DOI: 10.1016/j.jplph.2021.153521] [Reference Citation Analysis]
4 Colon R, Rein KS. Essential components of the xanthophyll cycle differ in high and low toxin Karenia brevis. Harmful Algae 2021;103:102006. [PMID: 33980446 DOI: 10.1016/j.hal.2021.102006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Bentham RB, Bryson K, Szabadkai G. MCbiclust: a novel algorithm to discover large-scale functionally related gene sets from massive transcriptomics data collections. Nucleic Acids Res 2017;45:8712-30. [PMID: 28911113 DOI: 10.1093/nar/gkx590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
6 Murai R, Okegawa Y, Sato N, Motohashi K. Evaluation of CBSX Proteins as Regulators of the Chloroplast Thioredoxin System. Front Plant Sci 2021;12:530376. [PMID: 33664754 DOI: 10.3389/fpls.2021.530376] [Reference Citation Analysis]
7 Gakière B, Hao J, de Bont L, Pétriacq P, Nunes-nesi A, Fernie AR. NAD + Biosynthesis and Signaling in Plants. Critical Reviews in Plant Sciences 2018;37:259-307. [DOI: 10.1080/07352689.2018.1505591] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
8 Sng BJR, Mun B, Mohanty B, Kim M, Phua ZW, Yang H, Lee DY, Jang IC. Combination of red and blue light induces anthocyanin and other secondary metabolite biosynthesis pathways in an age-dependent manner in Batavia lettuce. Plant Sci 2021;310:110977. [PMID: 34315593 DOI: 10.1016/j.plantsci.2021.110977] [Reference Citation Analysis]
9 Pérez-pérez ME, Mauriès A, Maes A, Tourasse NJ, Hamon M, Lemaire SD, Marchand CH. The Deep Thioredoxome in Chlamydomonas reinhardtii: New Insights into Redox Regulation. Molecular Plant 2017;10:1107-25. [DOI: 10.1016/j.molp.2017.07.009] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
10 Okegawa Y, Koshino M, Okushima T, Motohashi K. Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies. Protein Expr Purif 2016;118:77-82. [PMID: 26494602 DOI: 10.1016/j.pep.2015.10.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
11 Geigenberger P, Thormählen I, Daloso DM, Fernie AR. The Unprecedented Versatility of the Plant‎ Thioredoxin System. Trends in Plant Science 2017;22:249-62. [DOI: 10.1016/j.tplants.2016.12.008] [Cited by in Crossref: 99] [Cited by in F6Publishing: 82] [Article Influence: 19.8] [Reference Citation Analysis]
12 Belouah I, Nazaret C, Pétriacq P, Prigent S, Bénard C, Mengin V, Blein-Nicolas M, Denton AK, Balliau T, Augé S, Bouchez O, Mazat JP, Stitt M, Usadel B, Zivy M, Beauvoit B, Gibon Y, Colombié S. Modeling Protein Destiny in Developing Fruit. Plant Physiol 2019;180:1709-24. [PMID: 31015299 DOI: 10.1104/pp.19.00086] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
13 Okegawa Y, Motohashi K. M-Type Thioredoxins Regulate the PGR5/PGRL1-Dependent Pathway by Forming a Disulfide-Linked Complex with PGRL1. Plant Cell 2020;32:3866-83. [PMID: 33037145 DOI: 10.1105/tpc.20.00304] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
14 Nikkanen L, Toivola J, Diaz MG, Rintamäki E. Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos Trans R Soc Lond B Biol Sci 2017;372:20160474. [PMID: 28808108 DOI: 10.1098/rstb.2016.0474] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
15 Toleco MR, Naake T, Zhang Y, Heazlewood JL, Fernie AR. Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. Plants (Basel) 2020;9:E117. [PMID: 31963509 DOI: 10.3390/plants9010117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
16 de Souza Chaves I, Feitosa-Araújo E, Florian A, Medeiros DB, da Fonseca-Pereira P, Charton L, Heyneke E, Apfata JAC, Pires MV, Mettler-Altmann T, Araújo WL, Neuhaus HE, Palmieri F, Obata T, Weber APM, Linka N, Fernie AR, Nunes-Nesi A. The mitochondrial NAD+ transporter (NDT1) plays important roles in cellular NAD+ homeostasis in Arabidopsis thaliana. Plant J 2019;100:487-504. [PMID: 31278825 DOI: 10.1111/tpj.14452] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
