BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014;20:1567-89. [PMID: 24094070 DOI: 10.1089/ars.2012.5000] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 9.1] [Reference Citation Analysis]
Number Citing Articles
1 Pietraforte D, Paulicelli E, Patrono C, Gambardella L, Scorza G, Testa A, Fattibene P. Protein oxidative damage and redox imbalance induced by ionising radiation in CHO cells. Free Radical Research 2018;52:465-79. [DOI: 10.1080/10715762.2018.1446529] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
2 Martin M, Sun M, Motolani A, Lu T. The Pivotal Player: Components of NF-κB Pathway as Promising Biomarkers in Colorectal Cancer. Int J Mol Sci 2021;22:7429. [PMID: 34299049 DOI: 10.3390/ijms22147429] [Reference Citation Analysis]
3 Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020;9:E1651. [PMID: 32660072 DOI: 10.3390/cells9071651] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
4 Fernando W, Rupasinghe HPV, Hoskin DW. Dietary phytochemicals with anti-oxidant and pro-oxidant activities: A double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett 2019;452:168-77. [PMID: 30910593 DOI: 10.1016/j.canlet.2019.03.022] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
5 Zhang Z, Lang J, Cao Z, Li R, Wang X, Wang W. Radiation-induced SOD2 overexpression sensitizes colorectal cancer to radiation while protecting normal tissue. Oncotarget 2017;8:7791-800. [PMID: 27999194 DOI: 10.18632/oncotarget.13954] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
6 Hashemi SA, Karami M, Bathaie SZ. Saffron carotenoids change the superoxide dismutase activity in breast cancer: In vitro, in vivo and in silico studies. Int J Biol Macromol 2020;158:845-53. [PMID: 32360463 DOI: 10.1016/j.ijbiomac.2020.04.063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Peglow TJ, Bartz RH, Martins CC, Belladona AL, Luchese C, Wilhelm EA, Schumacher RF, Perin G. Synthesis of 2-Organylchalcogenopheno[2,3-b]pyridines from Elemental Chalcogen and NaBH4 /PEG-400 as a Reducing System: Antioxidant and Antinociceptive Properties. ChemMedChem 2020;15:1741-51. [PMID: 32667720 DOI: 10.1002/cmdc.202000358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Roth B, Huber SM. Ion Transport and Radioresistance. Berlin: Springer Berlin Heidelberg; 2020. [DOI: 10.1007/112_2020_33] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Ghergurovich JM, Esposito M, Chen Z, Wang JZ, Bhatt V, Lan T, White E, Kang Y, Guo JY, Rabinowitz JD. Glucose-6-Phosphate Dehydrogenase Is Not Essential for K-Ras-Driven Tumor Growth or Metastasis. Cancer Res 2020;80:3820-9. [PMID: 32661137 DOI: 10.1158/0008-5472.CAN-19-2486] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Chan CC, Hsiao YY. The Effects of Dimethylsulfoxide and Oxygen on DNA Damage Induction and Repair Outcomes for Cells Irradiated by 62 MeV Proton and 3.31 MeV Helium Ions. J Pers Med 2021;11:286. [PMID: 33917956 DOI: 10.3390/jpm11040286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Smith TA, Kirkpatrick DR, Smith S, Smith TK, Pearson T, Kailasam A, Herrmann KZ, Schubert J, Agrawal DK. Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med 2017;15:232. [PMID: 29121966 DOI: 10.1186/s12967-017-1338-x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 11.8] [Reference Citation Analysis]
12 Wang H, Jiang H, Van De Gucht M, De Ridder M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers (Basel) 2019;11:E112. [PMID: 30669417 DOI: 10.3390/cancers11010112] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 11.3] [Reference Citation Analysis]
13 Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol 2019;21:268-79. [PMID: 30136132 DOI: 10.1007/s12094-018-1934-0] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 11.0] [Reference Citation Analysis]
14 Tovmasyan A, Maia CG, Weitner T, Carballal S, Sampaio RS, Lieb D, Ghazaryan R, Ivanovic-Burmazovic I, Ferrer-Sueta G, Radi R, Reboucas JS, Spasojevic I, Benov L, Batinic-Haberle I. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic Biol Med 2015;86:308-21. [PMID: 26026699 DOI: 10.1016/j.freeradbiomed.2015.05.018] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
