BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Smith D, Španěl P, Gilchrist FJ, Lenney W. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection. J Breath Res 2013;7:044001. [DOI: 10.1088/1752-7155/7/4/044001] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Smith D. From molecules in space to molecules in breath. Paediatr Respir Rev 2016;17:50-2. [PMID: 26541224 DOI: 10.1016/j.prrv.2015.08.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Smith D, Španěl P. The SIFT and FALP techniques; applications to ionic and electronic reactions studies and their evolution to the SIFT-MS and FA-MS analytical methods. International Journal of Mass Spectrometry 2015;377:467-78. [DOI: 10.1016/j.ijms.2014.05.016] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
3 Chingin K, Liang J, Chen H. Direct analysis of in vitro grown microorganisms and mammalian cells by ambient mass spectrometry. RSC Adv 2014;4:5768. [DOI: 10.1039/c3ra46327c] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
4 Slade EA, Thorn RMS, Young AE, Reynolds DM. Real-time detection of volatile metabolites enabling species-level discrimination of bacterial biofilms associated with wound infection. J Appl Microbiol 2021. [PMID: 34617369 DOI: 10.1111/jam.15313] [Reference Citation Analysis]
5 Lauridsen RK, Skou PB, Rindzevicius T, Wu K, Molin S, Engelsen SB, Nielsen KG, Johansen HK, Boisen A. SERS spectroscopy for detection of hydrogen cyanide in breath from children colonised with P. aeruginosa. Anal Methods 2017;9:5757-62. [DOI: 10.1039/c7ay01693j] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
6 Ramsey KA, Schultz A, Stick SM. Biomarkers in Paediatric Cystic Fibrosis Lung Disease. Paediatr Respir Rev 2015;16:213-8. [PMID: 26051089 DOI: 10.1016/j.prrv.2015.05.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
7 Shestivska V, Dryahina K, Nunvář J, Sovová K, Elhottová D, Nemec A, Smith D, Španěl P. Quantitative analysis of volatile metabolites released in vitro by bacteria of the genus Stenotrophomonas for identification of breath biomarkers of respiratory infection in cystic fibrosis. J Breath Res 2015;9:027104. [DOI: 10.1088/1752-7155/9/2/027104] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
8 Davies SJ, Španěl P, Smith D. Breath analysis of ammonia, volatile organic compounds and deuterated water vapor in chronic kidney disease and during dialysis. Bioanalysis 2014;6:843-57. [DOI: 10.4155/bio.14.26] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 5.9] [Reference Citation Analysis]
9 Jujun R, Jie Z, Jian H, Zhang J. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards. Sci Rep 2015;5:13481. [PMID: 26316021 DOI: 10.1038/srep13481] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
10 Chingin K, Liang J, Hang Y, Hu L, Chen H. Rapid recognition of bacteremia in humans using atmospheric pressure chemical ionization mass spectrometry of volatiles emitted by blood cultures. RSC Adv 2015;5:13952-7. [DOI: 10.1039/c4ra16502k] [Cited by in Crossref: 17] [Article Influence: 2.4] [Reference Citation Analysis]
11 Miller TM, Viggiano AA, Shuman NS. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS. J Chem Phys 2018;148:184303. [PMID: 29764146 DOI: 10.1063/1.5026802] [Reference Citation Analysis]
12 Nair C, Shoemark A, Chan M, Ollosson S, Dixon M, Hogg C, Alton EW, Davies JC, Williams HD. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function. Eur Respir J 2014;44:1253-61. [PMID: 25186256 DOI: 10.1183/09031936.00097014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
13 Lourenço C, Turner C. Breath analysis in disease diagnosis: methodological considerations and applications. Metabolites 2014;4:465-98. [PMID: 24957037 DOI: 10.3390/metabo4020465] [Cited by in Crossref: 146] [Cited by in F6Publishing: 100] [Article Influence: 18.3] [Reference Citation Analysis]
14 Smith D, Španěl P. On the importance of accurate quantification of individual volatile metabolites in exhaled breath. J Breath Res 2017;11:047106. [PMID: 28635619 DOI: 10.1088/1752-7163/aa7ab5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
