BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Arslan-yildiz A, Assal RE, Chen P, Guven S, Inci F, Demirci U. Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 2016;8:014103. [DOI: 10.1088/1758-5090/8/1/014103] [Cited by in Crossref: 129] [Cited by in F6Publishing: 118] [Article Influence: 21.5] [Reference Citation Analysis]
Number Citing Articles
1 Li S, Huan Y, Zhu B, Chen H, Tang M, Yan Y, Wang C, Ouyang Z, Li X, Xue J, Wang W. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. J Mater Sci Mater Med 2021;33:2. [PMID: 34940930 DOI: 10.1007/s10856-021-06609-4] [Reference Citation Analysis]
2 Canadas RF, Ren T, Tocchio A, Marques AP, Oliveira JM, Reis RL, Demirci U. Tunable anisotropic networks for 3-D oriented neural tissue models. Biomaterials 2018;181:402-14. [DOI: 10.1016/j.biomaterials.2018.07.055] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
3 Koksal B, Onbas R, Baskurt M, Sahın H, Arslan Yildiz A, Yildiz UH. Boosting up printability of biomacromolecule based bio-ink by modulation of hydrogen bonding pairs. European Polymer Journal 2020;141:110070. [DOI: 10.1016/j.eurpolymj.2020.110070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Włodarczyk-biegun MK, del Campo A. 3D bioprinting of structural proteins. Biomaterials 2017;134:180-201. [DOI: 10.1016/j.biomaterials.2017.04.019] [Cited by in Crossref: 77] [Cited by in F6Publishing: 64] [Article Influence: 15.4] [Reference Citation Analysis]
5 Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021:S1742-7061(21)00147-1. [PMID: 33716174 DOI: 10.1016/j.actbio.2021.03.006] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Baş F, Kaya MF. 3D printed anode electrodes for microbial electrolysis cells. Fuel 2022;317:123560. [DOI: 10.1016/j.fuel.2022.123560] [Reference Citation Analysis]
7 Sonatkar J, Kandasubramanian B, Oluwarotimi Ismail S. 4D printing: Pragmatic progression in biofabrication. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111128] [Reference Citation Analysis]
8 Bhuvanesh Kumar M, Sathiya P. Methods and materials for additive manufacturing: A critical review on advancements and challenges. Thin-Walled Structures 2021;159:107228. [DOI: 10.1016/j.tws.2020.107228] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 11.0] [Reference Citation Analysis]
9 Li H, Cheng F, Li W, Cao X, Wang Z, Wang M, Robledo-Lara JA, Liao J, Chávez-Madero C, Hassan S, Xie J, Trujillo-de Santiago G, Álvarez MM, He J, Zhang YS. Expanding sacrificially printed microfluidic channel-embedded paper devices for construction of volumetric tissue models in vitro. Biofabrication 2020;12:045027. [PMID: 32945271 DOI: 10.1088/1758-5090/abb11e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Breathwaite EK, Weaver JR, Murchison AC, Treadwell ML, Odanga JJ, Lee JB. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Biomed Mater 2019;14:065010. [PMID: 31491773 DOI: 10.1088/1748-605X/ab4243] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
11 Barreiro Carpio M, Dabaghi M, Ungureanu J, Kolb MR, Hirota JA, Moran-Mirabal JM. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Front Bioeng Biotechnol 2021;9:773511. [PMID: 34900964 DOI: 10.3389/fbioe.2021.773511] [Reference Citation Analysis]
12 De Maria C, Vozzi G, Moroni L. Multimaterial, heterogeneous, and multicellular three-dimensional bioprinting. MRS Bull 2017;42:578-84. [DOI: 10.1557/mrs.2017.165] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
13 Jang TS, Jung HD, Pan HM, Han WT, Chen S, Song J. 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. Int J Bioprint 2018;4:126. [PMID: 33102909 DOI: 10.18063/IJB.v4i1.126] [Cited by in Crossref: 67] [Cited by in F6Publishing: 44] [Article Influence: 16.8] [Reference Citation Analysis]
14 Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. Additive Manufacturing 2021;37:101639. [DOI: 10.1016/j.addma.2020.101639] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017;9:035003. [PMID: 28639943 DOI: 10.1088/1758-5090/aa7b1d] [Cited by in Crossref: 158] [Cited by in F6Publishing: 134] [Article Influence: 31.6] [Reference Citation Analysis]
16 Türker E, Yildiz ÜH, Arslan Yildiz A. Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture. Int J Biol Macromol 2019;139:1054-62. [PMID: 31404597 DOI: 10.1016/j.ijbiomac.2019.08.082] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
