BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ligor T, Ligor M, Amann A, Ager C, Bachler M, Dzien A, Buszewski B. The analysis of healthy volunteers' exhaled breath by the use of solid-phase microextraction and GC-MS. J Breath Res 2008;2:046006. [DOI: 10.1088/1752-7155/2/4/046006] [Cited by in Crossref: 102] [Cited by in F6Publishing: 87] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Wallace MA, Kormos TM, Pleil JD. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science. J Toxicol Environ Health B Crit Rev 2016;19:380-409. [PMID: 27759495 DOI: 10.1080/10937404.2016.1215772] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
2 Schwarz K, Filipiak W, Amann A. Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS. J Breath Res 2009;3:027002. [PMID: 21383457 DOI: 10.1088/1752-7155/3/2/027002] [Cited by in Crossref: 93] [Cited by in F6Publishing: 81] [Article Influence: 7.2] [Reference Citation Analysis]
3 Pandey SK, Kim K. Human body-odor components and their determination. TrAC Trends in Analytical Chemistry 2011;30:784-96. [DOI: 10.1016/j.trac.2010.12.005] [Cited by in Crossref: 74] [Cited by in F6Publishing: 33] [Article Influence: 6.7] [Reference Citation Analysis]
4 Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV, Azaryan AA, Dmitrieva EV. Evaluation of the Possibility of Volatile Organic Compounds Determination in Exhaled Air by Gas Chromatography for the Noninvasive Diagnostics of Lung Cancer. J Anal Chem 2019;74:472-9. [DOI: 10.1134/s1061934819050034] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021;15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Dutta D, Chong NS, Lim SH. Endogenous volatile organic compounds in acute myeloid leukemia: origins and potential clinical applications. J Breath Res 2018;12:034002. [PMID: 29463782 DOI: 10.1088/1752-7163/aab108] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
7 Cumeras R, Figueras E, Gràcia I, Maddula S, Baumbach JI. What is a good control group? Int J Ion Mobil Spec 2013;16:191-8. [DOI: 10.1007/s12127-012-0116-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
8 Lu Y, Niu W, Zou X, Shen C, Xia L, Huang C, Wang H, Jiang H, Chu Y. Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites. Journal of Chromatography A 2017;1496:20-4. [DOI: 10.1016/j.chroma.2017.03.061] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
9 Bousamra M 2nd, Schumer E, Li M, Knipp RJ, Nantz MH, van Berkel V, Fu XA. Quantitative analysis of exhaled carbonyl compounds distinguishes benign from malignant pulmonary disease. J Thorac Cardiovasc Surg 2014;148:1074-80; discussion 1080-1. [PMID: 25129599 DOI: 10.1016/j.jtcvs.2014.06.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
10 Gaugg MT, Bruderer T, Nowak N, Eiffert L, Martinez-lozano Sinues P, Kohler M, Zenobi R. Mass-Spectrometric Detection of Omega-Oxidation Products of Aliphatic Fatty Acids in Exhaled Breath. Anal Chem 2017;89:10329-34. [DOI: 10.1021/acs.analchem.7b02092] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
11 Mellors TR, Blanchet L, Flynn JL, Tomko J, O'Malley M, Scanga CA, Lin PL, Hill JE. A new method to evaluate macaque health using exhaled breath: A case study of M. tuberculosis in a BSL-3 setting. J Appl Physiol (1985) 2017;122:695-701. [PMID: 28057819 DOI: 10.1152/japplphysiol.00888.2016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
12 Shaltaeva YR, Podlepetsky BI, Pershenkov VS. Detection of gas traces using semiconductor sensors, ion mobility spectrometry, and mass spectrometry. Eur J Mass Spectrom (Chichester) 2017;23:217-24. [PMID: 29028397 DOI: 10.1177/1469066717720795] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
13 Maurer F, Wolf A, Fink T, Rittershofer B, Heim N, Volk T, Baumbach JI, Kreuer S. Wash-out of ambient air contaminations for breath measurements. J Breath Res 2014;8:027107. [DOI: 10.1088/1752-7155/8/2/027107] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