15 Nizio KD, Perrault KA, Troobnikoff AN, Ueland M, Shoma S, Iredell JR, Middleton PG, Forbes SL. In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. J Breath Res 2016;10:026008. [PMID: 27120170 DOI: 10.1088/1752-7155/10/2/026008] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 6.7] [Reference Citation Analysis]
16 Slade EA, Thorn RMS, Young A, Reynolds DM. An in vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics. BMC Microbiol 2019;19:310. [PMID: 31888471 DOI: 10.1186/s12866-019-1682-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
17 Metters JP, Kampouris DK, Banks CE. Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients. Analyst 2014;139:3999-4004. [DOI: 10.1039/c4an00675e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
18 Španěl P, Smith D. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. Clinical Mass Spectrometry 2020;16:18-24. [DOI: 10.1016/j.clinms.2020.02.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
19 Smith D, Španěl P. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas. Bioanalysis 2016;8:1183-201. [PMID: 27212131 DOI: 10.4155/bio-2016-0038] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
20 Smith D, Španěl P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res 2014;8:027101. [DOI: 10.1088/1752-7155/8/2/027101] [Cited by in Crossref: 117] [Cited by in F6Publishing: 104] [Article Influence: 14.6] [Reference Citation Analysis]
21 Gilchrist FJ. Research is the Future, the Future is……. Paediatr Respir Rev 2016;17:32-3. [PMID: 26527356 DOI: 10.1016/j.prrv.2015.08.008] [Reference Citation Analysis]
22 Smith D, Španěl P. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK. Analyst 2015;140:2573-91. [DOI: 10.1039/c4an02049a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 3] [Article Influence: 3.6] [Reference Citation Analysis]
23 Paleczek A, Grochala D, Rydosz A. Artificial Breath Classification Using XGBoost Algorithm for Diabetes Detection. Sensors (Basel) 2021;21:4187. [PMID: 34207196 DOI: 10.3390/s21124187] [Reference Citation Analysis]
24 Kelly J, Patrick R, Patrick S, Bell SEJ. Surface-Enhanced Raman Spectroscopy for the Detection of a Metabolic Product in the Headspace Above Live Bacterial Cultures. Angew Chem 2018;130:15912-6. [DOI: 10.1002/ange.201808185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
25 Turner C. Techniques and issues in breath and clinical sample headspace analysis for disease diagnosis. Bioanalysis 2016;8:677-90. [PMID: 26978667 DOI: 10.4155/bio.16.22] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
26 Chippendale TWE, Gilchrist FJ, Španěl P, Alcock A, Lenney W, Smith D. Quantification by SIFT-MS of volatile compounds emitted by Aspergillus fumigatus cultures and in co-culture with Pseudomonas aeruginosa , Staphylococcus aureus and Streptococcus pneumoniae. Anal Methods 2014;6:8154-64. [DOI: 10.1039/c4ay01217h] [Cited by in Crossref: 20] [Article Influence: 2.5] [Reference Citation Analysis]
27 Phan J, Meinardi S, Barletta B, Blake DR, Whiteson K. Stable isotope profiles reveal active production of VOCs from human-associated microbes. J Breath Res 2017;11:017101. [PMID: 28070022 DOI: 10.1088/1752-7163/aa5833] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
28 Huber P, Basso P, Reboud E, Attrée I. Pseudomonas aeruginosa renews its virulence factors. Environ Microbiol Rep 2016;8:564-71. [PMID: 27428387 DOI: 10.1111/1758-2229.12443] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
29 Liessi N, Pedemonte N, Armirotti A, Braccia C. Proteomics and Metabolomics for Cystic Fibrosis Research. Int J Mol Sci 2020;21:E5439. [PMID: 32751630 DOI: 10.3390/ijms21155439] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
30 Zuhra K, Szabo C. The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS J 2021. [PMID: 34297873 DOI: 10.1111/febs.16135] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Guła G, Dorotkiewicz-Jach A, Korzekwa K, Valvano MA, Drulis-Kawa Z. Complex Signaling Networks Controlling Dynamic Molecular Changes in Pseudomonas aeruginosa Biofilm. Curr Med Chem 2019;26:1979-93. [PMID: 30207213 DOI: 10.2174/0929867325666180912110151] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