17 El Assal R, Gurkan UA, Chen P, Juillard F, Tocchio A, Chinnasamy T, Beauchemin C, Unluisler S, Canikyan S, Holman A, Srivatsa S, Kaye KM, Demirci U. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells. Sci Rep 2016;6:39144. [PMID: 28004818 DOI: 10.1038/srep39144] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
18 Kalamegam G, Memic A, Budd E, Abbas M, Mobasheri A. A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis. Adv Exp Med Biol 2018;1089:23-36. [PMID: 29725971 DOI: 10.1007/5584_2018_205] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
19 Canadas RF, Costa JB, Mao Z, Gao C, Demirci U, Reis RL, Marques AP, Oliveira JM. 3DICE coding matrix multidirectional macro-architecture modulates cell organization, shape, and co-cultures endothelization network. Biomaterials 2021;277:121112. [PMID: 34488122 DOI: 10.1016/j.biomaterials.2021.121112] [Reference Citation Analysis]
20 Koch F, Thaden O, Conrad S, Tröndle K, Finkenzeller G, Zengerle R, Kartmann S, Zimmermann S, Koltay P. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. Journal of the Mechanical Behavior of Biomedical Materials 2022;130:105219. [DOI: 10.1016/j.jmbbm.2022.105219] [Reference Citation Analysis]
21 Bizzaro D, Russo FP, Burra P. New Perspectives in Liver Transplantation: From Regeneration to Bioengineering. Bioengineering (Basel). 2019;6. [PMID: 31514475 DOI: 10.3390/bioengineering6030081] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
22 Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016;8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Cited by in Crossref: 120] [Cited by in F6Publishing: 95] [Article Influence: 20.0] [Reference Citation Analysis]
23 Kim HS, Kim C, Lee KY. Three-dimensional bioprinting of polysaccharide-based self-healing hydrogels with dual cross-linking. J Biomed Mater Res A 2021. [PMID: 34708518 DOI: 10.1002/jbm.a.37325] [Reference Citation Analysis]
24 Rana Khalid I, Darakhshanda I, Rafi a R. 3D Bioprinting: An attractive alternative to traditional organ transplantation. Arch Biomed Sci Eng 2019;5:007-18. [DOI: 10.17352/abse.000012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Joseph J, Deshmukh K, Tung T, Chidambaram K, Khadheer Pasha SK. 3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations. In: Sadasivuni KK, Ponnamma D, Rajan M, Ahmed B, Al-maadeed MASA, editors. Polymer Nanocomposites in Biomedical Engineering. Cham: Springer International Publishing; 2019. pp. 205-33. [DOI: 10.1007/978-3-030-04741-2_7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
26 Wan Z, Zhang P, Liu Y, Lv L, Zhou Y. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomaterialia 2020;101:26-42. [DOI: 10.1016/j.actbio.2019.10.038] [Cited by in Crossref: 53] [Cited by in F6Publishing: 35] [Article Influence: 26.5] [Reference Citation Analysis]
27 Vaez Ghaemi R, Co IL, McFee MC, Yadav VG. Brain Organoids: A New, Transformative Investigational Tool for Neuroscience Research. Adv Biosyst 2019;3:e1800174. [PMID: 32627343 DOI: 10.1002/adbi.201800174] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Stevens LR, Gilmore KJ, Wallace GG, In Het Panhuis M. Tissue engineering with gellan gum. Biomater Sci 2016;4:1276-90. [PMID: 27426524 DOI: 10.1039/c6bm00322b] [Cited by in Crossref: 70] [Cited by in F6Publishing: 18] [Article Influence: 17.5] [Reference Citation Analysis]
29 Beheshtizadeh N, Lotfibakhshaiesh N, Pazhouhnia Z, Hoseinpour M, Nafari M. A review of 3D bio-printing for bone and skin tissue engineering: a commercial approach. J Mater Sci 2020;55:3729-49. [DOI: 10.1007/s10853-019-04259-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 9.3] [Reference Citation Analysis]
30 Benmeridja L, De Moor L, De Maere E, Vanlauwe F, Ryx M, Tytgat L, Vercruysse C, Dubruel P, Van Vlierberghe S, Blondeel P, Declercq H. High‐throughput fabrication of vascularized adipose microtissues for 3D bioprinting. J Tissue Eng Regen Med 2020;14:840-54. [DOI: 10.1002/term.3051] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
31 Zhu Y, Joralmon D, Shan W, Chen Y, Rong J, Zhao H, Xiao S, Li X. 3D printing biomimetic materials and structures for biomedical applications. Bio-des Manuf 2021;4:405-28. [DOI: 10.1007/s42242-020-00117-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