14 Alonso M, Sanchez JM. Analytical challenges in breath analysis and its application to exposure monitoring. TrAC Trends in Analytical Chemistry 2013;44:78-89. [DOI: 10.1016/j.trac.2012.11.011] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
15 Arata C, Misztal PK, Tian Y, Lunderberg DM, Kristensen K, Novoselac A, Vance ME, Farmer DK, Nazaroff WW, Goldstein AH. Volatile organic compound emissions during HOMEChem. Indoor Air 2021. [PMID: 34272904 DOI: 10.1111/ina.12906] [Reference Citation Analysis]
16 Mochalski P, King J, Unterkofler K, Amann A. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. Analyst 2013;138:1405-18. [PMID: 23323261 DOI: 10.1039/c2an36193k] [Cited by in Crossref: 63] [Cited by in F6Publishing: 55] [Article Influence: 7.0] [Reference Citation Analysis]
17 Majidi R, Nadafan M. Application of nitrogenated holey graphene for detection of volatile organic biomarkers in exhaled breath of humans with chronic kidney disease: a density functional theory study. J Comput Electron 2021;20:1930-7. [DOI: 10.1007/s10825-021-01737-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Milanowski M, Pomastowski P, Ligor T, Buszewski B. Saliva – Volatile Biomarkers and Profiles. Critical Reviews in Analytical Chemistry 2017;47:251-66. [DOI: 10.1080/10408347.2016.1266925] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
19 Gashimova E, Osipova A, Temerdashev A, Porkhanov V, Polyakov I, Perunov D, Dmitrieva E. Exhaled breath analysis using GC-MS and an electronic nose for lung cancer diagnostics. Anal Methods 2021;13:4793-804. [PMID: 34581316 DOI: 10.1039/d1ay01163d] [Reference Citation Analysis]
20 Cumeras R, Cheung WH, Gulland F, Goley D, Davis CE. Chemical analysis of whale breath volatiles: a case study for non-invasive field health diagnostics of marine mammals. Metabolites 2014;4:790-806. [PMID: 25222833 DOI: 10.3390/metabo4030790] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
21 Li H, Zhu J. Differentiating Antibiotic-Resistant Staphylococcus aureus Using Secondary Electrospray Ionization Tandem Mass Spectrometry. Anal Chem 2018;90:12108-15. [DOI: 10.1021/acs.analchem.8b03029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
22 Amann A, Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, Denz H, Fiegl M, Hilbe W, Weiss W, Lukas P, Jamnig H, Hackl M, Haidenberger A, Sponring A, Filipiak W, Miekisch W, Schubert J, Troppmair J, Buszewski B. Analysis of exhaled breath for screening of lung cancer patients. memo 2010;3:106-12. [DOI: 10.1007/s12254-010-0219-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
23 Cazzola M, Segreti A, Capuano R, Bergamini A, Martinelli E, Calzetta L, Rogliani P, Ciaprini C, Ora J, Paolesse R, Di Natale C, D’amico A. Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Res Pract 2015;1. [DOI: 10.1186/s40749-015-0010-1] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
24 Tong H, Wang Y, Li Y, Liu S, Chi C, Liu D, Guo L, Li E, Wang C. Volatile organic metabolites identify patients with gastric carcinoma, gastric ulcer, or gastritis and control patients. Cancer Cell Int 2017;17:108. [PMID: 29200968 DOI: 10.1186/s12935-017-0475-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
25 Rabis T, Sommerwerck U, Anhenn O, Darwiche K, Freitag L, Teschler H, Bödeker B, Maddula S, Baumbach JI. Detection of infectious agents in the airways by ion mobility spectrometry of exhaled breath. Int J Ion Mobil Spec 2011;14:187-95. [DOI: 10.1007/s12127-011-0077-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
26 Buszewski B, Ligor T, Jezierski T, Wenda-Piesik A, Walczak M, Rudnicka J. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: comparison with discrimination by canines. Anal Bioanal Chem 2012;404:141-6. [PMID: 22660158 DOI: 10.1007/s00216-012-6102-8] [Cited by in Crossref: 99] [Cited by in F6Publishing: 84] [Article Influence: 9.9] [Reference Citation Analysis]
27 Anthony IGM, Brantley MR, Gaw CA, Floyd AR, Solouki T. Vacuum Ultraviolet Spectroscopy and Mass Spectrometry: A Tandem Detection Approach for Improved Identification of Gas Chromatography-Eluting Compounds. Anal Chem 2018;90:4878-85. [DOI: 10.1021/acs.analchem.8b00531] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
