BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8:034001. [PMID: 24946087 DOI: 10.1088/1752-7155/8/3/034001] [Cited by in Crossref: 284] [Cited by in F6Publishing: 237] [Article Influence: 35.5] [Reference Citation Analysis]
Number Citing Articles
1 Kimball BA, Volker SF, Griffin DL, Johnson SR, Gilbert AT. Volatile metabolomic signatures of rabies immunization in two mesocarnivore species. PLoS Negl Trop Dis 2019;13:e0007911. [PMID: 31790413 DOI: 10.1371/journal.pntd.0007911] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Ferrari A, Neefs I, Hoeck S, Peeters M, Van Hal G. Towards Novel Non-Invasive Colorectal Cancer Screening Methods: A Comprehensive Review. Cancers (Basel) 2021;13:1820. [PMID: 33920293 DOI: 10.3390/cancers13081820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Weber R, Haas N, Baghdasaryan A, Bruderer T, Inci D, Micic S, Perkins N, Spinas R, Zenobi R, Moeller A. Volatile organic compound breath signatures of children with cystic fibrosis by real-time SESI-HRMS. ERJ Open Res 2020;6:00171-2019. [PMID: 31956658 DOI: 10.1183/23120541.00171-2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Chandran D, Ooi EH, Watson DI, Kholmurodova F, Jaenisch S, Yazbeck R. The Use of Selected Ion Flow Tube-Mass Spectrometry Technology to Identify Breath Volatile Organic Compounds for the Detection of Head and Neck Squamous Cell Carcinoma: A Pilot Study. Medicina (Kaunas) 2019;55:E306. [PMID: 31242578 DOI: 10.3390/medicina55060306] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
5 Xu M, Tang Z, Duan Y, Liu Y. GC-Based Techniques for Breath Analysis: Current Status, Challenges, and Prospects. Critical Reviews in Analytical Chemistry 2015;46:291-304. [DOI: 10.1080/10408347.2015.1055550] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
6 Hackner K, Pleil J. Canine olfaction as an alternative to analytical instruments for disease diagnosis: understanding 'dog personality' to achieve reproducible results. J Breath Res 2017;11:012001. [PMID: 28068294 DOI: 10.1088/1752-7163/aa5524] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
7 Tian H, Li S, Wen H, Zhang X, Li J. Volatile organic compounds fingerprinting in faeces and urine of Alzheimer's disease model SAMP8 mice by headspace-gas chromatography-ion mobility spectrometry and headspace-solid phase microextraction-gas chromatography-mass spectrometry. Journal of Chromatography A 2020;1614:460717. [DOI: 10.1016/j.chroma.2019.460717] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Wishart DS. Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol Rev 2019;99:1819-75. [PMID: 31434538 DOI: 10.1152/physrev.00035.2018] [Cited by in Crossref: 98] [Cited by in F6Publishing: 92] [Article Influence: 32.7] [Reference Citation Analysis]
9 Fois SS, Canu S, Fois AG. The Role of Oxidative Stress in Sarcoidosis. Int J Mol Sci 2021;22:11712. [PMID: 34769145 DOI: 10.3390/ijms222111712] [Reference Citation Analysis]
10 Yu J, Wang D, Tipparaju VV, Jung W, Xian X. Detection of transdermal biomarkers using gradient-based colorimetric array sensor. Biosens Bioelectron 2022;195:113650. [PMID: 34560350 DOI: 10.1016/j.bios.2021.113650] [Reference Citation Analysis]
11 Chen H, Li X, Yao M. Rats Sniff Off Toxic Air. Environ Sci Technol 2020;54:3437-46. [PMID: 31958948 DOI: 10.1021/acs.est.9b07592] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Morandi S, Fioravanti A, Cerrato G, Lettieri S, Sacerdoti M, Carotta M. Facile synthesis of ZnO nano-structures: Morphology influence on electronic properties. Sensors and Actuators B: Chemical 2017;249:581-9. [DOI: 10.1016/j.snb.2017.03.114] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 4.2] [Reference Citation Analysis]
13 Geer Wallace MA, Pleil JD, Oliver KD, Whitaker DA, Mentese S, Fent KW, Horn GP. Non-targeted GC/MS analysis of exhaled breath samples: Exploring human biomarkers of exogenous exposure and endogenous response from professional firefighting activity. Journal of Toxicology and Environmental Health, Part A 2019;82:244-60. [DOI: 10.1080/15287394.2019.1587901] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Daulton E, Wicaksono A, Bechar J, Covington JA, Hardwicke J. The Detection of Wound Infection by Ion Mobility Chemical Analysis. Biosensors (Basel) 2020;10:E19. [PMID: 32121452 DOI: 10.3390/bios10030019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Güntner AT, Abegg S, Königstein K, Gerber PA, Schmidt-trucksäss A, Pratsinis SE. Breath Sensors for Health Monitoring. ACS Sens 2019;4:268-80. [DOI: 10.1021/acssensors.8b00937] [Cited by in Crossref: 95] [Cited by in F6Publishing: 52] [Article Influence: 31.7] [Reference Citation Analysis]
16 Taware R, Taunk K, Pereira JAM, Shirolkar A, Soneji D, Câmara JS, Nagarajaram HA, Rapole S. Volatilomic insight of head and neck cancer via the effects observed on saliva metabolites. Sci Rep 2018;8:17725. [PMID: 30531924 DOI: 10.1038/s41598-018-35854-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
17 Syed Z. Chemical ecology and olfaction in arthropod vectors of diseases. Curr Opin Insect Sci 2015;10:83-9. [PMID: 29588018 DOI: 10.1016/j.cois.2015.04.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
18 Lawson CA, Possell M, Seymour JR, Raina JB, Suggett DJ. Coral endosymbionts (Symbiodiniaceae) emit species-specific volatilomes that shift when exposed to thermal stress. Sci Rep 2019;9:17395. [PMID: 31758008 DOI: 10.1038/s41598-019-53552-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
19 Ahmed WM, Lawal O, Nijsen TM, Goodacre R, Fowler SJ. Exhaled Volatile Organic Compounds of Infection: A Systematic Review. ACS Infect Dis 2017;3:695-710. [DOI: 10.1021/acsinfecdis.7b00088] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 8.4] [Reference Citation Analysis]
20 Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. Specialized metabolites from the microbiome in health and disease. Cell Metab 2014;20:719-30. [PMID: 25440054 DOI: 10.1016/j.cmet.2014.10.016] [Cited by in Crossref: 290] [Cited by in F6Publishing: 268] [Article Influence: 36.3] [Reference Citation Analysis]
21 Sola-Martínez RA, Lozano-Terol G, Gallego-Jara J, Morales E, Cantero-Cano E, Sanchez-Solis M, García-Marcos L, Jiménez-Guerrero P, Noguera-Velasco JA, Cánovas Díaz M, de Diego Puente T; NELA study group. Exhaled volatilome analysis as a useful tool to discriminate asthma with other coexisting atopic diseases in women of childbearing age. Sci Rep 2021;11:13823. [PMID: 34226570 DOI: 10.1038/s41598-021-92933-2] [Reference Citation Analysis]
22 Lee JH, Zhu J. Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases. Exp Biol Med (Maywood) 2021;246:778-89. [PMID: 33327781 DOI: 10.1177/1535370220979952] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Dorman DC, Foster ML, Fernhoff KE, Hess PR. Canine scent detection of canine cancer: a feasibility study. Vet Med (Auckl) 2017;8:69-76. [PMID: 30050858 DOI: 10.2147/VMRR.S148594] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
24 Masetti R, Zama D, Leardini D, Muratore E, Turroni S, Brigidi P, Pession A. Microbiome-Derived Metabolites in Allogeneic Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2021;22:1197. [PMID: 33530464 DOI: 10.3390/ijms22031197] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Burton C, Ma Y. The role of urinary pteridines as disease biomarkers. Pteridines 2017;28:1-21. [DOI: 10.1515/pterid-2016-0013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
26 van Vliet D, Smolinska A, Jöbsis Q, Rosias P, Muris J, Dallinga J, Dompeling E, van Schooten FJ. Can exhaled volatile organic compounds predict asthma exacerbations in children? J Breath Res 2017;11:016016. [PMID: 28102830 DOI: 10.1088/1752-7163/aa5a8b] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
27 Roberts SC, Misztal PK, Langford B. Decoding the social volatilome by tracking rapid context-dependent odour change. Philos Trans R Soc Lond B Biol Sci 2020;375:20190259. [PMID: 32306868 DOI: 10.1098/rstb.2019.0259] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Kim IH, Park CH, Woo TG, Jeong JH, Jeon CS, Kim YD. Comparative Studies of Mesoporous Fe2O3/Al2O3 and Fe2O3/SiO2 Fabricated by Temperature-Regulated Chemical Vapour Deposition as Catalysts for Acetaldehyde Oxidation. Catal Lett 2018;148:454-64. [DOI: 10.1007/s10562-017-2225-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
29 Kirwan JA, Brennan L, Broadhurst D, Fiehn O, Cascante M, Dunn WB, Schmidt MA, Velagapudi V. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for "Precision Medicine and Pharmacometabolomics Task Group"-The Metabolomics Society Initiative). Clin Chem 2018;64:1158-82. [PMID: 29921725 DOI: 10.1373/clinchem.2018.287045] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 17.8] [Reference Citation Analysis]
30 Milanowski M, Pomastowski P, Ligor T, Buszewski B. Saliva – Volatile Biomarkers and Profiles. Critical Reviews in Analytical Chemistry 2017;47:251-66. [DOI: 10.1080/10408347.2016.1266925] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
31 Millet P, Martin T, Opiekun M, Beauchamp GK, Kimball BA. Differing Alterations of Odor Volatiles Among Pathogenic Stimuli. Chem Senses 2021;46:bjab030. [PMID: 34133735 DOI: 10.1093/chemse/bjab030] [Reference Citation Analysis]
32 Purcaro G, Stefanuto PH, Franchina FA, Beccaria M, Wieland-Alter WF, Wright PF, Hill JE. SPME-GC×GC-TOF MS fingerprint of virally-infected cell culture: Sample preparation optimization and data processing evaluation. Anal Chim Acta 2018;1027:158-67. [PMID: 29866265 DOI: 10.1016/j.aca.2018.03.037] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
33 Ma R, Tian Z, Hu Y, Huang Y, Lu J. Amphiphilic CdTe Quantum Dots@Layered Double Hydroxides/Arachidate Nanocomposite Langmuir-Blodgett Ultrathin Films: Its Assembly and Response Mechanism as VOC Fluorescence Sensors. Langmuir 2018;34:11354-63. [PMID: 30176145 DOI: 10.1021/acs.langmuir.8b02232] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