17 Fonseca‐pereira P, Souza PV, Hou L, Schwab S, Geigenberger P, Nunes‐nesi A, Timm S, Fernie AR, Thormählen I, Araújo WL, Daloso DM. Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. Plant Cell Environ 2019;43:188-208. [DOI: 10.1111/pce.13640] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
18 Madany MMY, Saleh AM, Habeeb TH, Hozzein WN, Abdelgawad H. Silicon dioxide nanoparticles alleviate the threats of broomrape infection in tomato by inducing cell wall fortification and modulating ROS homeostasis. Environ Sci : Nano 2020;7:1415-30. [DOI: 10.1039/c9en01255a] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Seydel C, Kitashova A, Fürtauer L, Nägele T. Temperature-induced dynamics of plant carbohydrate metabolism. Physiol Plant 2021;:e13602. [PMID: 34802152 DOI: 10.1111/ppl.13602] [Reference Citation Analysis]
20 Paradiso A, Domingo G, Blanco E, Buscaglia A, Fortunato S, Marsoni M, Scarcia P, Caretto S, Vannini C, de Pinto MC. Cyclic AMP mediates heat stress response by the control of redox homeostasis and ubiquitin-proteasome system. Plant Cell Environ 2020;43:2727-42. [PMID: 32876347 DOI: 10.1111/pce.13878] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
21 Gyugos M, Ahres M, Gulyás Z, Szalai G, Darkó É, Mednyánszky Z, Dey N, Kar RK, Simon-sarkadi L, Kocsy G. Light spectrum modifies the drought-induced changes of glutathione and free amino acid levels in wheat. Acta Physiol Plant 2021;43. [DOI: 10.1007/s11738-021-03253-x] [Reference Citation Analysis]
22 Perkowski MC, Warpeha KM. Phenylalanine roles in the seed-to-seedling stage: Not just an amino acid. Plant Science 2019;289:110223. [DOI: 10.1016/j.plantsci.2019.110223] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
23 Ancín M, Larraya L, Florez-Sarasa I, Bénard C, Fernández-San Millán A, Veramendi J, Gibon Y, Fernie AR, Aranjuelo I, Farran I. Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco. J Exp Bot 2021;72:4949-64. [PMID: 33963398 DOI: 10.1093/jxb/erab193] [Reference Citation Analysis]
24 Sasidharan R, Schippers JHM, Schmidt RR. Redox and low-oxygen stress: signal integration and interplay. Plant Physiol 2021:kiaa081. [PMID: 33793937 DOI: 10.1093/plphys/kiaa081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Skryhan K, Gurrieri L, Sparla F, Trost P, Blennow A. Redox Regulation of Starch Metabolism. Front Plant Sci 2018;9:1344. [PMID: 30298078 DOI: 10.3389/fpls.2018.01344] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
26 Chaput V, Martin A, Lejay L. Redox metabolism: the hidden player in carbon and nitrogen signaling? J Exp Bot 2020;71:3816-26. [PMID: 32064525 DOI: 10.1093/jxb/eraa078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
27 Bauwe H. Photorespiration - Damage Repair Pathway of the Calvin-Benson Cycle. In: Roberts JA, editor. Annual Plant Reviews online. Chichester: John Wiley & Sons, Ltd; 2018. pp. 293-342. [DOI: 10.1002/9781119312994.apr0552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
28 Nikkanen L, Toivola J, Rintamäki E. Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant, Cell & Environment 2016;39:1691-705. [DOI: 10.1111/pce.12718] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 10.0] [Reference Citation Analysis]
29 Zhang H, Liu X, Zhang H, Wang Y, Li T, Che Y, Wang J, Guo D, Sun G, Li X. Thioredoxin-like protein CDSP32 alleviates Cd-induced photosynthetic inhibition in tobacco leaves by regulating cyclic electron flow and excess energy dissipation. Plant Physiol Biochem 2021;167:831-9. [PMID: 34530327 DOI: 10.1016/j.plaphy.2021.09.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Krämer M, Kunz HH. Indirect Export of Reducing Equivalents From the Chloroplast to Resupply NADP for C3 Photosynthesis-Growing Importance for Stromal NAD(H)? Front Plant Sci 2021;12:719003. [PMID: 34745158 DOI: 10.3389/fpls.2021.719003] [Reference Citation Analysis]