28 Wolf A, Baumbach JI, Kleber A, Maurer F, Maddula S, Favrod P, Jang M, Fink T, Volk T, Kreuer S. Multi-capillary column-ion mobility spectrometer (MCC-IMS) breath analysis in ventilated rats: a model with the feasibility of long-term measurements. J Breath Res 2014;8:016006. [DOI: 10.1088/1752-7155/8/1/016006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
29 Selyanchyn R, Korposh S, Matsui T, Matsui H, Lee S. Purge and Trap Sampling Coupled to Curie Point Thermal Desorption for the Detection of Parts per Trillion 2,4,6-Trichloroanisole in Water. Chroma 2010;71:317-21. [DOI: 10.1365/s10337-009-1428-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
30 Grabowska-polanowska B, Faber J, Skowron M, Miarka P, Pietrzycka A, Śliwka I, Amann A. Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. Journal of Chromatography A 2013;1301:179-89. [DOI: 10.1016/j.chroma.2013.05.012] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 6.3] [Reference Citation Analysis]
31 Vereb H, Dietrich AM, Alfeeli B, Agah M. The possibilities will take your breath away: breath analysis for assessing environmental exposure. Environ Sci Technol 2011;45:8167-75. [PMID: 21838235 DOI: 10.1021/es202041j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
32 Zhang X, Ren X, Zhong Y, Chingin K, Chen H. Rapid and sensitive detection of acetone in exhaled breath through the ambient reaction with water radical cations. Analyst 2021;146:5037-44. [PMID: 34231556 DOI: 10.1039/d1an00402f] [Reference Citation Analysis]
33 Ligor T, Pater Ł, Buszewski B. Application of an artificial neural network model for selection of potential lung cancer biomarkers. J Breath Res 2015;9:027106. [PMID: 25944812 DOI: 10.1088/1752-7155/9/2/027106] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
34 King J, Mochalski P, Kupferthaler A, Unterkofler K, Koc H, Filipiak W, Teschl S, Hinterhuber H, Amann A. Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study. Physiol Meas 2010;31:1169-84. [DOI: 10.1088/0967-3334/31/9/008] [Cited by in Crossref: 126] [Cited by in F6Publishing: 116] [Article Influence: 10.5] [Reference Citation Analysis]
35 Cumeras R, Favrod P, Rupp K, Figueras E, Gràcia I, Maddula S, Baumbach JI. Influence of operational background emissions on breath analysis using MCC/IMS devices. Int J Ion Mobil Spec 2012;15:69-78. [DOI: 10.1007/s12127-012-0094-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
36 Westhoff M, Rickermann M, Litterst P, Baumbach JI. Exogenous factors of influence on exhaled breath analysis by ion-mobility spectrometry (MCC/IMS). Int J Ion Mobil Spec 2019;22:59-69. [DOI: 10.1007/s12127-019-00247-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
37 Hunt KE, Moore MJ, Rolland RM, Kellar NM, Hall AJ, Kershaw J, Raverty SA, Davis CE, Yeates LC, Fauquier DA, Rowles TK, Kraus SD. Overcoming the challenges of studying conservation physiology in large whales: a review of available methods. Conserv Physiol 2013;1:cot006. [PMID: 27293590 DOI: 10.1093/conphys/cot006] [Cited by in Crossref: 108] [Cited by in F6Publishing: 96] [Article Influence: 12.0] [Reference Citation Analysis]
38 Mizukoshi A, Kumagai K, Yamamoto N, Noguchi M, Yoshiuchi K, Kumano H, Yanagisawa Y. A novel methodology to evaluate health impacts caused by VOC exposures using real-time VOC and Holter monitors. Int J Environ Res Public Health 2010;7:4127-38. [PMID: 21317998 DOI: 10.3390/ijerph7124127] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
39 Xie Y, Xing R, Li Q, Xu L, Song H. Three-dimensional ordered ZnO–CuO inverse opals toward low concentration acetone detection for exhaled breath sensing. Sensors and Actuators B: Chemical 2015;211:255-62. [DOI: 10.1016/j.snb.2015.01.086] [Cited by in Crossref: 72] [Cited by in F6Publishing: 40] [Article Influence: 10.3] [Reference Citation Analysis]