15 Solórzano-Meléndez A, Rodrigo-Alarcón R, Gómez-Meda BC, Zamora-Pérez AL, Ortiz-García RG, Bayardo-López LH, González-Virgen R, Gallegos-Arreola MP, Zúñiga-González GM. Micronucleated erythrocytes in peripheral blood from neonate rats fed by nursing mothers exposed to X-rays. Environ Mol Mutagen 2021;62:177-84. [PMID: 33496960 DOI: 10.1002/em.22426] [Reference Citation Analysis]
16 Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG, Fernandes AS. The SOD Mimic MnTnHex-2-PyP5+ Reduces the Viability and Migration of 786-O Human Renal Cancer Cells. Antioxidants (Basel) 2019;8:E490. [PMID: 31627290 DOI: 10.3390/antiox8100490] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
17 Chaiswing L, St Clair WH, St Clair DK. Redox Paradox: A Novel Approach to Therapeutics-Resistant Cancer. Antioxid Redox Signal 2018;29:1237-72. [PMID: 29325444 DOI: 10.1089/ars.2017.7485] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
18 Arnold CR, Mangesius J, Skvortsova II, Ganswindt U. The Role of Cancer Stem Cells in Radiation Resistance. Front Oncol. 2020;10:164. [PMID: 32154167 DOI: 10.3389/fonc.2020.00164] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
19 Cheng Y, Lan K, Yang X, Liang D, Xia L, Cui J. Role of Cervical Cancer Radiotherapy in the Expression of EGFR and p53 Gene. CP 2020;17:23-9. [DOI: 10.2174/1570164616666190204155403] [Reference Citation Analysis]
20 Batinić-haberle I, Tovmasyan A, Spasojević I. Mn Porphyrin-Based Redox-Active Therapeutics. In: Batinić-haberle I, Rebouças JS, Spasojević I, editors. Redox-Active Therapeutics. Cham: Springer International Publishing; 2016. pp. 165-212. [DOI: 10.1007/978-3-319-30705-3_8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
21 El-Mahdy MA, Alzarie YA, Hemann C, Badary OA, Nofal S, Zweier JL. The novel SOD mimetic GC4419 increases cancer cell killing with sensitization to ionizing radiation while protecting normal cells. Free Radic Biol Med 2020;160:630-42. [PMID: 32739595 DOI: 10.1016/j.freeradbiomed.2020.07.032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Liu T, Yang Q, Zheng H, Jia H, He Y, Zhang X, Zheng J, Xi Y, Zhang H, Sun R, Chen X, Shan W. Multifaceted roles of a bioengineered nanoreactor in repressing radiation-induced lung injury. Biomaterials 2021;277:121103. [PMID: 34478930 DOI: 10.1016/j.biomaterials.2021.121103] [Reference Citation Analysis]
23 Pastò A, Consonni FM, Sica A. Influence of Innate Immunity on Cancer Cell Stemness. Int J Mol Sci 2020;21:E3352. [PMID: 32397392 DOI: 10.3390/ijms21093352] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
24 Cruz-Gregorio A, Martínez-Ramírez I, Pedraza-Chaverri J, Lizano M. Reprogramming of Energy Metabolism in Response to Radiotherapy in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019;11:E182. [PMID: 30764513 DOI: 10.3390/cancers11020182] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
25 Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020;77:3129-59. [PMID: 32072238 DOI: 10.1007/s00018-020-03479-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
26 Klein S, Smuda M, Harreiß C, Menter C, Distel LVR, Kryschi C. Bifunctional Au-Fe3O4 Nanoheterodimers Acting as X-ray Protector in Healthy Cells and as X-ray Enhancer in Tumor Cells. ACS Appl Mater Interfaces 2019;11:39613-23. [PMID: 31613607 DOI: 10.1021/acsami.9b13877] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zhou J, Ding J, Ma X, Zhang M, Huo Z, Yao Y, Li D, Wang Z. The NRF2/KEAP1 Pathway Modulates Nasopharyngeal Carcinoma Cell Radiosensitivity via ROS Elimination. Onco Targets Ther 2020;13:9113-22. [PMID: 32982300 DOI: 10.2147/OTT.S260169] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Xie G, Ao X, Lin T, Zhou G, Wang M, Wang H, Chen Y, Li X, Xu B, He W, Han H, Ramot Y, Paus R, Yue Z. E-Cadherin–Mediated Cell Contact Controls the Epidermal Damage Response in Radiation Dermatitis. Journal of Investigative Dermatology 2017;137:1731-9. [DOI: 10.1016/j.jid.2017.03.036] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