31 Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, Altenbach SB, Szalai G, Pál M, Toldi D, Simon-Sarkadi L, Harnos N, Galiba G, Darko É. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Front Plant Sci 2018;9:605. [PMID: 29780400 DOI: 10.3389/fpls.2018.00605] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
32 Hoermiller II, Naegele T, Augustin H, Stutz S, Weckwerth W, Heyer AG. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ 2017;40:602-10. [PMID: 27642699 DOI: 10.1111/pce.12836] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 9.3] [Reference Citation Analysis]
33 O'Leary BM, Asao S, Millar AH, Atkin OK. Core principles which explain variation in respiration across biological scales. New Phytol 2019;222:670-86. [PMID: 30394553 DOI: 10.1111/nph.15576] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
34 Yu K, Zhu K, Ye M, Zhao Y, Chen W, Guo W. Heat tolerance of highbush blueberry is related to the antioxidative enzymes and oxidative protein-repairing enzymes. Scientia Horticulturae 2016;198:36-43. [DOI: 10.1016/j.scienta.2015.11.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
35 Decros G, Beauvoit B, Colombié S, Cabasson C, Bernillon S, Arrivault S, Guenther M, Belouah I, Prigent S, Baldet P, Gibon Y, Pétriacq P. Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development Through Transcript and Protein Profiling. Front Plant Sci 2019;10:1201. [PMID: 31681351 DOI: 10.3389/fpls.2019.01201] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
36 Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 2018;154:134-42. [PMID: 30283160 DOI: 10.1016/j.envexpbot.2018.05.003] [Cited by in Crossref: 235] [Cited by in F6Publishing: 157] [Article Influence: 58.8] [Reference Citation Analysis]
37 Zimmer D, Swart C, Graf A, Arrivault S, Tillich M, Proost S, Nikoloski Z, Stitt M, Bock R, Mühlhaus T, Boulouis A. Topology of the redox network during induction of photosynthesis as revealed by time-resolved proteomics in tobacco. Sci Adv 2021;7:eabi8307. [PMID: 34919428 DOI: 10.1126/sciadv.abi8307] [Reference Citation Analysis]
38 Thormählen I, Meitzel T, Groysman J, Öchsner AB, von Roepenack-Lahaye E, Naranjo B, Cejudo FJ, Geigenberger P. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions. Plant Physiol 2015;169:1766-86. [PMID: 26338951 DOI: 10.1104/pp.15.01122] [Cited by in Crossref: 26] [Cited by in F6Publishing: 35] [Article Influence: 3.7] [Reference Citation Analysis]
39 Okegawa Y, Motohashi K. Evaluation of seamless ligation cloning extract preparation methods from an Escherichia coli laboratory strain. Anal Biochem 2015;486:51-3. [PMID: 26133399 DOI: 10.1016/j.ab.2015.06.031] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
40 Hou LY, Ehrlich M, Thormählen I, Lehmann M, Krahnert I, Obata T, Cejudo FJ, Fernie AR, Geigenberger P. NTRC Plays a Crucial Role in Starch Metabolism, Redox Balance, and Tomato Fruit Growth. Plant Physiol 2019;181:976-92. [PMID: 31527089 DOI: 10.1104/pp.19.00911] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
41 Souza PVL, Lima-melo Y, Carvalho FE, Reichheld J, Fernie AR, Silveira JAG, Daloso DM. Function and Compensatory Mechanisms Among the Components of the Chloroplastic Redox Network. Critical Reviews in Plant Sciences 2019;38:1-28. [DOI: 10.1080/07352689.2018.1528409] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Madany MMY, Obaid WA, Hozien W, AbdElgawad H, Hamed BA, Saleh AM. Salicylic acid confers resistance against broomrape in tomato through modulation of C and N metabolism. Plant Physiol Biochem 2020;147:322-35. [PMID: 31911359 DOI: 10.1016/j.plaphy.2019.12.028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