40 Dias CM, Menezes HC, Cardeal ZL. Environmental and biological determination of acrolein using new cold fiber solid phase microextraction with gas chromatography mass spectrometry. Anal Bioanal Chem 2017;409:2821-8. [DOI: 10.1007/s00216-017-0226-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
41 Wzorek B, Mochalski P, Sliwka I, Amann A. Application of GC-MS with a SPME and thermal desorption technique for determination of dimethylamine and trimethylamine in gaseous samples for medical diagnostic purposes. J Breath Res. 2010;4:026002. [PMID: 21383470 DOI: 10.1088/1752-7155/4/2/026002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
42 Zhu S, Corsetti S, Wang Q, Li C, Huang Z, Nabi G. Optical sensory arrays for the detection of urinary bladder cancer-related volatile organic compounds. J Biophotonics 2019;12:e201800165. [PMID: 30168296 DOI: 10.1002/jbio.201800165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
43 Saasa V, Malwela T, Beukes M, Mokgotho M, Liu CP, Mwakikunga B. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics (Basel) 2018;8:E12. [PMID: 29385067 DOI: 10.3390/diagnostics8010012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 28] [Article Influence: 15.3] [Reference Citation Analysis]
44 Hauschild AC, Schneider T, Pauling J, Rupp K, Jang M, Baumbach JI, Baumbach J. Computational methods for metabolomic data analysis of ion mobility spectrometry data-reviewing the state of the art. Metabolites 2012;2:733-55. [PMID: 24957760 DOI: 10.3390/metabo2040733] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
45 Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer. 2010;103:542-551. [PMID: 20648015 DOI: 10.1038/sj.bjc.6605810] [Cited by in Crossref: 462] [Cited by in F6Publishing: 376] [Article Influence: 38.5] [Reference Citation Analysis]
46 Kouremenos KA, Johansson M, Marriott PJ. Advances in gas chromatographic methods for the identification of biomarkers in cancer. J Cancer 2012;3:404-20. [PMID: 23074381 DOI: 10.7150/jca.4956] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
47 Huang J, Kumar S, Hanna GB. Investigation of C3-C10 aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS). J Breath Res 2014;8:037104. [PMID: 25190002 DOI: 10.1088/1752-7155/8/3/037104] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
48 Pleil JD. Categorizing biomarkers of the human exposome and developing metrics for assessing environmental sustainability. J Toxicol Environ Health B Crit Rev 2012;15:264-80. [PMID: 22571221 DOI: 10.1080/10937404.2012.672148] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
49 Smith D, Chippendale TWE, Španěl P. Reactions of the selected ion flow tube mass spectrometry reagent ions H 3 O + and NO + with a series of volatile aldehydes of biogenic significance: H 3 O + and NO + reactions with volatile aldehydes. Rapid Commun Mass Spectrom 2014;28:1917-28. [DOI: 10.1002/rcm.6977] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
50 Zhang Y, Guo L, Qiu Z, Lv Y, Chen G, Li E. Early diagnosis of breast cancer from exhaled breath by gas chromatography-mass spectrometry (GC/MS) analysis: A prospective cohort study. J Clin Lab Anal 2020;34:e23526. [PMID: 33150682 DOI: 10.1002/jcla.23526] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Gashimova E, Temerdashev A, Porkhanov V, Polyakov I, Perunov D, Azaryan A, Dmitrieva E. Investigation of different approaches for exhaled breath and tumor tissue analyses to identify lung cancer biomarkers. Heliyon 2020;6:e04224. [PMID: 32577579 DOI: 10.1016/j.heliyon.2020.e04224] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Tuboly E, Szabó A, Erős G, Mohácsi Á, Szabó G, Tengölics R, Rákhely G, Boros M. Determination of endogenous methane formation by photoacoustic spectroscopy. J Breath Res 2013;7:046004. [DOI: 10.1088/1752-7155/7/4/046004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
53 Bajtarevic A, Ager C, Pienz M, Klieber M, Schwarz K, Ligor M, Ligor T, Filipiak W, Denz H, Fiegl M, Hilbe W, Weiss W, Lukas P, Jamnig H, Hackl M, Haidenberger A, Buszewski B, Miekisch W, Schubert J, Amann A. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009;9:348. [PMID: 19788722 DOI: 10.1186/1471-2407-9-348] [Cited by in Crossref: 356] [Cited by in F6Publishing: 302] [Article Influence: 27.4] [Reference Citation Analysis]