32 Fernandes GE, Chang YW, Sharma A, Tutt S. One-Step Assembly of Fluorescence-Based Cyanide Sensors from Inexpensive, Off-The-Shelf Materials. Sensors (Basel) 2020;20:E4488. [PMID: 32796627 DOI: 10.3390/s20164488] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Chippendale TWE, Španěl P, Smith D, El Haj AJ. Counting cell number in situ by quantification of dimethyl sulphide in culture headspace. Analyst 2014;139:4903-7. [DOI: 10.1039/c4an01102c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Chen W, Roslund K, Fogarty CL, Pussinen PJ, Halonen L, Groop PH, Metsälä M, Lehto M. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy. Sci Rep 2016;6:22577. [PMID: 26940198 DOI: 10.1038/srep22577] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
35 Neerincx AH, Mandon J, van Ingen J, Arslanov DD, Mouton JW, Harren FJM, Merkus PJFM, Cristescu SM. Real-time monitoring of hydrogen cyanide (HCN) and ammonia (NH 3 ) emitted by Pseudomonas aeruginosa. J Breath Res 2015;9:027102. [DOI: 10.1088/1752-7155/9/2/027102] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
36 Gilchrist FJ, Španěl P, Smith D, Lenney W. The in vitro identification and quantification of volatile biomarkers released by cystic fibrosis pathogens. Anal Methods 2015;7:818-24. [DOI: 10.1039/c4ay02981j] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
37 Chen W, Metsälä M, Vaittinen O, Halonen L. Hydrogen cyanide in the headspace of oral fluid and in mouth-exhaled breath. J Breath Res 2014;8:027108. [DOI: 10.1088/1752-7155/8/2/027108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
38 Reboud E, Elsen S, Bouillot S, Golovkine G, Basso P, Jeannot K, Attrée I, Huber P. Phenotype and toxicity of the recently discovered exlA-positive Pseudomonas aeruginosa strains collected worldwide. Environ Microbiol 2016;18:3425-39. [PMID: 26914644 DOI: 10.1111/1462-2920.13262] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
39 Španěl P, Sovová K, Dryahina K, Doušová T, Dřevínek P, Smith D. Do linear logistic model analyses of volatile biomarkers in exhaled breath of cystic fibrosis patients reliably indicate Pseudomonas aeruginosa infection? J Breath Res 2016;10:036013. [DOI: 10.1088/1752-7155/10/3/036013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
40 Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8:034001. [PMID: 24946087 DOI: 10.1088/1752-7155/8/3/034001] [Cited by in Crossref: 284] [Cited by in F6Publishing: 237] [Article Influence: 35.5] [Reference Citation Analysis]
41 Ciuca IM, Marian P, Monica M. Biomarkers in Cystic Fibrosis Lung Disease - A Review. Rom J Anaesth Intensive Care 2020;27:34-6. [PMID: 34056131 DOI: 10.2478/rjaic-2020-0011] [Reference Citation Analysis]
42 Markar SR, Chin ST, Romano A, Wiggins T, Antonowicz S, Paraskeva P, Ziprin P, Darzi A, Hanna GB. Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry. Ann Surg 2019;269:903-10. [PMID: 29194085 DOI: 10.1097/SLA.0000000000002539] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
43 Pabary R, Huang J, Kumar S, Alton EW, Bush A, Hanna GB, Davies JC. Does mass spectrometric breath analysis detect Pseudomonas aeruginosa in cystic fibrosis? Eur Respir J 2016;47:994-7. [PMID: 26846826 DOI: 10.1183/13993003.00944-2015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
44 Smith D, Sovová K, Dryahina K, Doušová T, Dřevínek P, Španěl P. Breath concentration of acetic acid vapour is elevated in patients with cystic fibrosis. J Breath Res 2016;10:021002. [DOI: 10.1088/1752-7155/10/2/021002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
45 Elmassry MM, Piechulla B. Volatilomes of Bacterial Infections in Humans. Front Neurosci 2020;14:257. [PMID: 32269511 DOI: 10.3389/fnins.2020.00257] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
46 Malásková M, Henderson B, Chellayah PD, Ruzsanyi V, Mochalski P, Cristescu SM, Mayhew CA. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. J Breath Res 2019;13:046009. [PMID: 31163413 DOI: 10.1088/1752-7163/ab26e2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
47 Neerincx AH, Linders YA, Vermeulen L, Belderbos RA, Mandon J, van Mastrigt E, Pijnenburg MW, van Ingen J, Mouton JW, Kluijtmans LA, Wevers R, Harren FJ, Cristescu SM, Merkus PJ. Hydrogen cyanide emission in the lung by Staphylococcus aureus. Eur Respir J 2016;48:577-9. [DOI: 10.1183/13993003.02093-2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