29 Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021;121:13454-619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Mishra KN, Moftah BA, Alsbeih GA. Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures. Biomedicine & Pharmacotherapy 2018;106:610-7. [DOI: 10.1016/j.biopha.2018.06.150] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
31 Chaiswing L, Weiss HL, Jayswal RD, Clair DKS, Kyprianou N. Profiles of Radioresistance Mechanisms in Prostate Cancer. Crit Rev Oncog 2018;23:39-67. [PMID: 29953367 DOI: 10.1615/CritRevOncog.2018025946] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
32 Gil D, Rodriguez J, Ward B, Vertegel A, Ivanov V, Reukov V. Antioxidant Activity of SOD and Catalase Conjugated with Nanocrystalline Ceria. Bioengineering (Basel) 2017;4:E18. [PMID: 28952497 DOI: 10.3390/bioengineering4010018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 4.4] [Reference Citation Analysis]
33 Zhang Y, Xu Z, Ding J, Tan C, Hu W, Li Y, Huang W, Xu Y. HZ08 suppresses RelB-activated MnSOD expression and enhances Radiosensitivity of prostate Cancer cells. J Exp Clin Cancer Res 2018;37:174. [PMID: 30053873 DOI: 10.1186/s13046-018-0849-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
34 Patel OPS, Jesumoroti OJ, Legoabe LJ, Beteck RM. Metronidazole-conjugates: A comprehensive review of recent developments towards synthesis and medicinal perspective. Eur J Med Chem 2021;210:112994. [PMID: 33234343 DOI: 10.1016/j.ejmech.2020.112994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Kripli B, Sólyom B, Speier G, Kaizer J. Stability and Catalase-Like Activity of a Mononuclear Non-Heme Oxoiron(IV) Complex in Aqueous Solution. Molecules 2019;24:E3236. [PMID: 31491998 DOI: 10.3390/molecules24183236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
36 Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--From superoxide dismutation to H2O2-driven pathways. Redox Biol 2015;5:43-65. [PMID: 25827425 DOI: 10.1016/j.redox.2015.01.017] [Cited by in Crossref: 106] [Cited by in F6Publishing: 81] [Article Influence: 15.1] [Reference Citation Analysis]
37 Shin SW, Choi C, Kim H, Kim Y, Park S, Kim SY, Batinic-Haberle I, Park W. MnTnHex-2-PyP5+, Coupled to Radiation, Suppresses Metastasis of 4T1 and MDA-MB-231 Breast Cancer via AKT/Snail/EMT Pathways. Antioxidants (Basel) 2021;10:1769. [PMID: 34829640 DOI: 10.3390/antiox10111769] [Reference Citation Analysis]
38 Klein S, Harreiß C, Menter C, Hümmer J, Distel LVR, Meyer K, Hock R, Kryschi C. NOBF4-Functionalized Au-Fe3O4 Nanoheterodimers for Radiation Therapy: Synergy Effect Due to Simultaneous Reactive Oxygen and Nitrogen Species Formation. ACS Appl Mater Interfaces 2018;10:17071-80. [PMID: 29738226 DOI: 10.1021/acsami.8b03660] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
39 Batinic-Haberle I, Tovmasyan A, Spasojevic I. Opinion on Schmidt et al. Antioxid Redox Signal 2016;24:518-24. [PMID: 26857355 DOI: 10.1089/ars.2015.6623] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
40 Qin S, He X, Lin H, Schulte BA, Zhao M, Tew KD, Wang GY. Nrf2 inhibition sensitizes breast cancer stem cells to ionizing radiation via suppressing DNA repair. Free Radic Biol Med 2021;169:238-47. [PMID: 33892113 DOI: 10.1016/j.freeradbiomed.2021.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017;13:94-162. [PMID: 28577489 DOI: 10.1016/j.redox.2017.05.007] [Cited by in Crossref: 154] [Cited by in F6Publishing: 138] [Article Influence: 30.8] [Reference Citation Analysis]
42 Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50-64. [PMID: 28587975 DOI: 10.1016/j.semcdb.2017.05.023] [Cited by in Crossref: 450] [Cited by in F6Publishing: 450] [Article Influence: 90.0] [Reference Citation Analysis]