43 Höhner R, Day PM, Zimmermann SE, Lopez LS, Krämer M, Giavalisco P, Correa Galvis V, Armbruster U, Schöttler MA, Jahns P, Krueger S, Kunz HH. Stromal NADH supplied by PHOSPHOGLYCERATE DEHYDROGENASE3 is crucial for photosynthetic performance. Plant Physiol 2021:kiaa117. [PMID: 33779763 DOI: 10.1093/plphys/kiaa117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
44 Prudente DO, Paiva R, Domiciano D, Souza LB, Carpentier S, Swennen R, Silva LC, Nery FC, Máximo WPF, Panis B. The cryoprotectant PVS2 plays a crucial role in germinating Passiflora ligularis embryos after cryopreservation by influencing the mobilization of lipids and the antioxidant metabolism. J Plant Physiol 2019;239:71-82. [PMID: 31212099 DOI: 10.1016/j.jplph.2019.05.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
45 Igamberdiev AU, Eprintsev AT. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants. Front Plant Sci 2016;7:1042. [PMID: 27471516 DOI: 10.3389/fpls.2016.01042] [Cited by in Crossref: 108] [Cited by in F6Publishing: 83] [Article Influence: 18.0] [Reference Citation Analysis]
46 Okegawa Y, Basso L, Shikanai T, Motohashi K. Cyclic Electron Transport around PSI Contributes to Photosynthetic Induction with Thioredoxin f. Plant Physiol 2020;184:1291-302. [PMID: 32917772 DOI: 10.1104/pp.20.00741] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Okegawa Y, Motohashi K. Expression of spinach ferredoxin-thioredoxin reductase using tandem T7 promoters and application of the purified protein for in vitro light-dependent thioredoxin-reduction system. Protein Expr Purif 2016;121:46-51. [PMID: 26773743 DOI: 10.1016/j.pep.2016.01.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
48 Wurzinger B, Mair A, Fischer-Schrader K, Nukarinen E, Roustan V, Weckwerth W, Teige M. Redox state-dependent modulation of plant SnRK1 kinase activity differs from AMPK regulation in animals. FEBS Lett 2017;591:3625-36. [PMID: 28940407 DOI: 10.1002/1873-3468.12852] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
49 Decros G, Baldet P, Beauvoit B, Stevens R, Flandin A, Colombié S, Gibon Y, Pétriacq P. Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. Front Plant Sci 2019;10:1091. [PMID: 31620143 DOI: 10.3389/fpls.2019.01091] [Cited by in Crossref: 43] [Cited by in F6Publishing: 29] [Article Influence: 14.3] [Reference Citation Analysis]
50 Okegawa Y, Motohashi K. Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo. Plant J 2015;84:900-13. [PMID: 26468055 DOI: 10.1111/tpj.13049] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 9.8] [Reference Citation Analysis]
51 Motohashi K. A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnol 2015;15:47. [PMID: 26037246 DOI: 10.1186/s12896-015-0162-8] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 11.1] [Reference Citation Analysis]
52 Griffiths CA, Paul MJ, Foyer CH. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochim Biophys Acta 2016;1857:1715-25. [PMID: 27487250 DOI: 10.1016/j.bbabio.2016.07.007] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 11.5] [Reference Citation Analysis]
53 Srivastava A, Pasala R, Minhas P, Suprasanna P. Plant Bioregulators for Sustainable Agriculture: Integrating Redox Signaling as a Possible Unifying Mechanism. Elsevier; 2016. pp. 237-78. [DOI: 10.1016/bs.agron.2015.12.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
54 McKinley BA, Casto AL, Rooney WL, Mullet JE. Developmental dynamics of stem starch accumulation in Sorghum bicolor. Plant Direct 2018;2:e00074. [PMID: 31245742 DOI: 10.1002/pld3.74] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