32 Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021;13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
33 Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med 2016;14:271. [PMID: 27645770 DOI: 10.1186/s12967-016-1028-0] [Cited by in Crossref: 190] [Cited by in F6Publishing: 163] [Article Influence: 31.7] [Reference Citation Analysis]
34 Türker E, Demirçak N, Arslan-yildiz A. Scaffold-free three-dimensional cell culturing using magnetic levitation. Biomater Sci 2018;6:1745-53. [DOI: 10.1039/c8bm00122g] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 7.8] [Reference Citation Analysis]
35 Irvine SA, Venkatraman SS. Bioprinting and Differentiation of Stem Cells. Molecules. 2016;21. [PMID: 27617991 DOI: 10.3390/molecules21091188] [Cited by in Crossref: 71] [Cited by in F6Publishing: 56] [Article Influence: 11.8] [Reference Citation Analysis]
36 Kim J, Kong JS, Han W, Kim BS, Cho DW. 3D Cell Printing of Tissue/Organ-Mimicking Constructs for Therapeutic and Drug Testing Applications. Int J Mol Sci 2020;21:E7757. [PMID: 33092184 DOI: 10.3390/ijms21207757] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Intini C, Elviri L, Cabral J, Mros S, Bergonzi C, Bianchera A, Flammini L, Govoni P, Barocelli E, Bettini R, McConnell M. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym 2018;199:593-602. [PMID: 30143167 DOI: 10.1016/j.carbpol.2018.07.057] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 18.8] [Reference Citation Analysis]
38 Coy R, Al-Badri G, Kayal C, O'Rourke C, Kingham PJ, Phillips JB, Shipley RJ. Combining in silico and in vitro models to inform cell seeding strategies in tissue engineering. J R Soc Interface 2020;17:20190801. [PMID: 32208821 DOI: 10.1098/rsif.2019.0801] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
39 Mora-Boza A, Lopez-Donaire ML. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. Adv Exp Med Biol 2018;1058:221-45. [PMID: 29691824 DOI: 10.1007/978-3-319-76711-6_10] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
40 Cagol N, Bonani W, Maniglio D, Migliaresi C, Motta A. Effect of Cryopreservation on Cell-Laden Hydrogels: Comparison of Different Cryoprotectants. Tissue Engineering Part C: Methods 2018;24:20-31. [DOI: 10.1089/ten.tec.2017.0258] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
41 Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021;:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Reference Citation Analysis]
42 Lee JM, Ng WL, Yeong WY. Resolution and shape in bioprinting: Strategizing towards complex tissue and organ printing. Applied Physics Reviews 2019;6:011307. [DOI: 10.1063/1.5053909] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 11.3] [Reference Citation Analysis]
43 O’donnell N, Dmitriev RI. Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview. In: Dmitriev RI, editor. Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Cham: Springer International Publishing; 2017. pp. 49-67. [DOI: 10.1007/978-3-319-67358-5_4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
44 Ding XX, Zhou YM, Xiang XC, Meng L, Qin Q, Ye S. [Research progress on chitosan composite scaffolds in bone tissue engineering]. Hua Xi Kou Qiang Yi Xue Za Zhi 2018;36:441-6. [PMID: 30182574 DOI: 10.7518/hxkq.2018.04.016] [Reference Citation Analysis]
45 Byun H, Lee S, Jang GN, Lee H, Park S, Shin H. Magnetism-controlled assembly of composite stem cell spheroids for the biofabrication of contraction-modulatory 3D tissue. Biofabrication 2021;14. [PMID: 34670209 DOI: 10.1088/1758-5090/ac318b] [Reference Citation Analysis]
46 Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020;8:83. [PMID: 32266221 DOI: 10.3389/fbioe.2020.00083] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
47 Xiang H, Chen Y. Materdicine: Interdiscipline of materials and medicine. View 2020;1:20200016. [DOI: 10.1002/viw.20200016] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
48 Arrigoni C, Gilardi M, Bersini S, Candrian C, Moretti M. Bioprinting and Organ-on-Chip Applications Towards Personalized Medicine for Bone Diseases. Stem Cell Rev and Rep 2017;13:407-17. [DOI: 10.1007/s12015-017-9741-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