34 Shu Y, Ji J, Xu Y, Deng J, Huang H, He M, Leung DY, Wu M, Liu S, Liu S, Liu G, Xie R, Feng Q, Zhan Y, Fang R, Ye X. Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Applied Catalysis B: Environmental 2018;220:78-87. [DOI: 10.1016/j.apcatb.2017.08.019] [Cited by in Crossref: 56] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
35 Pleil JD, Wallace MAG, Stiegel MA, Funk WE. Human biomarker interpretation: the importance of intra-class correlation coefficients (ICC) and their calculations based on mixed models, ANOVA, and variance estimates. J Toxicol Environ Health B Crit Rev 2018;21:161-80. [PMID: 30067478 DOI: 10.1080/10937404.2018.1490128] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
36 Salvati E, Stellacci F, Krol S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine 2015;10:3495-512. [DOI: 10.2217/nnm.15.180] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
37 Iitani K, Toma K, Arakawa T, Mitsubayashi K. Ultrasensitive Sniff-Cam for Biofluorometric-Imaging of Breath Ethanol Caused by Metabolism of Intestinal Flora. Anal Chem 2019;91:9458-65. [PMID: 31287286 DOI: 10.1021/acs.analchem.8b05840] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
38 Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H, Câmara JS. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites 2015;5:3-55. [PMID: 25584743 DOI: 10.3390/metabo5010003] [Cited by in Crossref: 130] [Cited by in F6Publishing: 95] [Article Influence: 18.6] [Reference Citation Analysis]
39 Ron-Doitch S, Soroka Y, Frusic-Zlotkin M, Barasch D, Steinberg D, Kohen R. Saturated and aromatic aldehydes originating from skin and cutaneous bacteria activate the Nrf2-keap1 pathway in human keratinocytes. Exp Dermatol 2021;30:1381-7. [PMID: 32347981 DOI: 10.1111/exd.14103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Salvo P, Ferrari C, Persia R, Ghimenti S, Lomonaco T, Bellagambi F, Di Francesco F. A dual mode breath sampler for the collection of the end-tidal and dead space fractions. Med Eng Phys 2015;37:539-44. [PMID: 25922294 DOI: 10.1016/j.medengphy.2015.03.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
41 Jia Z, Zhang H, Ong CN, Patra A, Lu Y, Lim CT, Venkatesan T. Detection of Lung Cancer: Concomitant Volatile Organic Compounds and Metabolomic Profiling of Six Cancer Cell Lines of Different Histological Origins. ACS Omega 2018;3:5131-40. [PMID: 30023907 DOI: 10.1021/acsomega.7b02035] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
42 Lange J, Eddhif B, Tarighi M, Garandeau T, Péraudeau E, Clarhaut J, Renoux B, Papot S, Poinot P. Volatile Organic Compound Based Probe for Induced Volatolomics of Cancers. Angew Chem Int Ed 2019;58:17563-6. [DOI: 10.1002/anie.201906261] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
43 Gao Q, Su X, Annabi MH, Schreiter BR, Prince T, Ackerman A, Morgas S, Mata V, Williams H, Lee W. Application of Urinary Volatile Organic Compounds (VOCs) for the Diagnosis of Prostate Cancer. Clinical Genitourinary Cancer 2019;17:183-90. [DOI: 10.1016/j.clgc.2019.02.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
44 Boots AW, Bos LD, van der Schee MP, van Schooten FJ, Sterk PJ. Exhaled Molecular Fingerprinting in Diagnosis and Monitoring: Validating Volatile Promises. Trends Mol Med 2015;21:633-44. [PMID: 26432020 DOI: 10.1016/j.molmed.2015.08.001] [Cited by in Crossref: 90] [Cited by in F6Publishing: 82] [Article Influence: 15.0] [Reference Citation Analysis]
45 Lubes G, Goodarzi M. GC-MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J Pharm Biomed Anal 2018;147:313-22. [PMID: 28750734 DOI: 10.1016/j.jpba.2017.07.013] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
46 Bishop AC, Libardoni M, Choudary A, Misra B, Lange K, Bernal J, Nijland M, Li C, Olivier M, Nathanielsz PW, Cox LA. Nonhuman primate breath volatile organic compounds associate with developmental programming and cardio-metabolic status. J Breath Res 2018;12:036016. [PMID: 29593130 DOI: 10.1088/1752-7163/aaba84] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
47 Lee J, Lim SH. CNT Foam-Embedded Micro Gas Preconcentrator for Low-Concentration Ethane Measurements. Sensors (Basel) 2018;18:E1547. [PMID: 29757966 DOI: 10.3390/s18051547] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
48 Richards LC, Davey NG, Gill CG, Krogh ET. Discrimination and geo-spatial mapping of atmospheric VOC sources using full scan direct mass spectral data collected from a moving vehicle. Environ Sci Process Impacts 2020;22:173-86. [PMID: 31808488 DOI: 10.1039/c9em00439d] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Lee YJ, Fujisawa T, Kim CK. Biomarkers for Recurrent Wheezing and Asthma in Preschool Children. Allergy Asthma Immunol Res 2019;11:16-28. [PMID: 30479074 DOI: 10.4168/aair.2019.11.1.16] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
50 Alkhalifah Y, Phillips I, Soltoggio A, Darnley K, Nailon WH, McLaren D, Eddleston M, Thomas CLP, Salman D. VOCCluster: Untargeted Metabolomics Feature Clustering Approach for Clinical Breath Gas Chromatography/Mass Spectrometry Data. Anal Chem 2020;92:2937-45. [PMID: 31791122 DOI: 10.1021/acs.analchem.9b03084] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
51 Liu S, Li R, Wild RJ, Warneke C, de Gouw JA, Brown SS, Miller SL, Luongo JC, Jimenez JL, Ziemann PJ. Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air 2016;26:925-38. [DOI: 10.1111/ina.12272] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
52 Davis MD, Fowler SJ, Montpetit AJ. Exhaled breath testing - A tool for the clinician and researcher. Paediatr Respir Rev 2019;29:37-41. [PMID: 29921519 DOI: 10.1016/j.prrv.2018.05.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
53 Winters BR, Pleil JD, Boyer JC, Nylander-French LA, Wallace MAG, Madden MC. Review: Endogenously Produced Volatiles for In Vitro Toxicity Testing Using Cell Lines. Appl In Vitro Toxicol 2018;4:129-38. [PMID: 31037250 DOI: 10.1089/aivt.2017.0038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
54 Reese KL, Rasley A, Avila JR, Jones AD, Frank M. Metabolic Profiling of Volatile Organic Compounds (VOCs) Emitted by the Pathogens Francisella tularensis and Bacillus anthracis in Liquid Culture. Sci Rep 2020;10:9333. [PMID: 32518249 DOI: 10.1038/s41598-020-66136-0] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Einoch-Amor R, Broza YY, Haick H. Detection of Single Cancer Cells in Blood with Artificially Intelligent Nanoarray. ACS Nano 2021;15:7744-55. [PMID: 33787212 DOI: 10.1021/acsnano.1c01741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Toma K, Suzuki S, Arakawa T, Iwasaki Y, Mitsubayashi K. External ears for non-invasive and stable monitoring of volatile organic compounds in human blood. Sci Rep 2021;11:10415. [PMID: 34112816 DOI: 10.1038/s41598-021-90146-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
57 Saidi T, Moufid M, de Jesus Beleño-saenz K, Welearegay TG, El Bari N, Lisset Jaimes-mogollon A, Ionescu R, Bourkadi JE, Benamor J, El Ftouh M, Bouchikhi B. Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS. Sensors and Actuators B: Chemical 2020;311:127932. [DOI: 10.1016/j.snb.2020.127932] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
58 Zamuruyev KO, Aksenov AA, Pasamontes A, Brown JF, Pettit DR, Foutouhi S, Weimer BC, Schivo M, Kenyon NJ, Delplanque JP, Davis CE. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler. J Breath Res 2016;11:016001. [PMID: 28004639 DOI: 10.1088/1752-7163/11/1/016001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
59 Jouyban A, Djozan D, Mohammadandashti P, Alizadeh-Nabil A, Ghorbanpour H, Khoubnasabjafari M, Mohammadzadeh M. Co-liquefaction with acetone and GC analysis of volatile compounds in exhaled breath as lung cancer biomarkers. Bioimpacts 2017;7:99-108. [PMID: 28752074 DOI: 10.15171/bi.2017.13] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
60 [DOI: 10.1117/12.2225565] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.1] [Reference Citation Analysis]
61 García-gómez D, Martínez-lozano Sinues P, Barrios-collado C, Vidal-de-miguel G, Gaugg M, Zenobi R. Identification of 2-Alkenals, 4-Hydroxy-2-alkenals, and 4-Hydroxy-2,6-alkadienals in Exhaled Breath Condensate by UHPLC-HRMS and in Breath by Real-Time HRMS. Anal Chem 2015;87:3087-93. [DOI: 10.1021/ac504796p] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
62 Wallace MA, Kormos TM, Pleil JD. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. J Toxicol Environ Health B Crit Rev 2016;19:380-409. [PMID: 27759495 DOI: 10.1080/10937404.2016.1215772] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
63 Reeve C, Wilson C, Hanna D, Gadbois S. Dog Owners' Survey reveals Medical Alert Dogs can alert to multiple conditions and multiple people. PLoS One 2021;16:e0249191. [PMID: 33852599 DOI: 10.1371/journal.pone.0249191] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Longo V, Forleo A, Ferramosca A, Notari T, Pappalardo S, Siciliano P, Capone S, Montano L. Blood, urine and semen Volatile Organic Compound (VOC) pattern analysis for assessing health environmental impact in highly polluted areas in Italy. Environ Pollut 2021;286:117410. [PMID: 34052646 DOI: 10.1016/j.envpol.2021.117410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Disselhorst MJ, de Vries R, Quispel-Janssen J, Wolf-Lansdorf M, Sterk PJ, Baas P. Nose in malignant mesothelioma-Prediction of response to immune checkpoint inhibitor treatment. Eur J Cancer 2021;152:60-7. [PMID: 34087572 DOI: 10.1016/j.ejca.2021.04.024] [Reference Citation Analysis]
