BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016;8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Cited by in Crossref: 120] [Cited by in F6Publishing: 95] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Turnbull G, Clarke J, Picard F, Zhang W, Riches P, Li B, Shu W. 3D biofabrication for soft tissue and cartilage engineering. Med Eng Phys 2020;82:13-39. [PMID: 32709263 DOI: 10.1016/j.medengphy.2020.06.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Mir TA, Iwanaga S, Kurooka T, Toda H, Sakai S, Nakamura M. Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective. Int J Bioprint 2019;5:153. [PMID: 32596529 DOI: 10.18063/ijb.v5i1.153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
3 Manita PG, Garcia-Orue I, Santos-Vizcaino E, Hernandez RM, Igartua M. 3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals (Basel) 2021;14:362. [PMID: 33919848 DOI: 10.3390/ph14040362] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Bal-Öztürk A, Miccoli B, Avci-Adali M, Mogtader F, Sharifi F, Çeçen B, Yaşayan G, Braeken D, Alarcin E. Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook. Curr Pharm Des 2018;24:5437-57. [PMID: 30727878 DOI: 10.2174/1381612825666190206195304] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
5 Teoh JH, Thamizhchelvan AM, Davoodi P, Ramasamy S, Vijayavenkataraman S, Yang Q, Dicolandrea T, Zhao H, Fuh JY, Liou Y, Wang C. Investigation of the application of a Taylor-Couette bioreactor in the post-processing of bioprinted human dermal tissue. Biochemical Engineering Journal 2019;151:107317. [DOI: 10.1016/j.bej.2019.107317] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
6 Schubert DW. Simple Model for the Spreading of Inks in Bioprinting—Revealing Relevant Scaling Laws—Part I Theory. Macro Theory & Simulations 2022;31:2100032. [DOI: 10.1002/mats.202100032] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Tavakoli S, Klar AS. Bioengineered Skin Substitutes: Advances and Future Trends. Applied Sciences 2021;11:1493. [DOI: 10.3390/app11041493] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
8 Vijayavenkataraman S. Perspective: 3D bioprinted skin - engineering the skin for medical applications. Annals of 3D Printed Medicine 2021;3:100018. [DOI: 10.1016/j.stlm.2021.100018] [Reference Citation Analysis]
9 Ng WL, Lee JM, Zhou M, Chen YW, Lee KA, Yeong WY, Shen YF. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication 2020;12:022001. [PMID: 31822648 DOI: 10.1088/1758-5090/ab6034] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 20.0] [Reference Citation Analysis]
10 Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs. Engineering 2019;5:777-94. [DOI: 10.1016/j.eng.2019.03.009] [Cited by in Crossref: 49] [Cited by in F6Publishing: 27] [Article Influence: 16.3] [Reference Citation Analysis]
11 Antezana PE, Municoy S, Álvarez-Echazú MI, Santo-Orihuela PL, Catalano PN, Al-Tel TH, Kadumudi FB, Dolatshahi-Pirouz A, Orive G, Desimone MF. The 3D Bioprinted Scaffolds for Wound Healing. Pharmaceutics 2022;14:464. [PMID: 35214197 DOI: 10.3390/pharmaceutics14020464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Suhail S, Sardashti N, Jaiswal D, Rudraiah S, Misra M, Kumbar SG. Engineered Skin Tissue Equivalents for Product Evaluation and Therapeutic Applications. Biotechnol J 2019;14:e1900022. [PMID: 30977574 DOI: 10.1002/biot.201900022] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
13 David G. Collagen-based 3D structures—versatile, efficient materials for biomedical applications. Biopolymer-Based Formulations. Elsevier; 2020. pp. 881-906. [DOI: 10.1016/b978-0-12-816897-4.00035-7] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Durko AP, Yacoub MH, Kluin J. Tissue Engineered Materials in Cardiovascular Surgery: The Surgeon's Perspective. Front Cardiovasc Med 2020;7:55. [PMID: 32351975 DOI: 10.3389/fcvm.2020.00055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Miguel SP, Moreira AF, Correia IJ. Chitosan based-asymmetric membranes for wound healing: A review. Int J Biol Macromol 2019;127:460-75. [PMID: 30660567 DOI: 10.1016/j.ijbiomac.2019.01.072] [Cited by in Crossref: 88] [Cited by in F6Publishing: 69] [Article Influence: 29.3] [Reference Citation Analysis]