55 Paciolla C, Paradiso A, de Pinto MC. Cellular Redox Homeostasis as Central Modulator in Plant Stress Response. In: Gupta DK, Palma JM, Corpas FJ, editors. Redox State as a Central Regulator of Plant-Cell Stress Responses. Cham: Springer International Publishing; 2016. pp. 1-23. [DOI: 10.1007/978-3-319-44081-1_1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
56 Toldi D, Gyugos M, Darkó É, Szalai G, Gulyás Z, Gierczik K, Székely A, Boldizsár Á, Galiba G, Müller M, Simon-Sarkadi L, Kocsy G. Light intensity and spectrum affect metabolism of glutathione and amino acids at transcriptional level. PLoS One 2019;14:e0227271. [PMID: 31891631 DOI: 10.1371/journal.pone.0227271] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
57 Gulyás Z, Simon-sarkadi L, Badics E, Novák A, Mednyánszky Z, Szalai G, Galiba G, Kocsy G. Redox regulation of free amino acid levels in Arabidopsis thaliana. Physiol Plantarum 2017;159:264-76. [DOI: 10.1111/ppl.12510] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
58 da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. J Exp Bot 2021;72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
59 Sunil B, Rajsheel P, Aswani V, Bapatla RB, Talla SK, Raghavendra AS. Photosynthesis is sensitive to nitric oxide and respiration sensitive to hydrogen peroxide: Studies with pea mesophyll protoplasts. J Plant Physiol 2020;246-247:153133. [PMID: 32065920 DOI: 10.1016/j.jplph.2020.153133] [Reference Citation Analysis]
60 Missihoun TD, Kotchoni SO, Bartels D. Aldehyde Dehydrogenases Function in the Homeostasis of Pyridine Nucleotides in Arabidopsis thaliana. Sci Rep 2018;8:2936. [PMID: 29440669 DOI: 10.1038/s41598-018-21202-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
61 Kang Z, Qin T, Zhao Z. Thioredoxins and thioredoxin reductase in chloroplasts: A review. Gene 2019;706:32-42. [DOI: 10.1016/j.gene.2019.04.041] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
62 Hou LY, Lehmann M, Geigenberger P. Thioredoxin h2 and o1 Show Different Subcellular Localizations and Redox-Active Functions, and Are Extrachloroplastic Factors Influencing Photosynthetic Performance in Fluctuating Light. Antioxidants (Basel) 2021;10:705. [PMID: 33946819 DOI: 10.3390/antiox10050705] [Reference Citation Analysis]
63 Keech O, Gardeström P, Kleczkowski LA, Rouhier N. The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations. Plant, Cell & Environment 2016;40:553-69. [DOI: 10.1111/pce.12713] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
64 Dussarrat T, Decros G, Díaz FP, Gibon Y, Latorre C, Rolin D, Gutiérrez RA, Pétriacq P. Another Tale from the Harsh World: How Plants Adapt to Extreme Environments. In: Roberts JA, editor. Annual Plant Reviews online. Wiley; 2018. pp. 551-603. [DOI: 10.1002/9781119312994.apr0758] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Wang J, Pan W, Cai W, Wang M, Liu L, Zhang M. Structural insight into the biological functions of Arabidopsis thaliana ACHT1. Int J Biol Macromol 2020;158:43-51. [PMID: 32376247 DOI: 10.1016/j.ijbiomac.2020.04.246] [Reference Citation Analysis]
66 Thormählen I, Zupok A, Rescher J, Leger J, Weissenberger S, Groysman J, Orwat A, Chatel-innocenti G, Issakidis-bourguet E, Armbruster U, Geigenberger P. Thioredoxins Play a Crucial Role in Dynamic Acclimation of Photosynthesis in Fluctuating Light. Molecular Plant 2017;10:168-82. [DOI: 10.1016/j.molp.2016.11.012] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 11.6] [Reference Citation Analysis]
67 Zhang Y, Fernie AR. Stable and Temporary Enzyme Complexes and Metabolons Involved in Energy and Redox Metabolism. Antioxid Redox Signal 2021;35:788-807. [PMID: 32368925 DOI: 10.1089/ars.2019.7981] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
68 Tegeder M, Masclaux‐daubresse C. Source and sink mechanisms of nitrogen transport and use. New Phytol 2018;217:35-53. [DOI: 10.1111/nph.14876] [Cited by in Crossref: 206] [Cited by in F6Publishing: 157] [Article Influence: 41.2] [Reference Citation Analysis]