66 Di Zazzo L, Magna G, Lucentini M, Stefanelli M, Paolesse R, Di Natale C. Sensor-Embedded Face Masks for Detection of Volatiles in Breath: A Proof of Concept Study. Chemosensors 2021;9:356. [DOI: 10.3390/chemosensors9120356] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Angle C, Waggoner LP, Ferrando A, Haney P, Passler T. Canine Detection of the Volatilome: A Review of Implications for Pathogen and Disease Detection. Front Vet Sci 2016;3:47. [PMID: 27446935 DOI: 10.3389/fvets.2016.00047] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
68 Mohamed N, van de Goor R, El-Sheikh M, Elrayah O, Osman T, Nginamau ES, Johannessen AC, Suleiman A, Costea DE, Kross KW. Feasibility of a Portable Electronic Nose for Detection of Oral Squamous Cell Carcinoma in Sudan. Healthcare (Basel) 2021;9:534. [PMID: 34063592 DOI: 10.3390/healthcare9050534] [Reference Citation Analysis]
69 Angeletti S, Travaglino F, Spoto S, Pascarella MC, Mansi G, De Cesaris M, Sartea S, Giovanetti M, Fogolari M, Plescia D, Macera M, Incalzi RA, Ciccozzi M. COVID-19 sniffer dog experimental training: Which protocol and which implications for reliable sidentification? J Med Virol 2021;93:5924-30. [PMID: 34152634 DOI: 10.1002/jmv.27147] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
70 Douglas IS. New diagnostic methods for pneumonia in the ICU. Curr Opin Infect Dis 2016;29:197-204. [PMID: 26859725 DOI: 10.1097/QCO.0000000000000249] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
71 Shu Y, Xu Y, Huang H, Ji J, Liang S, Wu M, Leung DY. Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation. Chemosphere 2018;208:550-8. [DOI: 10.1016/j.chemosphere.2018.06.011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
72 Tejero Rioseras A, Garcia Gomez D, Ebert BE, Blank LM, Ibáñez AJ, Sinues PM. Comprehensive Real-Time Analysis of the Yeast Volatilome. Sci Rep 2017;7:14236. [PMID: 29079837 DOI: 10.1038/s41598-017-14554-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
73 O’lenick CR, Pleil JD, Stiegel MA, Sobus JR, Wallace MAG. Detection and analysis of endogenous polar volatile organic compounds (PVOCs) in urine for human exposome research. Biomarkers 2019;24:240-8. [DOI: 10.1080/1354750x.2018.1548031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
74 Pleil JD. Breath biomarkers in toxicology. Arch Toxicol 2016;90:2669-82. [DOI: 10.1007/s00204-016-1817-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
75 Faghihi-zarandi A, Rakhtshah J, Bahrami Yarahmadi B, Shirkhanloo H. A rapid removal of xylene vapor from environmental air based on bismuth oxide coupled to heterogeneous graphene/ graphene oxide by UV photo-catalectic degradation-adsorption procedure. Journal of Environmental Chemical Engineering 2020;8:104193. [DOI: 10.1016/j.jece.2020.104193] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Fischer-Tenhagen C, Johnen D, Heuwieser W, Becker R, Schallschmidt K, Nehls I. Odor Perception by Dogs: Evaluating Two Training Approaches for Odor Learning of Sniffer Dogs. Chem Senses 2017;42:435-41. [PMID: 28444161 DOI: 10.1093/chemse/bjx020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
77 Schivo M, Aksenov AA, Pasamontes A, Cumeras R, Weisker S, Oberbauer AM, Davis CE. A rabbit model for assessment of volatile metabolite changes observed from skin: a pressure ulcer case study. J Breath Res 2017;11:016007. [PMID: 28068292 DOI: 10.1088/1752-7163/aa51d7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Raninen K, Lappi J, Kolehmainen M, Kolehmainen M, Mykkänen H, Poutanen K, Raatikainen O. Diet-derived changes by sourdough-fermented rye bread in exhaled breath aspiration ion mobility spectrometry profiles in individuals with mild gastrointestinal symptoms. Int J Food Sci Nutr 2017;68:987-96. [PMID: 28391735 DOI: 10.1080/09637486.2017.1312296] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
79 Samini L, Khoubnasabjafari M, Alimorad MM, Jouyban-gharamaleki V, Chan H, Jouyban A. Microextraction and Chromatographic Analysis of Budesonide Epimers in Exhaled Breath Condensate. CAC 2020;16:1032-40. [DOI: 10.2174/1573411015666191203104522] [Reference Citation Analysis]
80 Gould O, Drabińska N, Ratcliffe N, de Lacy Costello B. Hyphenated Mass Spectrometry versus Real-Time Mass Spectrometry Techniques for the Detection of Volatile Compounds from the Human Body. Molecules 2021;26:7185. [PMID: 34885767 DOI: 10.3390/molecules26237185] [Reference Citation Analysis]
81 Zamuruyev KO, Schmidt AJ, Borras E, McCartney MM, Schivo M, Kenyon NJ, Delplanque JP, Davis CE. Power-efficient self-cleaning hydrophilic condenser surface for portable exhaled breath condensate (EBC) metabolomic sampling. J Breath Res 2018;12:036020. [PMID: 29771240 DOI: 10.1088/1752-7163/aac5a5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
82 Lomonaco T, Salvo P, Ghimenti S, Biagini D, Vivaldi F, Bonini A, Fuoco R, Di Francesco F. Stability of volatile organic compounds in sorbent tubes following SARS-CoV-2 inactivation procedures. J Breath Res 2021;15. [PMID: 33752195 DOI: 10.1088/1752-7163/abf0b4] [Reference Citation Analysis]
83 Giannoukos S, Agapiou A, Brkić B, Taylor S. Volatolomics: A broad area of experimentation. J Chromatogr B Analyt Technol Biomed Life Sci 2019;1105:136-47. [PMID: 30584978 DOI: 10.1016/j.jchromb.2018.12.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
84 Lippi G, Heaney LM. The "olfactory fingerprint": can diagnostics be improved by combining canine and digital noses? Clin Chem Lab Med 2020;58:958-67. [PMID: 31990659 DOI: 10.1515/cclm-2019-1269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
85 Kasbohm E, Fischer S, Küntzel A, Oertel P, Bergmann A, Trefz P, Miekisch W, Schubert JK, Reinhold P, Ziller M, Fröhlich A, Liebscher V, Köhler H. Strategies for the identification of disease-related patterns of volatile organic compounds: prediction of paratuberculosis in an animal model using random forests. J Breath Res 2017;11:047105. [PMID: 28768897 DOI: 10.1088/1752-7163/aa83bb] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
86 Lange J, Eddhif B, Tarighi M, Garandeau T, Péraudeau E, Clarhaut J, Renoux B, Papot S, Poinot P. Volatile Organic Compound Based Probe for Induced Volatolomics of Cancers. Angew Chem 2019;131:17727-30. [DOI: 10.1002/ange.201906261] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
87 Hamilton BK, Rybicki LA, Grove D, Ferraro C, Starn J, Hodgeman B, Elberson J, Winslow V, Corrigan D, Gerds AT, Hanna R, Kalaycio ME, Sobecks RM, Majhail NS, Dweik RA. Breath analysis in gastrointestinal graft-versus-host disease after allogeneic hematopoietic cell transplantation. Blood Adv 2019;3:2732-7. [PMID: 31530545 DOI: 10.1182/bloodadvances.2019000345] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
88 Agapiou A, Amann A, Mochalski P, Statheropoulos M, Thomas C. Trace detection of endogenous human volatile organic compounds for search, rescue and emergency applications. TrAC Trends in Analytical Chemistry 2015;66:158-75. [DOI: 10.1016/j.trac.2014.11.018] [Cited by in Crossref: 39] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
89 Jalal AH, Alam F, Roychoudhury S, Umasankar Y, Pala N, Bhansali S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens 2018;3:1246-63. [DOI: 10.1021/acssensors.8b00400] [Cited by in Crossref: 76] [Cited by in F6Publishing: 41] [Article Influence: 19.0] [Reference Citation Analysis]
90 Trefz P, Obermeier J, Lehbrink R, Schubert JK, Miekisch W, Fischer DC. Exhaled volatile substances in children suffering from type 1 diabetes mellitus: results from a cross-sectional study. Sci Rep 2019;9:15707. [PMID: 31673076 DOI: 10.1038/s41598-019-52165-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
91 Majchrzak T, Wojnowski W, Piotrowicz G, Gębicki J, Namieśnik J. Sample preparation and recent trends in volatolomics for diagnosing gastrointestinal diseases. TrAC Trends in Analytical Chemistry 2018;108:38-49. [DOI: 10.1016/j.trac.2018.08.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
92 Das S, Pal S, Mitra M. Significance of Exhaled Breath Test in Clinical Diagnosis: A Special Focus on the Detection of Diabetes Mellitus. J Med Biol Eng 2016;36:605-24. [PMID: 27853412 DOI: 10.1007/s40846-016-0164-6] [Cited by in Crossref: 49] [Cited by in F6Publishing: 26] [Article Influence: 8.2] [Reference Citation Analysis]
93 Zhu S, Corsetti S, Wang Q, Li C, Huang Z, Nabi G. Optical sensory arrays for the detection of urinary bladder cancer-related volatile organic compounds. J Biophotonics 2019;12:e201800165. [PMID: 30168296 DOI: 10.1002/jbio.201800165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
94 Schaal B, Saxton TK, Loos H, Soussignan R, Durand K. Olfaction scaffolds the developing human from neonate to adolescent and beyond. Philos Trans R Soc Lond B Biol Sci 2020;375:20190261. [PMID: 32306879 DOI: 10.1098/rstb.2019.0261] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
95 Kindilien S, Goldberg E. Household tobacco smoke exposure and acrylonitrile metabolite levels in a US pediatric sample. Environ Toxicol Pharmacol 2021;84:103616. [PMID: 33609751 DOI: 10.1016/j.etap.2021.103616] [Reference Citation Analysis]
96 Grassin-Delyle S, Roquencourt C, Moine P, Saffroy G, Carn S, Heming N, Fleuriet J, Salvator H, Naline E, Couderc LJ, Devillier P, Thévenot EA, Annane D; Garches COVID-19 Collaborative Group RECORDS Collaborators and Exhalomics® Collaborators. Metabolomics of exhaled breath in critically ill COVID-19 patients: A pilot study. EBioMedicine 2021;63:103154. [PMID: 33279860 DOI: 10.1016/j.ebiom.2020.103154] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
97 Sakr R, Ghsoub C, Rbeiz C, Lattouf V, Riachy R, Haddad C, Zoghbi M. COVID-19 detection by dogs: from physiology to field application-a review article. Postgrad Med J 2021:postgradmedj-2020-139410. [PMID: 33574179 DOI: 10.1136/postgradmedj-2020-139410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Mirzaei H, O'Brien A, Tasnim N, Ravishankara A, Tahmooressi H, Hoorfar M. Topical review on monitoring tetrahydrocannabinol in breath. J Breath Res 2020;14:034002. [PMID: 31842004 DOI: 10.1088/1752-7163/ab6229] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