16 Fox S, Biedermann T, Polak J, Reichmann E, Daners MS, Meboldt M. A simplified fabrication technique for cellularized high-collagen dermal equivalents. Biomed Mater 2019;14:041001. [PMID: 30795001 DOI: 10.1088/1748-605X/ab09c5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
17 Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018;123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
18 Frejo L, Goldstein T, Swami P, Patel NA, Grande DA, Zeltsman D, Smith LP. A two-stage in vivo approach for implanting a 3D printed tissue-engineered tracheal replacement graft: A proof of concept. International Journal of Pediatric Otorhinolaryngology 2022;155:111066. [DOI: 10.1016/j.ijporl.2022.111066] [Reference Citation Analysis]
19 Gao C, Lu C, Jian Z, Zhang T, Chen Z, Zhu Q, Tai Z, Liu Y. 3D bioprinting for fabricating artificial skin tissue. Colloids Surf B Biointerfaces 2021;208:112041. [PMID: 34425531 DOI: 10.1016/j.colsurfb.2021.112041] [Reference Citation Analysis]
20 Yang X, Wang Y, Zhou Y, Chen J, Wan Q. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021;13:2754. [PMID: 34451293 DOI: 10.3390/polym13162754] [Reference Citation Analysis]
21 Miguel SP, Cabral CS, Moreira AF, Correia IJ. Production and characterization of a novel asymmetric 3D printed construct aimed for skin tissue regeneration. Colloids and Surfaces B: Biointerfaces 2019;181:994-1003. [DOI: 10.1016/j.colsurfb.2019.06.063] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
22 Yang GH, Lee J, Kim G. The fabrication of uniaxially aligned micro-textured polycaprolactone struts and application for skeletal muscle tissue regeneration. Biofabrication 2019;11:025005. [DOI: 10.1088/1758-5090/ab0098] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
23 Gao D, Wang Z, Wu Z, Guo M, Wang Y, Gao Z, Zhang P, Ito Y. 3D-printing of solvent exchange deposition modeling (SEDM) for a bilayered flexible skin substitute of poly (lactide-co-glycolide) with bioorthogonally engineered EGF. Mater Sci Eng C Mater Biol Appl 2020;112:110942. [PMID: 32409088 DOI: 10.1016/j.msec.2020.110942] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Vijayavenkataraman S, Thaharah S, Zhang S, Lu WF, Fuh JYH. 3D‐Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair. Artif Organs 2018;43:515-23. [DOI: 10.1111/aor.13360] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
25 Zheng Z, Wan Y, Liu Y, Zhu L, Tang J, Huang W, Cheng B. Lumbar sympathectomy regulates vascular cell turnover in rat hindfoot plantar skin. Clin Hemorheol Microcirc 2017;67:149-57. [PMID: 28759961 DOI: 10.3233/CH-170257] [Reference Citation Analysis]
26 Ko Y, Kwon OH. Reinforced gelatin-methacrylate hydrogels containing poly(lactic-co-glycolic acid) nanofiber fragments for 3D bioprinting. Journal of Industrial and Engineering Chemistry 2020;89:147-55. [DOI: 10.1016/j.jiec.2020.04.021] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
27 Liu Y, Huang J, Xu Z, Li S, Jiang Y, Qu GW, Li Z, Zhao Y, Wu X, Ren J. Fabrication of gelatin-based printable inks with improved stiffness as well as antibacterial and UV-shielding properties. Int J Biol Macromol 2021;186:396-404. [PMID: 34224758 DOI: 10.1016/j.ijbiomac.2021.06.193] [Reference Citation Analysis]
28 Jiang H, Qian Y, Fan C, Ouyang Y. Polymeric Guide Conduits for Peripheral Nerve Tissue Engineering. Front Bioeng Biotechnol 2020;8:582646. [PMID: 33102465 DOI: 10.3389/fbioe.2020.582646] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater 2020;106:54-69. [PMID: 32044456 DOI: 10.1016/j.actbio.2020.02.003] [Cited by in Crossref: 98] [Cited by in F6Publishing: 79] [Article Influence: 49.0] [Reference Citation Analysis]