43 Xu Z, Zhang Y, Ding J, Hu W, Tan C, Wang M, Tang J, Xu Y. miR-17-3p Downregulates Mitochondrial Antioxidant Enzymes and Enhances the Radiosensitivity of Prostate Cancer Cells. Mol Ther Nucleic Acids 2018;13:64-77. [PMID: 30240971 DOI: 10.1016/j.omtn.2018.08.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
44 Huang M, Xin W. Matrine inhibiting pancreatic cells epithelial-mesenchymal transition and invasion through ROS/NF-κB/MMPs pathway. Life Sci 2018;192:55-61. [PMID: 29155301 DOI: 10.1016/j.lfs.2017.11.024] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
45 Delbart W, Ghanem GE, Karfis I, Flamen P, Wimana Z. Investigating intrinsic radiosensitivity biomarkers to peptide receptor radionuclide therapy with [177Lu]Lu-DOTATATE in a panel of cancer cell lines. Nucl Med Biol 2021;96-97:68-79. [PMID: 33839677 DOI: 10.1016/j.nucmedbio.2021.03.006] [Reference Citation Analysis]
46 Grasso D, Medeiros HCD, Zampieri LX, Bol V, Danhier P, van Gisbergen MW, Bouzin C, Brusa D, Grégoire V, Smeets H, Stassen APM, Dubois LJ, Lambin P, Dutreix M, Sonveaux P. Fitter Mitochondria Are Associated With Radioresistance in Human Head and Neck SQD9 Cancer Cells. Front Pharmacol 2020;11:263. [PMID: 32231567 DOI: 10.3389/fphar.2020.00263] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Bikiewicz A, Banach M, von Haehling S, Maciejewski M, Bielecka-Dabrowa A. Adjuvant breast cancer treatments cardiotoxicity and modern methods of detection and prevention of cardiac complications. ESC Heart Fail 2021;8:2397-418. [PMID: 33955207 DOI: 10.1002/ehf2.13365] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018;29:1660-90. [PMID: 29113454 DOI: 10.1089/ars.2017.7423] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
49 Liu Z, Zou H, Zhao Z, Zhang P, Shan GG, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano 2019;13:11283-93. [PMID: 31525947 DOI: 10.1021/acsnano.9b04430] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 22.7] [Reference Citation Analysis]
50 Choi YY, Seong KM, Lee HJ, Lee SS, Kim A. Expansion of monocytic myeloid-derived suppressor cells ameliorated intestinal inflammatory response by radiation through SOCS3 expression. Cell Death Dis 2021;12:826. [PMID: 34480017 DOI: 10.1038/s41419-021-04103-x] [Reference Citation Analysis]
51 Steins A, Ebbing EA, Creemers A, van der Zalm AP, Jibodh RA, Waasdorp C, Meijer SL, van Delden OM, Krishnadath KK, Hulshof MCCM, Bennink RJ, Punt CJA, Medema JP, Bijlsma MF, van Laarhoven HWM. Chemoradiation induces epithelial-to-mesenchymal transition in esophageal adenocarcinoma. Int J Cancer 2019;145:2792-803. [PMID: 31018252 DOI: 10.1002/ijc.32364] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
52 Sonis ST. A hypothesis for the pathogenesis of radiation-induced oral mucositis: when biological challenges exceed physiologic protective mechanisms. Implications for pharmacological prevention and treatment. Support Care Cancer 2021;29:4939-47. [PMID: 33712912 DOI: 10.1007/s00520-021-06108-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Huang G, Pan ST. ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. Oxid Med Cell Longev 2020;2020:5047987. [PMID: 32774675 DOI: 10.1155/2020/5047987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
54 Akiyama Y, Kimura Y, Enatsu R, Mikami T, Wanibuchi M, Mikuni N. Advantages and Disadvantages of Combined Chemotherapy with Carmustine Wafer and Bevacizumab in Patients with Newly Diagnosed Glioblastoma: A Single-Institutional Experience. World Neurosurg 2018;113:e508-14. [PMID: 29476996 DOI: 10.1016/j.wneu.2018.02.070] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
55 Kultova G, Tichy A, Rehulkova H, Myslivcova-Fucikova A. The hunt for radiation biomarkers: current situation. Int J Radiat Biol 2020;96:370-82. [PMID: 31829779 DOI: 10.1080/09553002.2020.1704909] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
56 Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal 2018;29:1447-87. [PMID: 29350049 DOI: 10.1089/ars.2017.7267] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 12.3] [Reference Citation Analysis]