99 Conte M, Conte G, Martucci M, Monti D, Casarosa L, Serra A, Mele M, Franceschi C, Salvioli S. The smell of longevity: a combination of Volatile Organic Compounds (VOCs) can discriminate centenarians and their offspring from age-matched subjects and young controls. Geroscience 2020;42:201-16. [PMID: 31808027 DOI: 10.1007/s11357-019-00143-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
100 Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. Nano Converg 2021;8:34. [PMID: 34727233 DOI: 10.1186/s40580-021-00282-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Vicent-claramunt A, Naujalis E. Cheap and easy human breath collection system for trace volatile organic compounds screening using thermal desorption – gas chromatography mass spectrometry. MethodsX 2021;8:101386. [DOI: 10.1016/j.mex.2021.101386] [Reference Citation Analysis]
102 Ten Hagen NA, Twele F, Meller S, Jendrny P, Schulz C, von Köckritz-Blickwede M, Osterhaus A, Ebbers H, Pink I, Welte T, Manns MP, Illig T, Fathi A, Addo MM, Nitsche A, Puyskens A, Michel J, Krause E, Ehmann R, von Brunn A, Ernst C, Zwirglmaier K, Wölfel R, Nau A, Philipp E, Engels M, Schalke E, Volk HA. Discrimination of SARS-CoV-2 Infections From Other Viral Respiratory Infections by Scent Detection Dogs. Front Med (Lausanne) 2021;8:749588. [PMID: 34869443 DOI: 10.3389/fmed.2021.749588] [Reference Citation Analysis]
103 Klemenz AC, Meyer J, Ekat K, Bartels J, Traxler S, Schubert JK, Kamp G, Miekisch W, Peters K. Differences in the Emission of Volatile Organic Compounds (VOCs) between Non-Differentiating and Adipogenically Differentiating Mesenchymal Stromal/Stem Cells from Human Adipose Tissue. Cells 2019;8:E697. [PMID: 31295931 DOI: 10.3390/cells8070697] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
104 Beauchamp J, Zardin E. Odorant Detection by On-line Chemical Ionization Mass Spectrometry. In: Buettner A, editor. Springer Handbook of Odor. Cham: Springer International Publishing; 2017. pp. 49-50. [DOI: 10.1007/978-3-319-26932-0_18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
105 Gould O, de Lacy Costello B, Smart A, Jones P, Macmaster A, Ransley K, Ratcliffe N. Gas Chromatography Mass Spectrometry (GC-MS) Quantification of Metabolites in Stool Using 13C Labelled Compounds. Metabolites 2018;8:E75. [PMID: 30384466 DOI: 10.3390/metabo8040075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
106 Misra BB. Metabolomics Tools to Study Links Between Pollution and Human Health: an Exposomics Perspective. Curr Pollution Rep 2019;5:93-111. [DOI: 10.1007/s40726-019-00109-4] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
107 Zhang R, Huang W, Li G, Hu Y. Noninvasive Strategy Based on Real-Time in Vivo Cataluminescence Monitoring for Clinical Breath Analysis. Anal Chem 2017;89:3353-61. [DOI: 10.1021/acs.analchem.6b03898] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
108 Willis C, Britton L, Swindells M, Jones E, Kemp A, Muirhead N, Gul A, Matin R, Knutsson L, Ali M. Invasive melanoma in vivo can be distinguished from basal cell carcinoma, benign naevi and healthy skin by canine olfaction: a proof-of-principle study of differential volatile organic compound emission. Br J Dermatol 2016;175:1020-9. [DOI: 10.1111/bjd.14887] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
109 Xia S, Luo X. Analysis of 2D nanomaterial BC3 for COVID-19 biomarker ethyl butyrate sensor. J Mater Chem B 2021;9:9221-9. [PMID: 34705009 DOI: 10.1039/d1tb00897h] [Reference Citation Analysis]
110 Sánchez-Vicente C, Santos JP, Lozano J, Sayago I, Sanjurjo JL, Azabal A, Ruiz-Valdepeñas S. Graphene-Doped Tin Oxide Nanofibers and Nanoribbons as Gas Sensors to Detect Biomarkers of Different Diseases through the Breath. Sensors (Basel) 2020;20:E7223. [PMID: 33348560 DOI: 10.3390/s20247223] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
111 Turner C. Techniques and issues in breath and clinical sample headspace analysis for disease diagnosis. Bioanalysis 2016;8:677-90. [PMID: 26978667 DOI: 10.4155/bio.16.22] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
112 Kakuta S, Nishiumi S, Yoshida M, Fukusaki E, Bamba T. Profiling of volatile compounds in APCMin/+ mice blood by dynamic headspace extraction and gas chromatography/mass spectrometry. Journal of Chromatography B 2015;1003:35-40. [DOI: 10.1016/j.jchromb.2015.09.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
113 Fuchsmann P, Tena Stern M, Münger LH, Pimentel G, Burton KJ, Vionnet N, Vergères G. Nutrivolatilomics of Urinary and Plasma Samples to Identify Candidate Biomarkers after Cheese, Milk, and Soy-Based Drink Intake in Healthy Humans. J Proteome Res 2020;19:4019-33. [DOI: 10.1021/acs.jproteome.0c00324] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 El Manouni El Hassani S, Bosch S, Lemmen JPM, Brizzio Brentar M, Ayada I, Wicaksono AN, Covington JA, Benninga MA, de Boer NKH, de Meij TGJ. Simultaneous Assessment of Urinary and Fecal Volatile Organic Compound Analysis in De Novo Pediatric IBD. Sensors (Basel) 2019;19:E4496. [PMID: 31623289 DOI: 10.3390/s19204496] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
115 Campanella B, Onor M, Lomonaco T, Benedetti E, Bramanti E. HS-SPME-GC-MS approach for the analysis of volatile salivary metabolites and application in a case study for the indirect assessment of gut microbiota. Anal Bioanal Chem 2019;411:7551-62. [PMID: 31641822 DOI: 10.1007/s00216-019-02158-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
116 Pleil JD, Sobus JR. Estimating central tendency from a single spot measure: A closed-form solution for lognormally distributed biomarker data for risk assessment at the individual level. J Toxicol Environ Health A 2016;79:837-47. [PMID: 27587289 DOI: 10.1080/15287394.2016.1193108] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
117 Sánchez C, Santos JP, Lozano J. Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath. Biosensors (Basel) 2019;9:E35. [PMID: 30823459 DOI: 10.3390/bios9010035] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
118 Belizário JE, Faintuch J, Malpartida MG. Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis of Infectious Diseases. Front Cell Infect Microbiol 2020;10:564194. [PMID: 33520731 DOI: 10.3389/fcimb.2020.564194] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
119 da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. Clin Mass Spectrom 2020;18:27-37. [PMID: 34820523 DOI: 10.1016/j.clinms.2020.10.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
120 Mako TL, Racicot JM, Levine M. Supramolecular Luminescent Sensors. Chem Rev 2019;119:322-477. [DOI: 10.1021/acs.chemrev.8b00260] [Cited by in Crossref: 232] [Cited by in F6Publishing: 127] [Article Influence: 58.0] [Reference Citation Analysis]
121 Leiherer A, Ślefarska D, Leja M, Heinzle C, Mündlein A, Kikuste I, Mezmale L, Drexel H, Mayhew CA, Mochalski P. The Volatilomic Footprints of Human HGC-27 and CLS-145 Gastric Cancer Cell Lines. Front Mol Biosci 2020;7:607904. [PMID: 33585559 DOI: 10.3389/fmolb.2020.607904] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Achyuthan KE, Harper JC, Manginell RP, Moorman MW. Volatile Metabolites Emission by In Vivo Microalgae-An Overlooked Opportunity? Metabolites 2017;7:E39. [PMID: 28788107 DOI: 10.3390/metabo7030039] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 7.2] [Reference Citation Analysis]
123 Saasa V, Malwela T, Beukes M, Mokgotho M, Liu CP, Mwakikunga B. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics (Basel) 2018;8:E12. [PMID: 29385067 DOI: 10.3390/diagnostics8010012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 28] [Article Influence: 15.3] [Reference Citation Analysis]
124 Gall ET, Mishra AK, Li J, Schiavon S, Laguerre A. Impact of Cognitive Tasks on CO 2 and Isoprene Emissions from Humans. Environ Sci Technol 2021;55:139-48. [DOI: 10.1021/acs.est.0c03850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
125 Kimball BA. Volatile metabolome: problems and prospects. Bioanalysis 2016;8:1987-91. [PMID: 27532599 DOI: 10.4155/bio-2016-0203] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
126 Ruiz F, Castelletto ML, Gang SS, Hallem EA. Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus. PLoS Pathog 2017;13:e1006709. [PMID: 29190282 DOI: 10.1371/journal.ppat.1006709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
127 Iitani K, Naisierding M, Toma K, Arakawa T, Mitsubayashi K. Evaluation for regional difference of skin-gas ethanol and sweat rate using alcohol dehydrogenase-mediated fluorometric gas-imaging system (sniff-cam). Analyst 2020;145:2915-24. [PMID: 32133466 DOI: 10.1039/c9an02089f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
128 Palma SICJ, Traguedo AP, Porteira AR, Frias MJ, Gamboa H, Roque ACA. Machine learning for the meta-analyses of microbial pathogens' volatile signatures. Sci Rep 2018;8:3360. [PMID: 29463885 DOI: 10.1038/s41598-018-21544-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
129 Yohe LR, Brand P; Handling editor: Rebecca Fuller. Evolutionary ecology of chemosensation and its role in sensory drive. Curr Zool 2018;64:525-33. [PMID: 30108633 DOI: 10.1093/cz/zoy048] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
130 Stavropoulos G, van Munster K, Ferrandino G, Sauca M, Ponsioen C, van Schooten FJ, Smolinska A. Liver Impairment-The Potential Application of Volatile Organic Compounds in Hepatology. Metabolites 2021;11:618. [PMID: 34564434 DOI: 10.3390/metabo11090618] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