30 Deal HE, Brown AC, Daniele MA. Microphysiological systems for the modeling of wound healing and evaluation of pro-healing therapies. J Mater Chem B 2020;8:7062-75. [PMID: 32756718 DOI: 10.1039/d0tb00544d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
31 Liu S, Zhang H, Hu Q, Shen Z, Rana D, Ramalingam M. Designing vascular supportive albumen-rich composite bioink for organ 3D printing. Journal of the Mechanical Behavior of Biomedical Materials 2020;104:103642. [DOI: 10.1016/j.jmbbm.2020.103642] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
32 Agarwal R, Liu G, Tam NW, Gratzer PF, Frampton JP. Precision cell delivery in biphasic polymer systems enhances growth of keratinocytes in culture and promotes their attachment on acellular dermal matrices. J Tissue Eng Regen Med 2019;13:997-1006. [PMID: 30811860 DOI: 10.1002/term.2845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
33 Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication 2017;9:024102. [PMID: 28589921 DOI: 10.1088/1758-5090/aa7279] [Cited by in Crossref: 175] [Cited by in F6Publishing: 121] [Article Influence: 35.0] [Reference Citation Analysis]
34 Thayer PS, Orrhult LS, Martínez H. Bioprinting of Cartilage and Skin Tissue Analogs Utilizing a Novel Passive Mixing Unit Technique for Bioink Precellularization. J Vis Exp 2018. [PMID: 29364216 DOI: 10.3791/56372] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
35 Stojic M, López V, Montero A, Quílez C, de Aranda Izuzquiza G, Vojtova L, Luis Jorcano J, Velasco D. Skin tissue engineering. Biomaterials for Skin Repair and Regeneration. Elsevier; 2019. pp. 59-99. [DOI: 10.1016/b978-0-08-102546-8.00003-0] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
36 Okubo N, Qureshi A, Dalgarno K, Goh KL, Derebail S. Cost-effective microvalve-assisted bioprinter for tissue engineering. Bioprinting 2019;13:e00043. [DOI: 10.1016/j.bprint.2019.e00043] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
37 Pakhomova C, Popov D, Maltsev E, Akhatov I, Pasko A. Software for Bioprinting. Int J Bioprint 2020;6:279. [PMID: 33088988 DOI: 10.18063/ijb.v6i3.279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
38 Zhang B, Luo Y, Ma L, Gao L, Li Y, Xue Q, Yang H, Cui Z. 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-des Manuf 2018;1:2-13. [DOI: 10.1007/s42242-018-0004-3] [Cited by in Crossref: 63] [Cited by in F6Publishing: 35] [Article Influence: 15.8] [Reference Citation Analysis]
39 Harley WS, Li CC, Toombs J, O'connell CD, Taylor HK, Heath DE, Collins DJ. Advances in biofabrication techniques towards functional bioprinted heterogeneous engineered tissues: A comprehensive review. Bioprinting 2021;23:e00147. [DOI: 10.1016/j.bprint.2021.e00147] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
40 Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for skin tissue engineering: Current status and perspectives. J Tissue Eng 2021;12:20417314211028574. [PMID: 34345398 DOI: 10.1177/20417314211028574] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
41 Yu JR, Navarro J, Coburn JC, Mahadik B, Molnar J, Holmes JH 4th, Nam AJ, Fisher JP. Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Adv Healthc Mater 2019;8:e1801471. [PMID: 30707508 DOI: 10.1002/adhm.201801471] [Cited by in Crossref: 73] [Cited by in F6Publishing: 61] [Article Influence: 24.3] [Reference Citation Analysis]
42 Vijayavenkataraman S. A Perspective on Bioprinting Ethics. Artif Organs 2016;40:1033-8. [PMID: 28374411 DOI: 10.1111/aor.12873] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
43 Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R, Lajevardi SS, Li Z, Maitz PKM. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 2018;123:3-17. [PMID: 28941987 DOI: 10.1016/j.addr.2017.09.018] [Cited by in Crossref: 198] [Cited by in F6Publishing: 156] [Article Influence: 49.5] [Reference Citation Analysis]