54 Schmidt K, Podmore I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J Biomark 2015;2015:981458. [PMID: 26317039 DOI: 10.1155/2015/981458] [Cited by in Crossref: 73] [Cited by in F6Publishing: 58] [Article Influence: 10.4] [Reference Citation Analysis]
55 Westhoff M, Litterst P, Maddula S, Bödeker B, Baumbach JI. Statistical and bioinformatical methods to differentiate chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control by breath analysis using ion mobility spectrometry. Int J Ion Mobil Spec 2011;14:139-49. [DOI: 10.1007/s12127-011-0081-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
56 Jha SK, Hayashi K. Molecular structural discrimination of chemical compounds in body odor using their GC–MS chromatogram and clustering methods. International Journal of Mass Spectrometry 2017;423:1-14. [DOI: 10.1016/j.ijms.2017.09.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Amann A, Corradi M, Mazzone P, Mutti A. Lung cancer biomarkers in exhaled breath. Expert Review of Molecular Diagnostics 2014;11:207-17. [DOI: 10.1586/erm.10.112] [Cited by in Crossref: 114] [Cited by in F6Publishing: 103] [Article Influence: 14.3] [Reference Citation Analysis]
58 Buszewski B, Ligor T, Rudnicka J, Jezierski T, Walczak M, Wenda-piesik A. Analysis of Cancer Biomarkers in Exhaled Breath and Comparison with Sensory Indications by Dogs. Volatile Biomarkers. Elsevier; 2013. pp. 177-92. [DOI: 10.1016/b978-0-44-462613-4.00010-6] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
59 Luque de Castro M, Fernández-peralbo M. Analytical methods based on exhaled breath for early detection of lung cancer. TrAC Trends in Analytical Chemistry 2012;38:13-20. [DOI: 10.1016/j.trac.2012.03.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
60 Gall ET, Mishra AK, Li J, Schiavon S, Laguerre A. Impact of Cognitive Tasks on CO 2 and Isoprene Emissions from Humans. Environ Sci Technol 2021;55:139-48. [DOI: 10.1021/acs.est.0c03850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Ma H, Li X, Chen J, Wang H, Cheng T, Chen K, Xu S. Analysis of human breath samples of lung cancer patients and healthy controls with solid-phase microextraction (SPME) and flow-modulated comprehensive two-dimensional gas chromatography (GC × GC). Anal Methods 2014;6:6841. [DOI: 10.1039/c4ay01220h] [Cited by in Crossref: 24] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
62 Cumeras R, Schneider T, Favrod P, Figueras E, Gràcia I, Maddula S, Baumbach JI. Stability and alignment of MCC/IMS devices. Int J Ion Mobil Spec 2012;15:41-6. [DOI: 10.1007/s12127-012-0088-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
63 Bunkowski A, Maddula S, Davies AN, Westhoff M, Litterst P, Bödeker B, Baumbach JI. One-year time series of investigations of analytes within human breath using ion mobility spectrometry. Int J Ion Mobil Spec 2010;13:141-8. [DOI: 10.1007/s12127-010-0052-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
64 Bödeker B, Davies AN, Maddula S, Baumbach JI. Biomarker validation—room air variation during human breath investigations. Int J Ion Mobil Spec 2010;13:177-84. [DOI: 10.1007/s12127-010-0044-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
65 Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014;8:034001. [PMID: 24946087 DOI: 10.1088/1752-7155/8/3/034001] [Cited by in Crossref: 284] [Cited by in F6Publishing: 237] [Article Influence: 35.5] [Reference Citation Analysis]
66 Schwarz K, Pizzini A, Arendacká B, Zerlauth K, Filipiak W, Schmid A, Dzien A, Neuner S, Lechleitner M, Scholl-Bürgi S, Miekisch W, Schubert J, Unterkofler K, Witkovský V, Gastl G, Amann A. Breath acetone-aspects of normal physiology related to age and gender as determined in a PTR-MS study. J Breath Res 2009;3:027003. [PMID: 21383458 DOI: 10.1088/1752-7155/3/2/027003] [Cited by in Crossref: 73] [Cited by in F6Publishing: 60] [Article Influence: 5.6] [Reference Citation Analysis]