131 Liu J, Liang Q, Oldham MJ, Rostami AA, Wagner KA, Gillman IG, Patel P, Savioz R, Sarkar M. Determination of Selected Chemical Levels in Room Air and on Surfaces after the Use of Cartridge- and Tank-Based E-Vapor Products or Conventional Cigarettes. Int J Environ Res Public Health 2017;14:E969. [PMID: 28846634 DOI: 10.3390/ijerph14090969] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
132 Eshima J, Davis TJ, Bean HD, Fricks J, Smith BS. A Metabolomic Approach for Predicting Diurnal Changes in Cortisol. Metabolites 2020;10:E194. [PMID: 32414047 DOI: 10.3390/metabo10050194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
133 Chien PJ, Suzuki T, Ye M, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K. Ultra-Sensitive Isopropanol Biochemical Gas Sensor (Bio-Sniffer) for Monitoring of Human Volatiles. Sensors (Basel) 2020;20:E6827. [PMID: 33260380 DOI: 10.3390/s20236827] [Reference Citation Analysis]
134 Blanchet L, Smolinska A, Baranska A, Tigchelaar E, Swertz M, Zhernakova A, Dallinga JW, Wijmenga C, van Schooten FJ. Factors that influence the volatile organic compound content in human breath. J Breath Res 2017;11:016013. [PMID: 28140379 DOI: 10.1088/1752-7163/aa5cc5] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 8.8] [Reference Citation Analysis]
135 Wallace MAG, Pleil JD. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal Chim Acta 2018;1024:18-38. [PMID: 29776545 DOI: 10.1016/j.aca.2018.01.069] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
136 Einoch Amor R, Nakhleh MK, Barash O, Haick H. Breath analysis of cancer in the present and the future. Eur Respir Rev 2019;28:190002. [DOI: 10.1183/16000617.0002-2019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
137 Mochalski P, Shuster G, Leja M, Unterkofler K, Jaeschke C, Skapars R, Gasenko E, Polaka I, Vasiljevs E, Shani G, Mitrovics J, Mayhew CA, Haick H. Non-contact breath sampling for sensor-based breath analysis. J Breath Res 2019;13:036001. [PMID: 30818286 DOI: 10.1088/1752-7163/ab0b8d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
138 Broza YY, Mochalski P, Ruzsanyi V, Amann A, Haick H. Hybride Volatolomik und der Nachweis von Krankheiten. Angew Chem 2015;127:11188-201. [DOI: 10.1002/ange.201500153] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
139 Malik R, Tomer VK, Mishra YK, Lin L. Functional gas sensing nanomaterials: A panoramic view. Applied Physics Reviews 2020;7:021301. [DOI: 10.1063/1.5123479] [Cited by in Crossref: 112] [Cited by in F6Publishing: 13] [Article Influence: 56.0] [Reference Citation Analysis]
140 Saidi T, Moufid M, Zaim O, El Bari N, Bouchikhi B. Voltammetric electronic tongue combined with chemometric techniques for direct identification of creatinine level in human urine. Measurement 2018;115:178-84. [DOI: 10.1016/j.measurement.2017.10.044] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
141 Worrall AD, Qian Z, Bernstein JA, Angelopoulos AP. Water-Resistant Polymeric Acid Membrane Catalyst for Acetone Detection in the Exhaled Breath of Diabetics. Anal Chem 2018;90:1819-26. [DOI: 10.1021/acs.analchem.7b03808] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
142 Vishinkin R, Haick H. Nanoscale Sensor Technologies for Disease Detection via Volatolomics. Small 2015;11:6142-64. [PMID: 26448487 DOI: 10.1002/smll.201501904] [Cited by in Crossref: 107] [Cited by in F6Publishing: 83] [Article Influence: 15.3] [Reference Citation Analysis]
143 Catino A, de Gennaro G, Di Gilio A, Facchini L, Galetta D, Palmisani J, Porcelli F, Varesano N. Breath Analysis: A Systematic Review of Volatile Organic Compounds (VOCs) in Diagnostic and Therapeutic Management of Pleural Mesothelioma. Cancers (Basel) 2019;11:E831. [PMID: 31207975 DOI: 10.3390/cancers11060831] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
144 Reeve C, Wentzell P, Wielens B, Jones C, Stehouwer K, Gadbois S. Assessing individual performance and maintaining breath sample integrity in biomedical detection dogs. Behav Processes 2018;155:8-18. [PMID: 28827118 DOI: 10.1016/j.beproc.2017.08.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
145 Hüppe T, Klasen R, Maurer F, Meiser A, Groesdonk HV, Sessler DI, Fink T, Kreuer S. Volatile Organic Compounds in Patients With Acute Kidney Injury and Changes During Dialysis. Crit Care Med 2019;47:239-46. [PMID: 30365402 DOI: 10.1097/CCM.0000000000003523] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
146 Lanza E, Di Rocco M, Schwartz S, Caprini D, Milanetti E, Ferrarese G, Lonardo MT, Pannone L, Ruocco G, Martinelli S, Folli V. C. elegans-based chemosensation strategy for the early detection of cancer metabolites in urine samples. Sci Rep 2021;11:17133. [PMID: 34429473 DOI: 10.1038/s41598-021-96613-z] [Reference Citation Analysis]
147 Jud W, Winkler JB, Niederbacher B, Niederbacher S, Schnitzler JP. Volatilomics: a non-invasive technique for screening plant phenotypic traits. Plant Methods 2018;14:109. [PMID: 30568721 DOI: 10.1186/s13007-018-0378-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
148 Hua Q, Wang L, Liu C, Han L, Zhang Y, Liu H. Volatile metabonomic profiling in urine to detect novel biomarkers for B-cell non-Hodgkin's lymphoma. Oncol Lett 2018;15:7806-16. [PMID: 29725472 DOI: 10.3892/ol.2018.8352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
149 Buszewski B, Milanowski M, Ligor T, Pomastowski P. Investigation of bacterial viability from incubated saliva by application of flow cytometry and hyphenated separation techniques. Electrophoresis 2017;38:2081-8. [PMID: 28429817 DOI: 10.1002/elps.201700057] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
150 Jendrny P, Schulz C, Twele F, Meller S, von Köckritz-Blickwede M, Osterhaus ADME, Ebbers J, Pilchová V, Pink I, Welte T, Manns MP, Fathi A, Ernst C, Addo MM, Schalke E, Volk HA. Scent dog identification of samples from COVID-19 patients - a pilot study. BMC Infect Dis 2020;20:536. [PMID: 32703188 DOI: 10.1186/s12879-020-05281-3] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 21.0] [Reference Citation Analysis]
151 Mallafré-Muro C, Llambrich M, Cumeras R, Pardo A, Brezmes J, Marco S, Gumà J. Comprehensive Volatilome and Metabolome Signatures of Colorectal Cancer in Urine: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021;13:2534. [PMID: 34064065 DOI: 10.3390/cancers13112534] [Reference Citation Analysis]
152 Tabor AE, Ali A, Rehman G, Rocha Garcia G, Zangirolamo AF, Malardo T, Jonsson NN. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Front Cell Infect Microbiol 2017;7:506. [PMID: 29322033 DOI: 10.3389/fcimb.2017.00506] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 7.6] [Reference Citation Analysis]
153 Majchrzak T, Wojnowski W, Dymerski T, Gębicki J, Namieśnik J. Electronic noses in classification and quality control of edible oils: A review. Food Chemistry 2018;246:192-201. [DOI: 10.1016/j.foodchem.2017.11.013] [Cited by in Crossref: 99] [Cited by in F6Publishing: 69] [Article Influence: 24.8] [Reference Citation Analysis]
154 Segev-bar M, Bachar N, Wolf Y, Ukrainsky B, Sarraf L, Haick H. Multi-Parametric Sensing Platforms Based on Nanoparticles. Adv Mater Technol 2017;2:1600206. [DOI: 10.1002/admt.201600206] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
155 Mack CI, Egert B, Liberto E, Weinert CH, Bub A, Hoffmann I, Bicchi C, Kulling SE, Cordero C. Robust Markers of Coffee Consumption Identified Among the Volatile Organic Compounds in Human Urine. Mol Nutr Food Res 2019;63:1801060. [DOI: 10.1002/mnfr.201801060] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
156 Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021;1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Reference Citation Analysis]
157 Wojnowski W, Majchrzak T, Szweda P, Dymerski T, Gębicki J, Namieśnik J. Rapid Evaluation of Poultry Meat Shelf Life Using PTR-MS. Food Anal Methods 2018;11:2085-92. [DOI: 10.1007/s12161-018-1193-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
158 Taware R, Taunk K, Pereira JAM, Dhakne R, Kannan N, Soneji D, Câmara JS, Nagarajaram HA, Rapole S. Investigation of urinary volatomic alterations in head and neck cancer: a non-invasive approach towards diagnosis and prognosis. Metabolomics 2017;13. [DOI: 10.1007/s11306-017-1251-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 2.6] [Reference Citation Analysis]
159 Barbosa JMG, Fernandes Rodrigues MK, David LC, E Silva TC, Fortuna Lima DA, Pereira NZ, D'Alessandro EB, de Oliveira AE, Jorge da Cunha PH, Fioravanti MCS, Antoniosi Filho NR. A volatolomic approach using cerumen as biofluid to diagnose bovine intoxication by Stryphnodendron rotundifolium. Biomed Chromatogr 2020;34:e4935. [PMID: 32598079 DOI: 10.1002/bmc.4935] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
160 Hageman JHJ, Nieuwenhuizen AG, van Ruth SM, Hageman JA, Keijer J. Application of Volatile Organic Compound Analysis in a Nutritional Intervention Study: Differential Responses during Five Hours Following Consumption of a High- and a Low-Fat Dairy Drink. Mol Nutr Food Res 2019;63:e1900189. [PMID: 31327167 DOI: 10.1002/mnfr.201900189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
161 Chingin K, Liang J, Hang Y, Hu L, Chen H. Rapid recognition of bacteremia in humans using atmospheric pressure chemical ionization mass spectrometry of volatiles emitted by blood cultures. RSC Adv 2015;5:13952-7. [DOI: 10.1039/c4ra16502k] [Cited by in Crossref: 17] [Article Influence: 2.4] [Reference Citation Analysis]
162 Diouf A, Motia S, El Alami El Hassani N, El Bari N, Bouchikhi B. Development and characterization of an electrochemical biosensor for creatinine detection in human urine based on functional molecularly imprinted polymer. Journal of Electroanalytical Chemistry 2017;788:44-53. [DOI: 10.1016/j.jelechem.2017.01.068] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