49 van Daal M, Muntinga ME, Steffens S, Halsema A, Verdonk P. Sex and Gender Bias in Kidney Transplantation: 3D Bioprinting as a Challenge to Personalized Medicine. Womens Health Rep (New Rochelle) 2020;1:218-23. [PMID: 33786482 DOI: 10.1089/whr.2020.0047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Gomollón-bel F. Ten Chemical Innovations That Will Change Our World: IUPAC identifies emerging technologies in Chemistry with potential to make our planet more sustainable. Chemistry International 2019;41:12-7. [DOI: 10.1515/ci-2019-0203] [Cited by in Crossref: 104] [Cited by in F6Publishing: 47] [Article Influence: 34.7] [Reference Citation Analysis]
51 Ma J, Wang Y, Liu J. Bioprinting of 3D tissues/organs combined with microfluidics. RSC Adv 2018;8:21712-27. [DOI: 10.1039/c8ra03022g] [Cited by in Crossref: 35] [Cited by in F6Publishing: 1] [Article Influence: 8.8] [Reference Citation Analysis]
52 Cameron T, Naseri E, MacCallum B, Ahmadi A. Development of a Disposable Single-Nozzle Printhead for 3D Bioprinting of Continuous Multi-Material Constructs. Micromachines (Basel) 2020;11:E459. [PMID: 32354128 DOI: 10.3390/mi11050459] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Liu H, Wang Y, Cui K, Guo Y, Zhang X, Qin J. Advances in Hydrogels in Organoids and Organs-on-a-Chip. Adv Mater 2019;31:e1902042. [PMID: 31282047 DOI: 10.1002/adma.201902042] [Cited by in Crossref: 85] [Cited by in F6Publishing: 74] [Article Influence: 28.3] [Reference Citation Analysis]
54 Matai I, Kaur G, Seyedsalehi A, Mcclinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020;226:119536. [DOI: 10.1016/j.biomaterials.2019.119536] [Cited by in Crossref: 155] [Cited by in F6Publishing: 126] [Article Influence: 77.5] [Reference Citation Analysis]
55 Cao Y, Sang S, An Y, Xiang C, Li Y, Zhen Y. Progress of 3D Printing Techniques for Nasal Cartilage Regeneration. Aesthetic Plast Surg 2021. [PMID: 34312695 DOI: 10.1007/s00266-021-02472-4] [Reference Citation Analysis]
56 Takagi D, Lin W, Matsumoto T, Yaginuma H, Hemmi N, Hatada S, Seo M. High-precision three-dimensional inkjet technology for live cell bioprinting. Int J Bioprint 2019;5:208. [PMID: 32596539 DOI: 10.18063/ijb.v5i2.208] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
57 Weng T, Zhang W, Xia Y, Wu P, Yang M, Jin R, Xia S, Wang J, You C, Han C, Wang X. 3D bioprinting for skin tissue engineering: Current status and perspectives. J Tissue Eng 2021;12:20417314211028574. [PMID: 34345398 DOI: 10.1177/20417314211028574] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
58 Augustine R, Dan P, Hasan A, Khalaf IM, Prasad P, Ghosal K, Gentile C, McClements L, Maureira P. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother 2021;138:111425. [PMID: 33756154 DOI: 10.1016/j.biopha.2021.111425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Seo M, Takabatake R, Izumi S, Unno H, Kawashima Y, Ki U, Hatada S, Katoh I, Nakazawa S, Matsumoto T, Yonekawa Y, Hashimoto M, Lin W, Maeda R, Riztyan, Onishi M, Futo S, Kishine M, Kitta K. Novel Bioprinting Application for the Production of Reference Material Containing a Defined Copy Number of Target DNA. Anal Chem 2019;91:12733-40. [PMID: 31482708 DOI: 10.1021/acs.analchem.9b02207] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
60 Zhang W, Ye W, Yan Y. Advances in Photocrosslinkable Materials for 3D Bioprinting. Adv Eng Mater 2022;24:2100663. [DOI: 10.1002/adem.202100663] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
61 Das S, Basu B. An Overview of Hydrogel-Based Bioinks for 3D Bioprinting of Soft Tissues. J Indian Inst Sci 2019;99:405-28. [DOI: 10.1007/s41745-019-00129-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
62 Otto IA, Breugem CC, Malda J, Bredenoord AL. Ethical considerations in the translation of regenerative biofabrication technologies into clinic and society. Biofabrication 2016;8:042001. [PMID: 27716629 DOI: 10.1088/1758-5090/8/4/042001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
63 Hafezi F, Shorter S, Tabriz AG, Hurt A, Elmes V, Boateng J, Douroumis D. Bioprinting and Preliminary Testing of Highly Reproducible Novel Bioink for Potential Skin Regeneration. Pharmaceutics 2020;12:E550. [PMID: 32545741 DOI: 10.3390/pharmaceutics12060550] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