44 Ding H, Chang RC. Simulating image-guided in situ bioprinting of a skin graft onto a phantom burn wound bed. Additive Manufacturing 2018;22:708-19. [DOI: 10.1016/j.addma.2018.06.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
45 Schlottmann F, Bucan V, Vogt PM, Krezdorn N. A Short History of Skin Grafting in Burns: From the Gold Standard of Autologous Skin Grafting to the Possibilities of Allogeneic Skin Grafting with Immunomodulatory Approaches. Medicina (Kaunas) 2021;57:225. [PMID: 33801228 DOI: 10.3390/medicina57030225] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Parhi R. A review of three-dimensional printing for pharmaceutical applications: Quality control, risk assessment and future perspectives. Journal of Drug Delivery Science and Technology 2021;64:102571. [DOI: 10.1016/j.jddst.2021.102571] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
47 Pleguezuelos-beltrán P, Gálvez-martín P, Nieto-garcía D, Marchal JA, López-ruiz E. Advances in spray products for skin regeneration. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.02.023] [Reference Citation Analysis]
48 Zhang B, Song J. 3D-Printed Biomaterials for Guided Tissue Regeneration. Small Methods 2018;2:1700306. [DOI: 10.1002/smtd.201700306] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
49 Fox SC, Siallagan D, Schmid Daners M, Meboldt M. Rethinking automated skin fabrication for regeneration: adapting to commercial challenges. Current Opinion in Biomedical Engineering 2019;10:165-73. [DOI: 10.1016/j.cobme.2019.07.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
50 Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering: R: Reports 2020;140:100543. [DOI: 10.1016/j.mser.2020.100543] [Cited by in Crossref: 125] [Cited by in F6Publishing: 43] [Article Influence: 62.5] [Reference Citation Analysis]
51 Santoni S, Gugliandolo SG, Sponchioni M, Moscatelli D, Colosimo BM. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-des Manuf . [DOI: 10.1007/s42242-021-00165-0] [Reference Citation Analysis]
52 Yang D, Faraz F, Wang J, Radacsi N. Combination of 3D Printing and Electrospinning Techniques for Biofabrication. Adv Materials Technologies. [DOI: 10.1002/admt.202101309] [Reference Citation Analysis]
53 Matai I, Kaur G, Seyedsalehi A, Mcclinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020;226:119536. [DOI: 10.1016/j.biomaterials.2019.119536] [Cited by in Crossref: 155] [Cited by in F6Publishing: 126] [Article Influence: 77.5] [Reference Citation Analysis]
54 Hafezi F, Shorter S, Tabriz AG, Hurt A, Elmes V, Boateng J, Douroumis D. Bioprinting and Preliminary Testing of Highly Reproducible Novel Bioink for Potential Skin Regeneration. Pharmaceutics 2020;12:E550. [PMID: 32545741 DOI: 10.3390/pharmaceutics12060550] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
55 Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, Amin R. Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules 2021;26:619. [PMID: 33504080 DOI: 10.3390/molecules26030619] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
56 Castaño O, Pérez-Amodio S, Navarro-Requena C, Mateos-Timoneda MÁ, Engel E. Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev 2018;129:95-117. [PMID: 29627369 DOI: 10.1016/j.addr.2018.03.012] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 17.3] [Reference Citation Analysis]
57 Nosrati H, Aramideh Khouy R, Nosrati A, Khodaei M, Banitalebi-Dehkordi M, Ashrafi-Dehkordi K, Sanami S, Alizadeh Z. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnology 2021;19:1. [PMID: 33397416 DOI: 10.1186/s12951-020-00755-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
58 Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front Bioeng Biotechnol 2019;7:164. [PMID: 31338366 DOI: 10.3389/fbioe.2019.00164] [Cited by in Crossref: 101] [Cited by in F6Publishing: 68] [Article Influence: 33.7] [Reference Citation Analysis]