163 Shigeyama H, Wang T, Ichinose M, Ansai T, Lee SW. Identification of volatile metabolites in human saliva from patients with oral squamous cell carcinoma via zeolite-based thin-film microextraction coupled with GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019;1104:49-58. [PMID: 30445287 DOI: 10.1016/j.jchromb.2018.11.002] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
164 Rodríguez-Pérez R, Cortés R, Guamán A, Pardo A, Torralba Y, Gómez F, Roca J, Barberà JA, Cascante M, Marco S. Instrumental drift removal in GC-MS data for breath analysis: the short-term and long-term temporal validation of putative biomarkers for COPD. J Breath Res 2018;12:036007. [PMID: 29292699 DOI: 10.1088/1752-7163/aaa492] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
165 García-gómez D, Bregy L, Nussbaumer-ochsner Y, Gaisl T, Kohler M, Zenobi R. Detection and Quantification of Benzothiazoles in Exhaled Breath and Exhaled Breath Condensate by Real-Time Secondary Electrospray Ionization–High-Resolution Mass Spectrometry and Ultra-High Performance Liquid Chromatography. Environ Sci Technol 2015;49:12519-24. [DOI: 10.1021/acs.est.5b03809] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
166 Wurmitzer C, Blüthgen N, Krell F, Maldonado B, Ocampo F, Müller JK, Schmitt T. Attraction of dung beetles to herbivore dung and synthetic compounds in a comparative field study. Chemoecology 2017;27:75-84. [DOI: 10.1007/s00049-017-0232-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
167 Raninen K, Nenonen R, Järvelä-Reijonen E, Poutanen K, Mykkänen H, Raatikainen O. Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry Analysis of Exhaled Breath Compounds after Whole Grain Diets. Molecules 2021;26:2667. [PMID: 34063191 DOI: 10.3390/molecules26092667] [Reference Citation Analysis]
168 Singh KD, Del Miguel GV, Gaugg MT, Ibañez AJ, Zenobi R, Kohler M, Frey U, Sinues PM. Translating secondary electrospray ionization-high-resolution mass spectrometry to the clinical environment. J Breath Res 2018;12:027113. [PMID: 29411710 DOI: 10.1088/1752-7163/aa9ee3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
169 Opitz P, Herbarth O. The volatilome - investigation of volatile organic metabolites (VOM) as potential tumor markers in patients with head and neck squamous cell carcinoma (HNSCC). J Otolaryngol Head Neck Surg 2018;47:42. [PMID: 29970175 DOI: 10.1186/s40463-018-0288-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
170 Pérez-Jiménez M, Pozo-Bayón MÁ. Development of an in-mouth headspace sorptive extraction method (HSSE) for oral aroma monitoring and application to wines of different chemical composition. Food Res Int 2019;121:97-107. [PMID: 31108831 DOI: 10.1016/j.foodres.2019.03.030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
171 Goedicke-Fritz S, Werner T, Niemarkt HJ, Wolfs TGAM, Baumbach JI, Kemp MW, Jobe AH, Rogosch T, Bous M, Kaiser E, Stutz R, Meyer S, Maier RF, Koczulla AR, Spiller OB, Kramer BW, Zemlin M. Detection of Volatile Organic Compounds as Potential Novel Biomarkers for Chorioamnionitis - Proof of Experimental Models. Front Pediatr 2021;9:698489. [PMID: 34368028 DOI: 10.3389/fped.2021.698489] [Reference Citation Analysis]
172 Alrowaili ZA, Elsayed HA, Ahmed AM, Taha TA, Mehaney A. Simple, efficient and accurate method toward the monitoring of ethyl butanoate traces. Opt Quant Electron 2022;54. [DOI: 10.1007/s11082-021-03497-4] [Reference Citation Analysis]
173 Kunze-Szikszay N, Euler M, Perl T. Identification of volatile compounds from bacteria by spectrometric methods in medicine diagnostic and other areas: current state and perspectives. Appl Microbiol Biotechnol 2021;105:6245-55. [PMID: 34415392 DOI: 10.1007/s00253-021-11469-7] [Reference Citation Analysis]
174 Velez JSG, Muller A. Spontaneous Raman scattering at trace gas concentrations with a pressurized external multipass cavity. Meas Sci Technol 2021;32:045501. [DOI: 10.1088/1361-6501/abd11e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
175 Angle TC, Passler T, Waggoner PL, Fischer TD, Rogers B, Galik PK, Maxwell HS. Real-Time Detection of a Virus Using Detection Dogs. Front Vet Sci 2015;2:79. [PMID: 26779494 DOI: 10.3389/fvets.2015.00079] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
176 Binson VA, Subramoniam M, Mathew L. Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose. J Breath Res 2021;15. [PMID: 34243176 DOI: 10.1088/1752-7163/ac1326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
177 Schroeder V, Savagatrup S, He M, Lin S, Swager TM. Carbon Nanotube Chemical Sensors. Chem Rev 2019;119:599-663. [PMID: 30226055 DOI: 10.1021/acs.chemrev.8b00340] [Cited by in Crossref: 305] [Cited by in F6Publishing: 161] [Article Influence: 76.3] [Reference Citation Analysis]
178 Choueiry F, Zhu J. Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) fingerprinting enabled treatment monitoring of pulmonary carcinoma cells in real time. Anal Chim Acta 2022;1189:339230. [PMID: 34815037 DOI: 10.1016/j.aca.2021.339230] [Reference Citation Analysis]
179 Goryński K, Goryńska P, Górska A, Harężlak T, Jaroch A, Jaroch K, Lendor S, Skobowiat C, Bojko B. SPME as a promising tool in translational medicine and drug discovery: From bench to bedside. Journal of Pharmaceutical and Biomedical Analysis 2016;130:55-67. [DOI: 10.1016/j.jpba.2016.05.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
180 Belizário JE, Sircili MP. Novel biotechnological approaches for monitoring and immunization against resistant to antibiotics Escherichia coli and other pathogenic bacteria. BMC Vet Res 2020;16:420. [PMID: 33138825 DOI: 10.1186/s12917-020-02633-8] [Reference Citation Analysis]
181 Becker R. Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath? Med Hypotheses 2020;143:110060. [PMID: 32683218 DOI: 10.1016/j.mehy.2020.110060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
182 Casas-Ferreira AM, Nogal-Sánchez MD, Pérez-Pavón JL, Moreno-Cordero B. Non-separative mass spectrometry methods for non-invasive medical diagnostics based on volatile organic compounds: A review. Anal Chim Acta 2019;1045:10-22. [PMID: 30454564 DOI: 10.1016/j.aca.2018.07.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
183 Hough R, Archer D, Probert C. A comparison of sample preparation methods for extracting volatile organic compounds (VOCs) from equine faeces using HS-SPME. Metabolomics 2018;14:19. [PMID: 29367839 DOI: 10.1007/s11306-017-1315-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
184 Cheng HW, Yan S, Han L, Chen Y, Kang N, Skeete Z, Luo J, Zhong CJ. Chemiresistive properties regulated by nanoscale curvature in molecularly-linked nanoparticle composite assembly. Nanoscale 2017;9:4013-23. [PMID: 28272612 DOI: 10.1039/c6nr09315a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
185 Iitani K, Toma K, Arakawa T, Mitsubayashi K. Transcutaneous Blood VOC Imaging System (Skin-Gas Cam) with Real-Time Bio-Fluorometric Device on Rounded Skin Surface. ACS Sens 2020;5:338-45. [PMID: 31874557 DOI: 10.1021/acssensors.9b01658] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
186 García-gómez D, Gaisl T, Bregy L, Cremonesi A, Sinues PM, Kohler M, Zenobi R. Real-Time Quantification of Amino Acids in the Exhalome by Secondary Electrospray Ionization–Mass Spectrometry: A Proof-of-Principle Study. Clinical Chemistry 2016;62:1230-7. [DOI: 10.1373/clinchem.2016.256909] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
187 Tomer VK, Singh K, Kaur H, Shorie M, Sabherwal P. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sensors and Actuators B: Chemical 2017;253:703-13. [DOI: 10.1016/j.snb.2017.06.179] [Cited by in Crossref: 71] [Cited by in F6Publishing: 28] [Article Influence: 14.2] [Reference Citation Analysis]
188 Broza YY, Haick H. Biodiagnostics in an era of global pandemics-From biosensing materials to data management. View (Beijing) 2021;:20200164. [PMID: 34766159 DOI: 10.1002/VIW.20200164] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Lichtenstein M, Turjerman S, Pinto JM, Barash O, Koren O. Pathophysiology of SARS-CoV-2 Infection in the Upper Respiratory Tract and Its Relation to Breath Volatile Organic Compounds. mSystems 2021;6:e0010421. [PMID: 34313463 DOI: 10.1128/mSystems.00104-21] [Reference Citation Analysis]
190 Ron-Doitch S, Kohen R. The Cutaneous Physiological Redox: Essential to Maintain but Difficult to Define. Antioxidants (Basel) 2020;9:E942. [PMID: 33019510 DOI: 10.3390/antiox9100942] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
191 Rattray NJ, Hamrang Z, Trivedi DK, Goodacre R, Fowler SJ. Taking your breath away: metabolomics breathes life in to personalized medicine. Trends Biotechnol 2014;32:538-48. [PMID: 25179940 DOI: 10.1016/j.tibtech.2014.08.003] [Cited by in Crossref: 87] [Cited by in F6Publishing: 74] [Article Influence: 10.9] [Reference Citation Analysis]
192 de Groot EF, de Meij TG, Berkhout DJ, van der Schee MP, de Boer NK. Flatography: Detection of gastrointestinal diseases by faecal gas analysis. World J Gastrointest Pharmacol Ther 2015; 6(4): 111-113 [PMID: 26558144 DOI: 10.4292/wjgpt.v6.i4.111] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
193 Ye M, Chien PJ, Toma K, Arakawa T, Mitsubayashi K. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath. Biosens Bioelectron 2015;73:208-13. [PMID: 26079672 DOI: 10.1016/j.bios.2015.04.023] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 7.4] [Reference Citation Analysis]
194 Cavallari MR, Pastrana LM, Sosa CDF, Marquina AMR, Izquierdo JEE, Fonseca FJ, Amorim CA, Paterno LG, Kymissis I. Organic Thin-Film Transistors as Gas Sensors: A Review. Materials (Basel) 2020;14:E3. [PMID: 33375044 DOI: 10.3390/ma14010003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