64 Lehnert S, Sikorski P. Application of Temporary, Cell-Containing Alginate Microcarriers to Facilitate the Fabrication of Spatially Defined Cell Pockets in 3D Collagen Hydrogels. Macromol Biosci 2021;:e2100319. [PMID: 34679232 DOI: 10.1002/mabi.202100319] [Reference Citation Analysis]
65 Khoeini R, Nosrati H, Akbarzadeh A, Eftekhari A, Kavetskyy T, Khalilov R, Ahmadian E, Nasibova A, Datta P, Roshangar L, Deluca DC, Davaran S, Cucchiarini M, Ozbolat IT. Natural and Synthetic Bioinks for 3D Bioprinting. Adv NanoBio Res 2021;1:2000097. [DOI: 10.1002/anbr.202000097] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
66 Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan DL. In Situ 3D Printing: Opportunities with Silk Inks. Trends Biotechnol 2021;39:719-30. [PMID: 33279280 DOI: 10.1016/j.tibtech.2020.11.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
67 Ng WL, Qi JTZ, Yeong WY, Naing MW. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication 2018;10:025005. [DOI: 10.1088/1758-5090/aa9e1e] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 18.8] [Reference Citation Analysis]
68 Ermis M, Calamak S, Calibasi Kocal G, Guven S, Durmus NG, Rizvi I, Hasan T, Hasirci N, Hasirci V, Demirci U. Hydrogels as a New Platform to Recapitulate the Tumor Microenvironment. Handbook of Nanomaterials for Cancer Theranostics. Elsevier; 2018. pp. 463-94. [DOI: 10.1016/b978-0-12-813339-2.00015-3] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
69 Nour S, Baheiraei N, Imani R, Khodaei M, Alizadeh A, Rabiee N, Moazzeni SM. A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. J Mater Sci: Mater Med 2019;30. [DOI: 10.1007/s10856-019-6319-6] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
70 Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021;9:5385-413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Naveau A, Smirani R, Catros S, de Oliveira H, Fricain J, Devillard R. A Bibliometric Study to Assess Bioprinting Evolution. Applied Sciences 2017;7:1331. [DOI: 10.3390/app7121331] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
72 Gokyurek M, Yilmaz KB, Yilgor Huri P. 3D bioprinting for the endocrine glands. emergent mater 2020;3:441-52. [DOI: 10.1007/s42247-020-00085-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
73 Shery Huang YY, Zhang D, Liu Y. Bioprinting of three-dimensional culture models and organ-on-a-chip systems. MRS Bull 2017;42:593-9. [DOI: 10.1557/mrs.2017.163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
74 Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, Yoo JJ. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater 2018;3:21-37. [PMID: 31223488 DOI: 10.1038/s41578-018-0006-y] [Cited by in Crossref: 240] [Cited by in F6Publishing: 198] [Article Influence: 60.0] [Reference Citation Analysis]
75 Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering: R: Reports 2020;140:100543. [DOI: 10.1016/j.mser.2020.100543] [Cited by in Crossref: 125] [Cited by in F6Publishing: 43] [Article Influence: 62.5] [Reference Citation Analysis]
76 Cimpean AM, Lalošević D, Lalošević V, Banović P, Raica M, Mederle OA. Disodium Cromolyn and Anti-podoplanin Antibodies Strongly Inhibit Growth of BHK 21/C13-derived Fibrosarcoma in a Chick Embryo Chorioallantoic Membrane Model. In Vivo 2018;32:791-8. [DOI: 10.21873/invivo.11309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
77 Edwards DA. Quasisteady models for weld temperatures in fused filament fabrication. IMA Journal of Applied Mathematics 2022. [DOI: 10.1093/imamat/hxac006] [Reference Citation Analysis]
78 Puluca N, Lee S, Doppler S, Münsterer A, Dreßen M, Krane M, Wu SM. Bioprinting Approaches to Engineering Vascularized 3D Cardiac Tissues. Curr Cardiol Rep 2019;21:90. [PMID: 31352612 DOI: 10.1007/s11886-019-1179-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
79 Tian B, He X, Xu X, Li X, Wu R, Chen F. Advanced Biotechnologies Toward Engineering a Cell Home for Stem Cell Accommodation. Adv Mater Technol 2017;2:1700022. [DOI: 10.1002/admt.201700022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
80 Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021:S1742-7061(21)00552-3. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Reference Citation Analysis]