59 Agarwal R, Ko KR, Gratzer PF, Frampton JP. Biopatterning of Keratinocytes in Aqueous Two-Phase Systems as a Potential Tool for Skin Tissue Engineering. MRS Advances 2017;2:2443-9. [DOI: 10.1557/adv.2017.357] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
60 Ma J, Qin C, Wu J, Zhang H, Zhuang H, Zhang M, Zhang Z, Ma L, Wang X, Ma B, Chang J, Wu C. 3D Printing of Strontium Silicate Microcylinder-Containing Multicellular Biomaterial Inks for Vascularized Skin Regeneration. Adv Healthc Mater 2021;10:e2100523. [PMID: 33963672 DOI: 10.1002/adhm.202100523] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
61 Xu J, Zheng S, Hu X, Li L, Li W, Parungao R, Wang Y, Nie Y, Liu T, Song K. Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers (Basel) 2020;12:E1237. [PMID: 32485901 DOI: 10.3390/polym12061237] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
62 Salehi M, Zamiri S, Samadian H, Ai J, Foroutani L, Ai A, Khanmohammadi M. Chitosan hydrogel loaded with Aloe vera gel and tetrasodium ethylenediaminetetraacetic acid ( EDTA ) as the wound healing material: in vitro and in vivo study. J Appl Polym Sci 2021;138:50225. [DOI: 10.1002/app.50225] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
63 Tan SH, Ngo ZH, Leavesley D, Liang K. Recent Advances in the Design of Three-Dimensional and Bioprinted Scaffolds for Full-Thickness Wound Healing. Tissue Eng Part B Rev 2021. [PMID: 33446047 DOI: 10.1089/ten.TEB.2020.0339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
64 Lee JM, Sing SL, Zhou M, Yeong WY. 3D bioprinting processes: A perspective on classification and terminology. Int J Bioprint 2018;4:151. [PMID: 33102923 DOI: 10.18063/IJB.v4i2.151] [Cited by in Crossref: 54] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
65 Zhu Z, Park HS, McAlpine MC. 3D printed deformable sensors. Sci Adv 2020;6:eaba5575. [PMID: 32596461 DOI: 10.1126/sciadv.aba5575] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 13.0] [Reference Citation Analysis]
66 Hu Y, Zhang H, Wei H, Cheng H, Cai J, Chen X, Xia L, Wang H, Chai R. Scaffolds with Anisotropic Structure for Neural Tissue Engineering. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.04.001] [Reference Citation Analysis]
67 Ng WL, Qi JTZ, Yeong WY, Naing MW. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication 2018;10:025005. [DOI: 10.1088/1758-5090/aa9e1e] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 18.8] [Reference Citation Analysis]
68 Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021;9:5385-413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
69 Yan WC, Davoodi P, Vijayavenkataraman S, Tian Y, Ng WC, Fuh JYH, Robinson KS, Wang CH. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv Drug Deliv Rev 2018;132:270-95. [PMID: 30055210 DOI: 10.1016/j.addr.2018.07.016] [Cited by in Crossref: 77] [Cited by in F6Publishing: 60] [Article Influence: 19.3] [Reference Citation Analysis]
70 Naveau A, Smirani R, Catros S, de Oliveira H, Fricain J, Devillard R. A Bibliometric Study to Assess Bioprinting Evolution. Applied Sciences 2017;7:1331. [DOI: 10.3390/app7121331] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
71 Zhang J, Yun S, Karami A, Jing B, Zannettino A, Du Y, Zhang H. 3D printing of a thermosensitive hydrogel for skin tissue engineering: A proof of concept study. Bioprinting 2020;19:e00089. [DOI: 10.1016/j.bprint.2020.e00089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
72 Wu B, Takeshita N, Wu Y, Vijayavenkataraman S, Ho KY, Lu WF, Fuh JYH. Pluronic F127 blended polycaprolactone scaffolds via e-jetting for esophageal tissue engineering. J Mater Sci Mater Med 2018;29:140. [PMID: 30120625 DOI: 10.1007/s10856-018-6148-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