195 Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, Barber D, Escribese MM. Answer to: "Biomarkers in allergic asthma: Which matrix should we use?". Clin Exp Allergy 2017;47:1099-100. [PMID: 28639292 DOI: 10.1111/cea.12968] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
196 Rodríguez-Hernández P, Rodríguez-Estévez V, Arce L, Gómez-Laguna J. Application of Volatilome Analysis to the Diagnosis of Mycobacteria Infection in Livestock. Front Vet Sci 2021;8:635155. [PMID: 34109231 DOI: 10.3389/fvets.2021.635155] [Reference Citation Analysis]
197 Jung YJ, Seo HS, Kim JH, Song KY, Park CH, Lee HH. Advanced Diagnostic Technology of Volatile Organic Compounds Real Time analysis Analysis From Exhaled Breath of Gastric Cancer Patients Using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry. Front Oncol 2021;11:560591. [PMID: 33996531 DOI: 10.3389/fonc.2021.560591] [Reference Citation Analysis]
198 Jendrny P, Twele F, Meller S, Osterhaus ADME, Schalke E, Volk HA. Canine olfactory detection and its relevance to medical detection. BMC Infect Dis 2021;21:838. [PMID: 34412582 DOI: 10.1186/s12879-021-06523-8] [Reference Citation Analysis]
199 Moor CC, Oppenheimer JC, Nakshbandi G, Aerts JGJV, Brinkman P, Maitland-van der Zee AH, Wijsenbeek MS. Exhaled breath analysis by use of eNose technology: a novel diagnostic tool for interstitial lung disease. Eur Respir J 2021;57:2002042. [PMID: 32732331 DOI: 10.1183/13993003.02042-2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
200 Heaney LM, Lindley MR. Translation of exhaled breath volatile analyses to sport and exercise applications. Metabolomics 2017;13. [DOI: 10.1007/s11306-017-1266-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
201 Jendrny P, Twele F, Meller S, Schulz C, von Köckritz-Blickwede M, Osterhaus ADME, Ebbers H, Ebbers J, Pilchová V, Pink I, Welte T, Manns MP, Fathi A, Addo MM, Ernst C, Schäfer W, Engels M, Petrov A, Marquart K, Schotte U, Schalke E, Volk HA. Scent dog identification of SARS-CoV-2 infections in different body fluids. BMC Infect Dis 2021;21:707. [PMID: 34315418 DOI: 10.1186/s12879-021-06411-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
202 Mommers EHH, van Kooten L, Nienhuijs SW, de Vries Reilingh TS, Lubbers T, Mees BME, Schurink GWH, Bouvy ND. Can Electric Nose Breath Analysis Identify Abdominal Wall Hernia Recurrence and Aortic Aneurysms? A Proof-of-Concept Study. Surg Innov 2020;27:366-72. [PMID: 32449457 DOI: 10.1177/1553350620917898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
203 Poldy J. Volatile Cues Influence Host-Choice in Arthropod Pests. Animals (Basel) 2020;10:E1984. [PMID: 33126768 DOI: 10.3390/ani10111984] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
204 Liao YH, Wang ZC, Zhang FG, Abbod MF, Shih CH, Shieh JS. Machine Learning Methods Applied to Predict Ventilator-Associated Pneumonia with Pseudomonas aeruginosa Infection via Sensor Array of Electronic Nose in Intensive Care Unit. Sensors (Basel) 2019;19:E1866. [PMID: 31003541 DOI: 10.3390/s19081866] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
205 Mansurova M, Ebert BE, Blank LM, Ibáñez AJ. A breath of information: the volatilome. Curr Genet 2018;64:959-64. [DOI: 10.1007/s00294-017-0800-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 4.6] [Reference Citation Analysis]
206 Saidi T, Moufid M, Zaim O, Bari NE, Ionescu R, Bouchikhi B. Artificial Sensory Systems Combined with UV-Vis Spectrophotometry as a Robust Approach for VOCs Analysis of Human Urine and Exhaled Breath. Procedia Technology 2017;27:256-7. [DOI: 10.1016/j.protcy.2017.04.110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
207 Ghosh C, Leon A, Koshy S, Aloum O, Al-Jabawi Y, Ismail N, Weiss ZF, Koo S. Breath-Based Diagnosis of Infectious Diseases: A Review of the Current Landscape. Clin Lab Med 2021;41:185-202. [PMID: 34020759 DOI: 10.1016/j.cll.2021.03.002] [Reference Citation Analysis]
208 Seo IS, Lee HG, Koo B, Koh CS, Park HY, Im C, Shin HC. Cross detection for odor of metabolic waste between breast and colorectal cancer using canine olfaction. PLoS One 2018;13:e0192629. [PMID: 29438432 DOI: 10.1371/journal.pone.0192629] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
209 Mochalski P, Mirmigkou S, Unterkofler K, Sulzer P, Mayhew CA, Märk TD. PTR-MS studies of the reactions of H3O+ with a number of deuterated volatile organic compounds and the subsequent sequential reactions of the primary product ions with water under normal and humid drift tube conditions: Implications for use of deuterated compounds for breath analysis. International Journal of Mass Spectrometry 2019;436:65-70. [DOI: 10.1016/j.ijms.2018.11.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
210 Henderson B, Khodabakhsh A, Metsälä M, Ventrillard I, Schmidt FM, Romanini D, Ritchie GAD, Te Lintel Hekkert S, Briot R, Risby T, Marczin N, Harren FJM, Cristescu SM. Laser spectroscopy for breath analysis: towards clinical implementation. Appl Phys B 2018;124:161. [PMID: 30956412 DOI: 10.1007/s00340-018-7030-x] [Cited by in Crossref: 61] [Cited by in F6Publishing: 31] [Article Influence: 15.3] [Reference Citation Analysis]
211 Timm CM, Lloyd EP, Egan A, Mariner R, Karig D. Direct Growth of Bacteria in Headspace Vials Allows for Screening of Volatiles by Gas Chromatography Mass Spectrometry. Front Microbiol 2018;9:491. [PMID: 29662472 DOI: 10.3389/fmicb.2018.00491] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
212 Li ZT, Zeng PY, Chen ZM, Guan WJ, Wang T, Lin Y, Li SQ, Zhang ZJ, Zhan YQ, Wang MD, Tan GB, Li X, Ye F. Exhaled Volatile Organic Compounds for Identifying Patients With Chronic Pulmonary Aspergillosis. Front Med (Lausanne) 2021;8:720119. [PMID: 34631744 DOI: 10.3389/fmed.2021.720119] [Reference Citation Analysis]
213 Papaefstathiou E, Stylianou M, Andreou C, Agapiou A. Breath analysis of smokers, non-smokers, and e-cigarette users. J Chromatogr B Analyt Technol Biomed Life Sci 2020;1160:122349. [PMID: 32920481 DOI: 10.1016/j.jchromb.2020.122349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
214 Lee DK, Na E, Park S, Park JH, Lim J, Kwon SW. In Vitro Tracking of Intracellular Metabolism-Derived Cancer Volatiles via Isotope Labeling. ACS Cent Sci 2018;4:1037-44. [PMID: 30159401 DOI: 10.1021/acscentsci.8b00296] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
215 Seif AM, Nikfarjam A, Hajghassem H. UV enhanced ammonia gas sensing properties of PANI/TiO2 core-shell nanofibers. Sensors and Actuators B: Chemical 2019;298:126906. [DOI: 10.1016/j.snb.2019.126906] [Cited by in Crossref: 25] [Cited by in F6Publishing: 6] [Article Influence: 8.3] [Reference Citation Analysis]
216 Beauchamp JD, Pleil JD. Breath: An Often Overlooked Medium in Biomarker Discovery. In: Seitz H, Schumacher S, editors. Biomarker Validation. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. pp. 75-93. [DOI: 10.1002/9783527680658.ch5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
217 Mentel S, Gallo K, Wagendorf O, Preissner R, Nahles S, Heiland M, Preissner S. Prediction of oral squamous cell carcinoma based on machine learning of breath samples: a prospective controlled study. BMC Oral Health 2021;21:500. [PMID: 34615514 DOI: 10.1186/s12903-021-01862-z] [Reference Citation Analysis]
218 van Keulen KE, Jansen ME, Schrauwen RWM, Kolkman JJ, Siersema PD. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer. Aliment Pharmacol Ther 2020;51:334-46. [PMID: 31858615 DOI: 10.1111/apt.15622] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
219 Eshima J, Ong S, Davis TJ, Miranda C, Krishnamurthy D, Nachtsheim A, Stufken J, Plaisier C, Fricks J, Bean HD, Smith BS. Monitoring changes in the healthy female metabolome across the menstrual cycle using GC × GC-TOFMS. Journal of Chromatography B 2019;1121:48-57. [DOI: 10.1016/j.jchromb.2019.04.046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
220 Zemánková K, Pavelicová K, Pompeiano A, Mravcová L, Černý M, Bendíčková K, Hortová Kohoutková M, Dryahina K, Vaculovičová M, Frič J, Vaníčková L. Targeted volatolomics of human monocytes: Comparison of 2D-GC/TOF-MS and 1D-GC/Orbitrap-MS methods. J Chromatogr B Analyt Technol Biomed Life Sci 2021;1184:122975. [PMID: 34655893 DOI: 10.1016/j.jchromb.2021.122975] [Reference Citation Analysis]
221 Li AJ, Pal VK, Kannan K. A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environmental Chemistry and Ecotoxicology 2021;3:91-116. [DOI: 10.1016/j.enceco.2021.01.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
222 Ashrafi M, Bates M, Baguneid M, Alonso-rasgado T, Rautemaa-richardson R, Bayat A. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections: VOC detection and wound infection diagnosis. Wound Rep and Reg 2017;25:574-90. [DOI: 10.1111/wrr.12563] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
223 Wang T, Tsang T, Turshudzhyan A, Dacus H, Tadros M. Updates, Controversies, and Emerging Approaches in Colorectal Screening. Cureus 2021;13:e17844. [PMID: 34660050 DOI: 10.7759/cureus.17844] [Reference Citation Analysis]
224 Feng Y, Wang W, Wang Y, Sun J, Zhang C, Shahzad Q, Mao Y, Zhao X, Song Z. Experimental study of destruction of acetone in exhaust gas using microwave-induced metal discharge. Science of The Total Environment 2018;645:788-95. [DOI: 10.1016/j.scitotenv.2018.07.183] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
225 Xu E, Pérez-Torres D, Fragkou PC, Zahar JR, Koulenti D. Nosocomial Pneumonia in the Era of Multidrug-Resistance: Updates in Diagnosis and Management. Microorganisms 2021;9:534. [PMID: 33807623 DOI: 10.3390/microorganisms9030534] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
226 Yucel M, Akin O, Cayoren M, Akduman I, Palaniappan A, Liedberg B, Hizal G, Inci F, Yildiz UH. Hand-Held Volatilome Analyzer Based on Elastically Deformable Nanofibers. Anal Chem 2018;90:5122-9. [DOI: 10.1021/acs.analchem.7b05187] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