81 Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater. 2018;3:144-156. [PMID: 29744452 DOI: 10.1016/j.bioactmat.2017.11.008] [Cited by in Crossref: 374] [Cited by in F6Publishing: 280] [Article Influence: 93.5] [Reference Citation Analysis]
82 Dorogin J, Townsend JM, Hettiaratchi MH. Biomaterials for protein delivery for complex tissue healing responses. Biomater Sci 2021;9:2339-61. [PMID: 33432960 DOI: 10.1039/d0bm01804j] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Gill EL, Li X, Birch MA, Huang YYS. Multi-length scale bioprinting towards simulating microenvironmental cues. Biodes Manuf 2018;1:77-88. [PMID: 30546920 DOI: 10.1007/s42242-018-0014-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
84 Shi Y, Xing TL, Zhang HB, Yin RX, Yang SM, Wei J, Zhang WJ. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs. Biomed Mater. 2018;13:035008. [PMID: 29307874 DOI: 10.1088/1748-605x/aaa5b6] [Cited by in Crossref: 38] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
85 Tricomi BJ, Dias AD, Corr DT. Stem cell bioprinting for applications in regenerative medicine. Ann N Y Acad Sci 2016;1383:115-24. [PMID: 27870077 DOI: 10.1111/nyas.13266] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 5.2] [Reference Citation Analysis]
86 Quílez C, de Aranda Izuzquiza G, García M, López V, Montero A, Valencia L, Velasco D. Bioprinting for Skin. Methods Mol Biol 2020;2140:217-28. [PMID: 32207115 DOI: 10.1007/978-1-0716-0520-2_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
87 Huber T, Najaf Zadeh H, Feast S, Roughan T, Fee C. 3D Printing of Gelled and Cross-Linked Cellulose Solutions, an Exploration of Printing Parameters and Gel Behaviour. Bioengineering (Basel) 2020;7:E30. [PMID: 32230746 DOI: 10.3390/bioengineering7020030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Naderi A, Bhattacharjee N, Folch A. Digital Manufacturing for Microfluidics. Annu Rev Biomed Eng 2019;21:325-64. [PMID: 31167099 DOI: 10.1146/annurev-bioeng-092618-020341] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 15.5] [Reference Citation Analysis]
89 Masaeli R, Zandsalimi K, Rasoulianboroujeni M, Tayebi L. Challenges in Three-Dimensional Printing of Bone Substitutes. Tissue Engineering Part B: Reviews 2019;25:387-97. [DOI: 10.1089/ten.teb.2018.0381] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
90 Guimarães CF, Ahmed R, Marques AP, Reis RL, Demirci U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. Adv Mater 2021;33:e2006582. [PMID: 33929771 DOI: 10.1002/adma.202006582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Jakab K, Marga F, Kaesser R, Chuang T, Varadaraju H, Cassingham D, Lee S, Forgacs A, Forgacs G. Non-medical applications of tissue engineering: biofabrication of a leather-like material. Materials Today Sustainability 2019;5:100018. [DOI: 10.1016/j.mtsust.2019.100018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
92 Milojević M, Rožanc J, Vajda J, Činč Ćurić L, Paradiž E, Stožer A, Maver U, Vihar B. In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021;9:1415. [PMID: 34680532 DOI: 10.3390/biomedicines9101415] [Reference Citation Analysis]
93 Ghosh U, Ning S, Wang Y, Kong YL. Addressing Unmet Clinical Needs with 3D Printing Technologies. Adv Healthcare Mater 2018;7:1800417. [DOI: 10.1002/adhm.201800417] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
94 Vanaei S, Parizi M, Vanaei S, Salemizadehparizi F, Vanaei H. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Engineered Regeneration 2021;2:1-18. [DOI: 10.1016/j.engreg.2020.12.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 9.0] [Reference Citation Analysis]
95 Chaji S, Al-Saleh J, Gomillion CT. Bioprinted Three-Dimensional Cell-Laden Hydrogels to Evaluate Adipocyte-Breast Cancer Cell Interactions. Gels 2020;6:E10. [PMID: 32214026 DOI: 10.3390/gels6010010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
96 Holmes AM, Charlton A, Derby B, Ewart L, Scott A, Shu W. Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. Biofabrication 2017;9:033001. [PMID: 28721949 DOI: 10.1088/1758-5090/aa7bbd] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
97 Li P, Yu H, Liu N, Wang F, Lee G, Wang Y, Liu L, Li WJ. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip. Biomater Sci 2018;6:1371-8. [DOI: 10.1039/c7bm01153a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