57 Skvortsova I, Debbage P, Kumar V, Skvortsov S. Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Semin Cancer Biol 2015;35:39-44. [PMID: 26392376 DOI: 10.1016/j.semcancer.2015.09.009] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 10.7] [Reference Citation Analysis]
58 Zhou Y, Wang L, Wang C, Wu Y, Chen D, Lee TH. Potential implications of hydrogen peroxide in the pathogenesis and therapeutic strategies of gliomas. Arch Pharm Res 2020;43:187-203. [PMID: 31956964 DOI: 10.1007/s12272-020-01205-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zhu S, Gu Z, Zhao Y. Harnessing Tumor Microenvironment for Nanoparticle-Mediated Radiotherapy. Adv Therap 2018;1:1800050. [DOI: 10.1002/adtp.201800050] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
60 Liu X, Lv Y, Xu K, Xiao X, Xi B, Lu S. Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes. Chemosphere 2018;201:137-43. [DOI: 10.1016/j.chemosphere.2018.02.178] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
61 Nisticò C, Pagliari F, Chiarella E, Fernandes Guerreiro J, Marafioti MG, Aversa I, Genard G, Hanley R, Garcia-Calderón D, Bond HM, Mesuraca M, Tirinato L, Spadea MF, Seco JC. Lipid Droplet Biosynthesis Impairment through DGAT2 Inhibition Sensitizes MCF7 Breast Cancer Cells to Radiation. Int J Mol Sci 2021;22:10102. [PMID: 34576263 DOI: 10.3390/ijms221810102] [Reference Citation Analysis]
62 Zhang D, Zhou T, He F, Rong Y, Lee SH, Wu S, Zuo L. Reactive oxygen species formation and bystander effects in gradient irradiation on human breast cancer cells. Oncotarget 2016;7:41622-36. [PMID: 27223435 DOI: 10.18632/oncotarget.9517] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
63 Zhang H, Yue J, Jiang Z, Zhou R, Xie R, Xu Y, Wu S. CAF-secreted CXCL1 conferred radioresistance by regulating DNA damage response in a ROS-dependent manner in esophageal squamous cell carcinoma. Cell Death Dis 2017;8:e2790. [PMID: 28518141 DOI: 10.1038/cddis.2017.180] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 7.6] [Reference Citation Analysis]
64 Zhou R, Long H, Zhang B, Lao Z, Zheng Q, Wang T, Zhang Y, Wu Q, Lai X, Li G, Lin L. Salvianolic acid B, an antioxidant derived from Salvia militarize, protects mice against γ‑radiation‑induced damage through Nrf2/Bach1. Mol Med Rep 2019;19:1309-17. [PMID: 30535483 DOI: 10.3892/mmr.2018.9718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
65 Patwardhan RS, Sharma D, Checker R, Thoh M, Sandur SK. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance. Free Radic Res 2015;49:1218-32. [PMID: 26021764 DOI: 10.3109/10715762.2015.1056180] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
66 Shin SW, Choi C, Lee GH, Son A, Kim SH, Park HC, Batinic-Haberle I, Park W. Mechanism of the Antitumor and Radiosensitizing Effects of a Manganese Porphyrin, MnHex-2-PyP. Antioxid Redox Signal 2017;27:1067-82. [PMID: 28358581 DOI: 10.1089/ars.2016.6889] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
67 Kareliotis G, Tremi I, Kaitatzi M, Drakaki E, Serafetinides AA, Makropoulou M, Georgakilas AG. Combined radiation strategies for novel and enhanced cancer treatment. Int J Radiat Biol 2020;96:1087-103. [PMID: 32602416 DOI: 10.1080/09553002.2020.1787544] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
68 Che M, Wang R, Li X, Wang HY, Zheng XFS. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov Today 2016;21:143-9. [PMID: 26475962 DOI: 10.1016/j.drudis.2015.10.001] [Cited by in Crossref: 106] [Cited by in F6Publishing: 101] [Article Influence: 15.1] [Reference Citation Analysis]
69 He Y, Xu W, Xiao Y, Pan L, Chen G, Tang Y, Zhou J, Wu J, Zhu W, Zhang S, Cao J. Overexpression of Peroxiredoxin 6 (PRDX6) Promotes the Aggressive Phenotypes of Esophageal Squamous Cell Carcinoma. J Cancer 2018;9:3939-49. [PMID: 30410598 DOI: 10.7150/jca.26041] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]