73 Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D Bioprinting Methods and Techniques: Applications on Artificial Blood Vessel Fabrication. Acta Cardiol Sin 2019;35:284-9. [PMID: 31249458 DOI: 10.6515/ACS.201905_35(3).20181115A] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
74 Zhang Z, Jin Y, Yin J, Xu C, Xiong R, Christensen K, Ringeisen BR, Chrisey DB, Huang Y. Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews 2018;5:041304. [DOI: 10.1063/1.5053979] [Cited by in Crossref: 64] [Cited by in F6Publishing: 40] [Article Influence: 16.0] [Reference Citation Analysis]
75 Nguyen DG, Pentoney SL. Bioprinted three dimensional human tissues for toxicology and disease modeling. Drug Discovery Today: Technologies 2017;23:37-44. [DOI: 10.1016/j.ddtec.2017.03.001] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
76 Mousavi SM, Zarei M, Hashemi SA, Ramakrishna S, Chiang W, Lai CW, Gholami A, Omidifar N, Shokripour M. Asymmetric Membranes: A Potential Scaffold for Wound Healing Applications. Symmetry 2020;12:1100. [DOI: 10.3390/sym12071100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
77 Khoshnood N, Zamanian A. Decellularized extracellular matrix bioinks and their application in skin tissue engineering. Bioprinting 2020;20:e00095. [DOI: 10.1016/j.bprint.2020.e00095] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
78 Zhang S, Vijayavenkataraman S, Lu WF, Fuh JYH. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. J Biomed Mater Res 2018;107:1329-51. [DOI: 10.1002/jbm.b.34226] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
79 Yilmaz B, Tahmasebifar A, Baran ET. Bioprinting Technologies in Tissue Engineering. In: Silva AC, Moreira JN, Lobo JMS, Almeida H, editors. Current Applications of Pharmaceutical Biotechnology. Cham: Springer International Publishing; 2020. pp. 279-319. [DOI: 10.1007/10_2019_108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
80 Shi Y, Xing TL, Zhang HB, Yin RX, Yang SM, Wei J, Zhang WJ. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs. Biomed Mater. 2018;13:035008. [PMID: 29307874 DOI: 10.1088/1748-605x/aaa5b6] [Cited by in Crossref: 38] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
81 Quílez C, de Aranda Izuzquiza G, García M, López V, Montero A, Valencia L, Velasco D. Bioprinting for Skin. Methods Mol Biol 2020;2140:217-28. [PMID: 32207115 DOI: 10.1007/978-1-0716-0520-2_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
82 Ng WL, Yeong WY. The future of skin toxicology testing - Three-dimensional bioprinting meets microfluidics. Int J Bioprint 2019;5:237. [PMID: 32596546 DOI: 10.18063/ijb.v5i2.1.237] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
83 Ramasamy S, Davoodi P, Vijayavenkataraman S, Teoh JH, Thamizhchelvan AM, Robinson KS, Wu B, Fuh JY, Dicolandrea T, Zhao H, Lane EB, Wang C. Optimized construction of a full thickness human skin equivalent using 3D bioprinting and a PCL/collagen dermal scaffold. Bioprinting 2021;21:e00123. [DOI: 10.1016/j.bprint.2020.e00123] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
84 Vijayavenkataraman S, Fuh JYH, Lu WF. 3D Printing and 3D Bioprinting in Pediatrics. Bioengineering (Basel) 2017;4:E63. [PMID: 28952542 DOI: 10.3390/bioengineering4030063] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
85 Jung JP, Lin WH, Riddle MJ, Tolar J, Ogle BM. A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing. J Biomed Mater Res A 2018;106:3231-8. [PMID: 30208260 DOI: 10.1002/jbm.a.36519] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Song Y, Wang H, Yue F, Lv Q, Cai B, Dong N, Wang Z, Wang L. Silk-Based Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2020;:e2000735. [PMID: 32939999 DOI: 10.1002/adhm.202000735] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
87 Maan Z, Masri NZ, Willerth SM. Smart Bioinks for the Printing of Human Tissue Models. Biomolecules 2022;12:141. [DOI: 10.3390/biom12010141] [Reference Citation Analysis]