98 Lata JP, Guo F, Guo J, Huang PH, Yang J, Huang TJ. Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers. Adv Mater 2016;28:8632-8. [PMID: 27571239 DOI: 10.1002/adma.201602947] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
99 Fu F, Qin Z, Xu C, Chen XY, Li RX, Wang LN, Peng DW, Sun HT, Tu Y, Chen C, Zhang S, Zhao ML, Li XH. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering. Neural Regen Res 2017;12:614-22. [PMID: 28553343 DOI: 10.4103/1673-5374.205101] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
100 Wang H, Mustaffar A, Phan AN, Zivkovic V, Reay D, Law R, Boodhoo K. A review of process intensification applied to solids handling. Chemical Engineering and Processing: Process Intensification 2017;118:78-107. [DOI: 10.1016/j.cep.2017.04.007] [Cited by in Crossref: 67] [Cited by in F6Publishing: 17] [Article Influence: 13.4] [Reference Citation Analysis]
101 Agarwal S, Saha S, Balla VK, Pal A, Barui A, Bodhak S. Current Developments in 3D Bioprinting for Tissue and Organ Regeneration–A Review. Front Mech Eng 2020;6:589171. [DOI: 10.3389/fmech.2020.589171] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: the future of burn wound reconstruction? Burns Trauma 2019;7:4. [PMID: 30805375 DOI: 10.1186/s41038-019-0142-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
103 Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol 2019;7:166. [PMID: 31355194 DOI: 10.3389/fbioe.2019.00166] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 14.3] [Reference Citation Analysis]
104 Li X, Shi Q, Wang H, Sun T, Huang Q, Fukuda T. Magnetically-guided assembly of microfluidic fibers for ordered construction of diverse netlike modules. J Micromech Microeng 2017;27:125014. [DOI: 10.1088/1361-6439/aa92a1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
105 Ding S, Feng L, Wu J, Zhu F, Tan Z, Yao R. Bioprinting of Stem Cells: Interplay of Bioprinting Process, Bioinks, and Stem Cell Properties. ACS Biomater Sci Eng 2018;4:3108-24. [PMID: 33435052 DOI: 10.1021/acsbiomaterials.8b00399] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
106 Stepanovska J, Supova M, Hanzalek K, Broz A, Matejka R. Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines 2021;9:1137. [PMID: 34572322 DOI: 10.3390/biomedicines9091137] [Reference Citation Analysis]
107 Luo W, Liu H, Wang C, Qin Y, Liu Q, Wang J. Bioprinting of Human Musculoskeletal Interface. Adv Eng Mater 2019;21:1900019. [DOI: 10.1002/adem.201900019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
108 Highley CB, Song KH, Daly AC, Burdick JA. Jammed Microgel Inks for 3D Printing Applications. Adv Sci (Weinh) 2019;6:1801076. [PMID: 30643716 DOI: 10.1002/advs.201801076] [Cited by in Crossref: 106] [Cited by in F6Publishing: 89] [Article Influence: 26.5] [Reference Citation Analysis]
109 Velasco D, Quílez C, Garcia M, del Cañizo JF, Jorcano JL. 3D human skin bioprinting: a view from the bio side. Journal of 3D Printing in Medicine 2018;2:141-62. [DOI: 10.2217/3dp-2018-0008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
110 Zhu Y, Serpooshan V, Wu S, Demirci U, Chen P, Güven S. Tissue Engineering of 3D Organotypic Microtissues by Acoustic Assembly. Methods Mol Biol 2019;1576:301-12. [PMID: 28921421 DOI: 10.1007/7651_2017_68] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
111 Wee Y, Moore AN, Jia S, Zhou J, Colombo JS, D'Souza RN. A Single-Step Self-Assembly Approach for the Fabrication of Aligned and Multilayered Three-Dimensional Tissue Constructs Using Multidomain Peptide Hydrogel. SLAS Technol 2019;24:55-65. [PMID: 29842850 DOI: 10.1177/2472630318777759] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
112 Mohammadi M, Mousavi Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jaafari MR, Ramezani M. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. J Control Release 2018;274:35-55. [PMID: 29410062 DOI: 10.1016/j.jconrel.2018.01.032] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 8.8] [Reference Citation Analysis]
113 Kirillova A, Bushev S, Abubakirov A, Sukikh G. Bioethical and Legal Issues in 3D Bioprinting. Int J Bioprint 2020;6:272. [PMID: 33088986 DOI: 10.18063/ijb.v6i3.272] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