69 Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures. Int J Mol Sci 2020;21:E6843. [PMID: 32961865 DOI: 10.3390/ijms21186843] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Srivastava AK, Sablok G, Hackenberg M, Deshpande U, Suprasanna P. Thiourea priming enhances salt tolerance through co-ordinated regulation of microRNAs and hormones in Brassica juncea. Sci Rep 2017;7:45490. [PMID: 28382938 DOI: 10.1038/srep45490] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
71 Aranjuelo I, Tcherkez G, Jauregui I, Gilard F, Ancín M, Millán AF, Larraya L, Veramendi J, Farran I. Alteration by thioredoxin f over-expression of primary carbon metabolism and its response to elevated CO2 in tobacco (Nicotiana tabacum L.). Environmental and Experimental Botany 2015;118:40-8. [DOI: 10.1016/j.envexpbot.2015.05.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
72 Horn PJ. Where do the electrons go? How numerous redox processes drive phytochemical diversity: Redox processes in phytochemistry. Phytochem Rev 2021;20:367-407. [DOI: 10.1007/s11101-020-09738-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
73 Hernández ML, Cejudo FJ. Chloroplast Lipids Metabolism and Function. A Redox Perspective. Front Plant Sci 2021;12:712022. [PMID: 34421962 DOI: 10.3389/fpls.2021.712022] [Reference Citation Analysis]
74 Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsögön A, Araújo WL. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? Front Plant Sci 2018;9:1689. [PMID: 30524461 DOI: 10.3389/fpls.2018.01689] [Cited by in Crossref: 52] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
75 Smolikova G, Leonova T, Vashurina N, Frolov A, Medvedev S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int J Mol Sci 2020;22:E101. [PMID: 33374189 DOI: 10.3390/ijms22010101] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Vallarino JG, Osorio S. Organic Acids. Postharvest Physiology and Biochemistry of Fruits and Vegetables. Elsevier; 2019. pp. 207-24. [DOI: 10.1016/b978-0-12-813278-4.00010-5] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
77 Zhang Y, Krahnert I, Bolze A, Gibon Y, Fernie AR. Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants. Curr Protoc Plant Biol 2020;5:e20115. [PMID: 32841544 DOI: 10.1002/cppb.20115] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
78 Para A, Muhammad D, Orozco-Nunnelly DA, Memishi R, Alvarez S, Naldrett MJ, Warpeha KM. The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development. Plant Physiol 2016;172:1045-60. [PMID: 27540109 DOI: 10.1104/pp.16.00464] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
79 Okegawa Y, Tsuda N, Sakamoto W, Motohashi K. Maintaining the Chloroplast Redox Balance Through the PGR5-Dependent Pathway and the Trx System is Required for Light-Dependent Activation of Photosynthetic Reactions. Plant Cell Physiol 2021:pcab148. [PMID: 34623443 DOI: 10.1093/pcp/pcab148] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Wieloch T. A cytosolic oxidation-reduction cycle in plant leaves. J Exp Bot 2021;72:4186-9. [PMID: 33739373 DOI: 10.1093/jxb/erab128] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Scala A, Mirabella R, Goedhart J, de Vries M, Haring MA, Schuurink RC. Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness. Plant Mol Biol 2017;95:399-409. [PMID: 28918565 DOI: 10.1007/s11103-017-0659-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
82 Tola AJ, Jaballi A, Germain H, Missihoun TD. Recent Development on Plant Aldehyde Dehydrogenase Enzymes and Their Functions in Plant Development and Stress Signaling. Genes (Basel) 2020;12:51. [PMID: 33396326 DOI: 10.3390/genes12010051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]