88 Sarkiri M, Fox SC, Fratila-Apachitei LE, Zadpoor AA. Bioengineered Skin Intended for Skin Disease Modeling. Int J Mol Sci 2019;20:E1407. [PMID: 30897791 DOI: 10.3390/ijms20061407] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
89 Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018;132:296-332. [PMID: 29990578 DOI: 10.1016/j.addr.2018.07.004] [Cited by in Crossref: 224] [Cited by in F6Publishing: 172] [Article Influence: 56.0] [Reference Citation Analysis]
90 Ding H, Chang R. Printability Study of Bioprinted Tubular Structures Using Liquid Hydrogel Precursors in a Support Bath. Applied Sciences 2018;8:403. [DOI: 10.3390/app8030403] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 10.8] [Reference Citation Analysis]
91 Liu H, Vijayavenkataraman S, Wang D, Jing L, Sun J, He K. Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds. Int J Bioprint 2017;3:009. [PMID: 33094184 DOI: 10.18063/IJB.2017.01.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 4.6] [Reference Citation Analysis]
92 Nazir A, Abate KM, Kumar A, Jeng J. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int J Adv Manuf Technol 2019;104:3489-510. [DOI: 10.1007/s00170-019-04085-3] [Cited by in Crossref: 77] [Cited by in F6Publishing: 6] [Article Influence: 25.7] [Reference Citation Analysis]
93 Fox S, Polak J, Schmid Daners M, Meboldt M. Fabrication of Bioengineered Skin by Injection Molding: A Feasibility Study on Automation. SLAS Technol 2019;24:506-14. [PMID: 31251675 DOI: 10.1177/2472630319857966] [Reference Citation Analysis]
94 Zhu Z, Ng DWH, Park HS, Mcalpine MC. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater 2021;6:27-47. [DOI: 10.1038/s41578-020-00235-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
95 Chen R, Chang RC, Tai B, Huang Y, Ozdoganlar B, Li W, Shih A. Biomedical Manufacturing: A Review of the Emerging Research and Applications. Journal of Manufacturing Science and Engineering 2020;142:110807. [DOI: 10.1115/1.4048043] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Richard C, Neild A, Cadarso VJ. The emerging role of microfluidics in multi-material 3D bioprinting. Lab Chip 2020;20:2044-56. [DOI: 10.1039/c9lc01184f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 9.5] [Reference Citation Analysis]
97 Arjunan A, Baroutaji A, Robinson J, Praveen AS, Pollard A, Wang C. Future Directions and Requirements for Tissue Engineering Biomaterials. Reference Module in Materials Science and Materials Engineering. Elsevier; 2021. [DOI: 10.1016/b978-0-12-815732-9.00068-1] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
98 Ng WL, Chua CK, Shen Y. Print Me An Organ! Why We Are Not There Yet. Progress in Polymer Science 2019;97:101145. [DOI: 10.1016/j.progpolymsci.2019.101145] [Cited by in Crossref: 79] [Cited by in F6Publishing: 37] [Article Influence: 26.3] [Reference Citation Analysis]
99 Vijayavenkataraman S, Zhang S, Lu WF, Fuh JYH. Electrohydrodynamic-jetting (EHD-jet) 3D-printed functionally graded scaffolds for tissue engineering applications. J Mater Res 2018;33:1999-2011. [DOI: 10.1557/jmr.2018.159] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
100 Agarwal S, Saha S, Balla VK, Pal A, Barui A, Bodhak S. Current Developments in 3D Bioprinting for Tissue and Organ Regeneration–A Review. Front Mech Eng 2020;6:589171. [DOI: 10.3389/fmech.2020.589171] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Jian H, Wang M, Wang S, Wang A, Bai S. 3D bioprinting for cell culture and tissue fabrication. Bio-des Manuf 2018;1:45-61. [DOI: 10.1007/s42242-018-0006-1] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 8.8] [Reference Citation Analysis]
102 Velasco D, Quílez C, Garcia M, del Cañizo JF, Jorcano JL. 3D human skin bioprinting: a view from the bio side. Journal of 3D Printing in Medicine 2018;2:141-62. [DOI: 10.2217/3dp-2018-0008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