114 Caddeo S, Boffito M, Sartori S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Front Bioeng Biotechnol 2017;5:40. [PMID: 28798911 DOI: 10.3389/fbioe.2017.00040] [Cited by in Crossref: 77] [Cited by in F6Publishing: 57] [Article Influence: 15.4] [Reference Citation Analysis]
115 Chameettachal S, Midha S, Ghosh S. Regulation of Chondrogenesis and Hypertrophy in Silk Fibroin-Gelatin-Based 3D Bioprinted Constructs. ACS Biomater Sci Eng 2016;2:1450-63. [DOI: 10.1021/acsbiomaterials.6b00152] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 8.2] [Reference Citation Analysis]
116 Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, Sarmento B, Cui W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. Journal of Controlled Release 2021;329:237-56. [DOI: 10.1016/j.jconrel.2020.11.044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
117 Silva LP. Current Trends and Challenges in Biofabrication Using Biomaterials and Nanomaterials: Future Perspectives for 3D/4D Bioprinting. In: Maniruzzaman M, editor. 3D and 4D Printing in Biomedical Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2019. pp. 373-421. [DOI: 10.1002/9783527813704.ch15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
118 Choi YJ, Yi HG, Kim SW, Cho DW. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics. Theranostics 2017;7:3118-37. [PMID: 28839468 DOI: 10.7150/thno.19396] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 12.2] [Reference Citation Analysis]
119 Kingsley DM, Roberge CL, Rudkouskaya A, Faulkner DE, Barroso M, Intes X, Corr DT. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater 2019;95:357-70. [PMID: 30776506 DOI: 10.1016/j.actbio.2019.02.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 11.7] [Reference Citation Analysis]
120 Del Valle LJ, Díaz A, Puiggalí J. Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives. Gels 2017;3:E27. [PMID: 30920524 DOI: 10.3390/gels3030027] [Cited by in Crossref: 79] [Cited by in F6Publishing: 49] [Article Influence: 15.8] [Reference Citation Analysis]
121 Kim JH, Yoo JJ, Lee SJ. Three-dimensional cell-based bioprinting for soft tissue regeneration. Tissue Eng Regen Med 2016;13:647-62. [PMID: 30603446 DOI: 10.1007/s13770-016-0133-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
122 Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers (Basel) 2021;13:1105. [PMID: 33808492 DOI: 10.3390/polym13071105] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
123 Davoodi E, Sarikhani E, Montazerian H, Ahadian S, Costantini M, Swieszkowski W, Willerth S, Walus K, Mofidfar M, Toyserkani E, Khademhosseini A, Ashammakhi N. Extrusion and Microfluidic-based Bioprinting to Fabricate Biomimetic Tissues and Organs. Adv Mater Technol 2020;5:1901044. [PMID: 33072855 DOI: 10.1002/admt.201901044] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
124 Göckler T, Haase S, Kempter X, Pfister R, Maciel BR, Grimm A, Molitor T, Willenbacher N, Schepers U. Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting. Adv Healthc Mater 2021;10:e2100206. [PMID: 34145799 DOI: 10.1002/adhm.202100206] [Reference Citation Analysis]
125 Piluso S, Skvortsov GA, Altunbek M, Afghah F, Khani N, Koç B, Patterson J. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication 2021;13. [PMID: 34192670 DOI: 10.1088/1758-5090/ac0ff0] [Reference Citation Analysis]
126 Marcos LF, Wilson SL, Roach P. Tissue engineering of the retina: from organoids to microfluidic chips. J Tissue Eng 2021;12:20417314211059876. [PMID: 34917332 DOI: 10.1177/20417314211059876] [Reference Citation Analysis]
127 Koch M, Włodarczyk-biegun MK. Faithful scanning electron microscopic (SEM) visualization of 3D printed alginate-based scaffolds. Bioprinting 2020;20:e00098. [DOI: 10.1016/j.bprint.2020.e00098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
128 Rezvani Ghomi E, Eshkalak SK, Singh S, Chinnappan A, Ramakrishna S, Narayan R. Fused filament printing of specialized biomedical devices: a state-of-the art review of technological feasibilities with PEEK. RPJ 2021;27:592-616. [DOI: 10.1108/rpj-06-2020-0139] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
129 Zhao Y, Demirci U, Chen Y, Chen P. Multiscale brain research on a microfluidic chip. Lab Chip 2020;20:1531-43. [PMID: 32150176 DOI: 10.1039/c9lc01010f] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]