227 Oliveira LF, Mallafré-Muro C, Giner J, Perea L, Sibila O, Pardo A, Marco S. Breath analysis using electronic nose and gas chromatography-mass spectrometry: A pilot study on bronchial infections in bronchiectasis. Clin Chim Acta 2021;526:6-13. [PMID: 34953821 DOI: 10.1016/j.cca.2021.12.019] [Reference Citation Analysis]
228 Martinez-Lozano Sinues P, Tarokh L, Li X, Kohler M, Brown SA, Zenobi R, Dallmann R. Circadian variation of the human metabolome captured by real-time breath analysis. PLoS One 2014;9:e114422. [PMID: 25545545 DOI: 10.1371/journal.pone.0114422] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
229 Van Malderen K, De Winter BY, De Man JG, De Schepper HU, Lamote K. Volatomics in inflammatory bowel disease and irritable bowel syndrome. EBioMedicine 2020;54:102725. [PMID: 32330874 DOI: 10.1016/j.ebiom.2020.102725] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
230 Pereira JAM, Porto-Figueira P, Taware R, Sukul P, Rapole S, Câmara JS. Unravelling the Potential of Salivary Volatile Metabolites in Oral Diseases. A Review. Molecules 2020;25:E3098. [PMID: 32646009 DOI: 10.3390/molecules25133098] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
231 Grandjean D, Sarkis R, Lecoq-Julien C, Benard A, Roger V, Levesque E, Bernes-Luciani E, Maestracci B, Morvan P, Gully E, Berceau-Falancourt D, Haufstater P, Herin G, Cabrera J, Muzzin Q, Gallet C, Bacqué H, Broc JM, Thomas L, Lichaa A, Moujaes G, Saliba M, Kuhn A, Galey M, Berthail B, Lapeyre L, Capelli A, Renault S, Bachir K, Kovinger A, Comas E, Stainmesse A, Etienne E, Voeltzel S, Mansouri S, Berceau-Falancourt M, Dami A, Charlet L, Ruau E, Issa M, Grenet C, Billy C, Tourtier JP, Desquilbet L. Can the detection dog alert on COVID-19 positive persons by sniffing axillary sweat samples? A proof-of-concept study. PLoS One 2020;15:e0243122. [PMID: 33301539 DOI: 10.1371/journal.pone.0243122] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
232 Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal. 2015;113:108-120. [PMID: 25577715 DOI: 10.1016/j.jpba.2014.12.017] [Cited by in Crossref: 112] [Cited by in F6Publishing: 103] [Article Influence: 14.0] [Reference Citation Analysis]
233 Sola Martínez RA, Pastor Hernández JM, Yanes Torrado Ó, Cánovas Díaz M, de Diego Puente T, Vinaixa Crevillent M. Exhaled volatile organic compounds analysis in clinical pediatrics: a systematic review. Pediatr Res 2021;89:1352-63. [PMID: 32919397 DOI: 10.1038/s41390-020-01116-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
234 Küppers L, Holz O, Schuchardt S, Gottlieb J, Fuge J, Greer M, Hohlfeld JM. Breath volatile organic compounds of lung transplant recipients with and without chronic lung allograft dysfunction. J Breath Res 2018;12:036023. [PMID: 29771243 DOI: 10.1088/1752-7163/aac5af] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
235 Russo G, Barbato F, Mita DG, Grumetto L. Simultaneous determination of fifteen multiclass organic pollutants in human saliva and serum by liquid chromatography–tandem ultraviolet/fluorescence detection: A validated method. Biomedical Chromatography 2019;33:e4427. [DOI: 10.1002/bmc.4427] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
236 Agarwal SM, Sharma M, Fatima S. VOCC: a database of volatile organic compounds in cancer. RSC Adv 2016;6:114783-9. [DOI: 10.1039/c6ra24414a] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
237 Stiegel MA, Pleil JD, Sobus JR, Madden MC. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures. PLoS One 2016;11:e0152458. [PMID: 27058360 DOI: 10.1371/journal.pone.0152458] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
238 Costa BRBD, Santos Júnior WJR, Maximiano IF, Gomes NC, Freitas BT, De Martinis BS. Application of microextraction techniques in alternative biological matrices with focus on forensic toxicology: a review. Bioanalysis 2021;13:45-64. [PMID: 33326299 DOI: 10.4155/bio-2020-0241] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
239 Murdocca M, De Masi C, Pucci S, Mango R, Novelli G, Di Natale C, Sangiuolo F. LOX-1 and cancer: an indissoluble liaison. Cancer Gene Ther 2021. [PMID: 33402733 DOI: 10.1038/s41417-020-00279-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
240 Zhang JD, Baker MJ, Liu Z, Kabir KMM, Kolachalama VB, Yates DH, Donald WA. Medical diagnosis at the point-of-care by portable high-field asymmetric waveform ion mobility spectrometry: a systematic review and meta-analysis. J Breath Res 2021;15. [PMID: 34252887 DOI: 10.1088/1752-7163/ac135e] [Reference Citation Analysis]
241 Berna AZ, McCarthy JS, Wang RX, Saliba KJ, Bravo FG, Cassells J, Padovan B, Trowell SC. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection. J Infect Dis 2015;212:1120-8. [PMID: 25810441 DOI: 10.1093/infdis/jiv176] [Cited by in F6Publishing: 50] [Reference Citation Analysis]
242 Broza YY, Mochalski P, Ruzsanyi V, Amann A, Haick H. Hybrid volatolomics and disease detection. Angew Chem Int Ed Engl 2015;54:11036-48. [PMID: 26235374 DOI: 10.1002/anie.201500153] [Cited by in Crossref: 144] [Cited by in F6Publishing: 123] [Article Influence: 20.6] [Reference Citation Analysis]
243 Dumitras DC, Petrus M, Bratu AM, Popa C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020;25:E1728. [PMID: 32283766 DOI: 10.3390/molecules25071728] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
244 Steinke M, Randell L, Dumbrell AJ, Saha M. Volatile Biomarkers for Aquatic Ecological Research. Next Generation Biomonitoring: Part 2. Elsevier; 2018. pp. 75-92. [DOI: 10.1016/bs.aecr.2018.09.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
245 Li X, Martinez-Lozano Sinues P, Dallmann R, Bregy L, Hollmén M, Proulx S, Brown SA, Detmar M, Kohler M, Zenobi R. Drug Pharmacokinetics Determined by Real-Time Analysis of Mouse Breath. Angew Chem Int Ed Engl 2015;54:7815-8. [PMID: 26015026 DOI: 10.1002/anie.201503312] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 5.9] [Reference Citation Analysis]
246 Monedeiro F, Milanowski M, Ratiu IA, Zmysłowski H, Ligor T, Buszewski B. VOC Profiles of Saliva in Assessment of Halitosis and Submandibular Abscesses Using HS-SPME-GC/MS Technique. Molecules 2019;24:E2977. [PMID: 31426356 DOI: 10.3390/molecules24162977] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
247 Pinu F. Grape and Wine Metabolomics to Develop New Insights Using Untargeted and Targeted Approaches. Fermentation 2018;4:92. [DOI: 10.3390/fermentation4040092] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
248 Kamel T, Helms J, Janssen-Langenstein R, Kouatchet A, Guillon A, Bourenne J, Contou D, Guervilly C, Coudroy R, Hoppe MA, Lascarrou JB, Quenot JP, Colin G, Meng P, Roustan J, Cracco C, Nay MA, Boulain T; Clinical Research in Intensive Care Sepsis Group (CRICS-TRIGGERSEP). Benefit-to-risk balance of bronchoalveolar lavage in the critically ill. A prospective, multicenter cohort study. Intensive Care Med 2020;46:463-74. [PMID: 31912201 DOI: 10.1007/s00134-019-05896-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
249 Zhong Q, Cheng F, Liang J, Wang X, Chen Y, Fang X, Hu L, Hang Y. Profiles of volatile indole emitted by Escherichia coli based on CDI-MS. Sci Rep 2019;9:13139. [PMID: 31511564 DOI: 10.1038/s41598-019-49436-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
250 Burton C, Ma Y. Current Trends in Cancer Biomarker Discovery Using Urinary Metabolomics: Achievements and New Challenges. Curr Med Chem. 2019;26:5-28. [PMID: 28914192 DOI: 10.2174/0929867324666170914102236] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
251 El Manouni El Hassani S, Soers RJ, Berkhout DJC, Niemarkt HJ, Weda H, Nijsen T, Benninga MA, de Boer NKH, de Meij TGJ, Knobel HH. Optimized sample preparation for fecal volatile organic compound analysis by gas chromatography-mass spectrometry. Metabolomics 2020;16:112. [PMID: 33037948 DOI: 10.1007/s11306-020-01735-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
252 Zannoni N, Li M, Wang N, Ernle L, Bekö G, Wargocki P, Langer S, Weschler CJ, Morrison G, Williams J. Effect of Ozone, Clothing, Temperature, and Humidity on the Total OH Reactivity Emitted from Humans. Environ Sci Technol 2021;55:13614-24. [PMID: 34591444 DOI: 10.1021/acs.est.1c01831] [Reference Citation Analysis]
253 Kramer C, Mochalski P, Unterkofler K, Agapiou A, Ruzsanyi V, Liedl KR. Prediction of blood:air and fat:air partition coefficients of volatile organic compounds for the interpretation of data in breath gas analysis. J Breath Res 2016;10:017103. [PMID: 26815030 DOI: 10.1088/1752-7155/10/1/017103] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
254 Cavaco C, Pereira JAM, Taunk K, Taware R, Rapole S, Nagarajaram H, Câmara JS. Screening of salivary volatiles for putative breast cancer discrimination: an exploratory study involving geographically distant populations. Anal Bioanal Chem 2018;410:4459-68. [PMID: 29732495 DOI: 10.1007/s00216-018-1103-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
255 Hintzen KFH, Grote J, Wintjens AGWE, Lubbers T, Eussen MMM, van Schooten FJ, Bouvy ND, Peeters A. Breath analysis for the detection of digestive tract malignancies: systematic review. BJS Open 2021;5:zrab013. [PMID: 33855362 DOI: 10.1093/bjsopen/zrab013] [Reference Citation Analysis]
256 Peel AM, Wilkinson M, Sinha A, Loke YK, Fowler SJ, Wilson AM. Volatile organic compounds associated with diagnosis and disease characteristics in asthma - A systematic review. Respir Med 2020;169:105984. [PMID: 32510334 DOI: 10.1016/j.rmed.2020.105984] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
257 Ghosh C, Singh V, Grandy J, Pawliszyn J. Recent advances in breath analysis to track human health by new enrichment technologies. J Sep Sci 2020;43:226-40. [PMID: 31826324 DOI: 10.1002/jssc.201900769] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]