103 Milojević M, Rožanc J, Vajda J, Činč Ćurić L, Paradiž E, Stožer A, Maver U, Vihar B. In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021;9:1415. [PMID: 34680532 DOI: 10.3390/biomedicines9101415] [Reference Citation Analysis]
104 Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev 2017;117:10212-90. [PMID: 28756658 DOI: 10.1021/acs.chemrev.7b00074] [Cited by in Crossref: 1100] [Cited by in F6Publishing: 574] [Article Influence: 220.0] [Reference Citation Analysis]
105 Ude CC, Miskon A, Idrus RBH, Abu Bakar MB. Application of stem cells in tissue engineering for defense medicine. Mil Med Res 2018;5:7. [PMID: 29502528 DOI: 10.1186/s40779-018-0154-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
106 Yilmaz B, Al Rashid A, Mou YA, Evis Z, Koç M. Bioprinting: A review of processes, materials and applications. Bioprinting 2021;23:e00148. [DOI: 10.1016/j.bprint.2021.e00148] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 14.0] [Reference Citation Analysis]
107 Ravanbakhsh H, Bao G, Luo Z, Mongeau LG, Zhang YS. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. ACS Biomater Sci Eng 2021;7:4009-26. [PMID: 34510905 DOI: 10.1021/acsbiomaterials.0c01158] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
108 Vijayavenkataraman S, Shuo Z, Fuh JYH, Lu WF. Design of Three-Dimensional Scaffolds with Tunable Matrix Stiffness for Directing Stem Cell Lineage Specification: An In Silico Study. Bioengineering (Basel) 2017;4:E66. [PMID: 28952545 DOI: 10.3390/bioengineering4030066] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
109 Guo X, Huang W, Tong J, Chen L, Shi X. One-step programmable electrofabrication of chitosan asymmetric hydrogels with 3D shape deformation. Carbohydr Polym 2022;277:118888. [PMID: 34893290 DOI: 10.1016/j.carbpol.2021.118888] [Reference Citation Analysis]
110 Rahmani Dabbagh S, Rezapour Sarabi M, Birtek MT, Mustafaoglu N, Zhang YS, Tasoglu S. 3D bioprinted organ‐on‐chips. Aggregate. [DOI: 10.1002/agt2.197] [Reference Citation Analysis]
111 Kim BS, Lee J, Gao G, Cho D. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 2017;9:025034. [DOI: 10.1088/1758-5090/aa71c8] [Cited by in Crossref: 111] [Cited by in F6Publishing: 92] [Article Influence: 22.2] [Reference Citation Analysis]
112 Wu Y, Ravnic DJ, Ozbolat IT. Intraoperative Bioprinting: Repairing Tissues and Organs in a Surgical Setting. Trends Biotechnol 2020;38:594-605. [PMID: 32407688 DOI: 10.1016/j.tibtech.2020.01.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
113 Wang R, Wang Y, Yao B, Hu T, Li Z, Huang S, Fu X. Beyond 2D: 3D bioprinting for skin regeneration. Int Wound J 2019;16:134-8. [PMID: 30240111 DOI: 10.1111/iwj.13003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
114 Nesic D, Durual S, Marger L, Mekki M, Sailer I, Scherrer SS. Could 3D printing be the future for oral soft tissue regeneration? Bioprinting 2020;20:e00100. [DOI: 10.1016/j.bprint.2020.e00100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
115 Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2019;146:344-65. [PMID: 29981800 DOI: 10.1016/j.addr.2018.06.019] [Cited by in Crossref: 139] [Cited by in F6Publishing: 121] [Article Influence: 46.3] [Reference Citation Analysis]
116 Silva LP. Current Trends and Challenges in Biofabrication Using Biomaterials and Nanomaterials: Future Perspectives for 3D/4D Bioprinting. In: Maniruzzaman M, editor. 3D and 4D Printing in Biomedical Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2019. pp. 373-421. [DOI: 10.1002/9783527813704.ch15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
117 Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021;9:535-73. [DOI: 10.1039/d0bm00973c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 22.0] [Reference Citation Analysis]
118 Merritt J, Konda S. Commentary on 3-Dimensional Printing. Dermatol Surg 2020;46:1506-7. [PMID: 33252458 DOI: 10.1097/DSS.0000000000002348] [Reference Citation Analysis]