48 Smith D, Španěl P, Hanna GB, Dweik R. Selected ion flow tube mass spectrometry. Breathborne Biomarkers and the Human Volatilome. Elsevier; 2020. pp. 137-53. [DOI: 10.1016/b978-0-12-819967-1.00009-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Chippendale TWE, Gilchrist FJ, Španěl P, Alcock A, Lenney W, Smith D. Quantification by SIFT-MS of volatile compounds emitted by in vitro cultures of S. aureus, S. pneumoniae and H. influenzae isolated from patients with respiratory diseases. Anal Methods 2014;6:2460. [DOI: 10.1039/c4ay00209a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
50 Krilaviciute A, Leja M, Kopp-schneider A, Barash O, Khatib S, Amal H, Broza YY, Polaka I, Parshutin S, Rudule A, Haick H, Brenner H. Associations of diet and lifestyle factors with common volatile organic compounds in exhaled breath of average-risk individuals. J Breath Res 2019;13:026006. [DOI: 10.1088/1752-7163/aaf3dc] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
51 Hu L, Liang J, Chingin K, Hang Y, Wu X, Chen H. Early release of 1-pyrroline by Pseudomonas aeruginosa cultures discovered using ambient corona discharge ionization mass spectrometry. RSC Adv 2016;6:8449-55. [DOI: 10.1039/c5ra24594j] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
52 Turnpenny P, Padfield A, Barton P, Teague J, Rahme LG, Pucci MJ, Zahler R, Rubio A. Bioanalysis of Pseudomonas aeruginosa alkyl quinolone signalling molecules in infected mouse tissue using LC-MS/MS; and its application to a pharmacodynamic evaluation of MvfR inhibition. J Pharm Biomed Anal 2017;139:44-53. [PMID: 28273650 DOI: 10.1016/j.jpba.2017.02.034] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
53 Kelly J, Patrick R, Patrick S, Bell SEJ. Surface-Enhanced Raman Spectroscopy for the Detection of a Metabolic Product in the Headspace Above Live Bacterial Cultures. Angew Chem Int Ed 2018;57:15686-90. [DOI: 10.1002/anie.201808185] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
54 Boots AW, Smolinska A, van Berkel JJ, Fijten RR, Stobberingh EE, Boumans ML, Moonen EJ, Wouters EF, Dallinga JW, Van Schooten FJ. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. J Breath Res 2014;8:027106. [PMID: 24737039 DOI: 10.1088/1752-7155/8/2/027106] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 9.9] [Reference Citation Analysis]
55 Azhar M, Mandon J, Neerincx AH, Liu Z, Mink J, Merkus PJFM, Cristescu SM, Harren FJM. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath. Appl Phys B 2017;123. [DOI: 10.1007/s00340-017-6842-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.2] [Reference Citation Analysis]
56 Smith D, Spanel P. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. J Breath Res 2015;9:022001. [PMID: 25830501 DOI: 10.1088/1752-7155/9/2/022001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
57 Ghosh C, Leon A, Koshy S, Aloum O, Al-Jabawi Y, Ismail N, Weiss ZF, Koo S. Breath-Based Diagnosis of Infectious Diseases: A Review of the Current Landscape. Clin Lab Med 2021;41:185-202. [PMID: 34020759 DOI: 10.1016/j.cll.2021.03.002] [Reference Citation Analysis]
58 Eiserich JP, Ott SP, Kadir T, Morrissey BM, Hayakawa KA, La Merrill MA, Cross CE. Quantitative assessment of cyanide in cystic fibrosis sputum and its oxidative catabolism by hypochlorous acid. Free Radic Biol Med 2018;129:146-54. [PMID: 30213640 DOI: 10.1016/j.freeradbiomed.2018.09.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Bannier MAGE, van de Kant KDG, Jöbsis Q, Dompeling E. Feasibility and diagnostic accuracy of an electronic nose in children with asthma and cystic fibrosis. J Breath Res 2019;13:036009. [PMID: 30213921 DOI: 10.1088/1752-7163/aae158] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
60 Zdor R. Bacterial cyanogenesis: impact on biotic interactions. J Appl Microbiol 2015;118:267-74. [DOI: 10.1111/jam.12697] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
61 Dryahina K, Pospíšilová V, Sovová K, Shestivska V, Kubišta J, Spesyvyi A, Pehal F, Turzíková J, Votruba J, Španěl P. Exhaled breath concentrations of acetic acid vapour in gastro-esophageal reflux disease. J Breath Res 2014;8:037109. [DOI: 10.1088/1752-7155/8/3/037109] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]