67 Mochalski P, Rudnicka J, Agapiou A, Statheropoulos M, Amann A, Buszewski B. Near real-time VOCs analysis using an aspiration ion mobility spectrometer. J Breath Res 2013;7:026002. [DOI: 10.1088/1752-7155/7/2/026002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
68 Wang Z, Wang C. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J Breath Res 2013;7:037109. [DOI: 10.1088/1752-7155/7/3/037109] [Cited by in Crossref: 131] [Cited by in F6Publishing: 81] [Article Influence: 14.6] [Reference Citation Analysis]
69 King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, Miekisch W, Schubert J, Hinterhuber H, Amann A. Isoprene and acetone concentration profiles during exercise on an ergometer. J Breath Res 2009;3:027006. [DOI: 10.1088/1752-7155/3/2/027006] [Cited by in Crossref: 189] [Cited by in F6Publishing: 165] [Article Influence: 14.5] [Reference Citation Analysis]
70 Fischer S, Bergmann A, Steffens M, Trefz P, Ziller M, Miekisch W, Schubert JS, Köhler H, Reinhold P. Impact of food intake on in vivo VOC concentrations in exhaled breath assessed in a caprine animal model. J Breath Res 2015;9:047113. [PMID: 26670078 DOI: 10.1088/1752-7155/9/4/047113] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
71 Larsson J, Leander D, Lewander Xu M, Fellman V, Bood J, Krite Svanberg E. Comparison of dermal vs internal light administration in human lungs using the TDLAS‐GASMAS technique—Phantom studies. J Biophotonics 2019;12. [DOI: 10.1002/jbio.201800350] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Li G, Cheng Z, Xiang Q, Yan L, Wang X, Xu J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sensors and Actuators B: Chemical 2019;283:590-601. [DOI: 10.1016/j.snb.2018.09.117] [Cited by in Crossref: 119] [Cited by in F6Publishing: 40] [Article Influence: 39.7] [Reference Citation Analysis]
73 Li M, Biswas S, Nantz MH, Higashi RM, Fu X. A microfabricated preconcentration device for breath analysis. Sensors and Actuators B: Chemical 2013;180:130-6. [DOI: 10.1016/j.snb.2012.07.034] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
74 Chen Y, Zhang Y, Pan F, Liu J, Wang K, Zhang C, Cheng S, Lu L, Zhang W, Zhang Z, Zhi X, Zhang Q, Alfranca G, de la Fuente JM, Chen D, Cui D. Breath Analysis Based on Surface-Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons. ACS Nano 2016;10:8169-79. [PMID: 27409521 DOI: 10.1021/acsnano.6b01441] [Cited by in Crossref: 111] [Cited by in F6Publishing: 93] [Article Influence: 18.5] [Reference Citation Analysis]
75 Zhou W, Huang C, Zou X, Lu Y, Xia L, Shen C, Chu Y. Modification of an atmospheric pressure photoionization source for online analysis of exhaled breath coupled with quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem 2020;412:3663-71. [PMID: 32333078 DOI: 10.1007/s00216-020-02602-y] [Reference Citation Analysis]
76 Kapishon V, Koyanagi GK, Blagojevic V, Bohme DK. Atmospheric pressure chemical ionization mass spectrometry of pyridine and isoprene: potential breath exposure and disease biomarkers. J Breath Res 2013;7:026005. [PMID: 23579200 DOI: 10.1088/1752-7155/7/2/026005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
77 Caldeira M, Barros AS, Bilelo MJ, Parada A, Câmara JS, Rocha SM. Profiling allergic asthma volatile metabolic patterns using a headspace-solid phase microextraction/gas chromatography based methodology. J Chromatogr A 2011;1218:3771-80. [PMID: 21546028 DOI: 10.1016/j.chroma.2011.04.026] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 5.5] [Reference Citation Analysis]
78 de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, Osborne D, Ratcliffe NM. A review of the volatiles from the healthy human body. J Breath Res. 2014;8:014001. [PMID: 24421258 DOI: 10.1088/1752-7155/8/1/014001] [Cited by in Crossref: 448] [Cited by in F6Publishing: 371] [Article Influence: 56.0] [Reference Citation Analysis]
79 Jaeschke C, Padilla M, Glöckler J, Polaka I, Leja M, Veliks V, Mitrovics J, Leja M, Mizaikoff B. Modular Breath Analyzer (MBA): Introduction of a Breath Analyzer Platform Based on an Innovative and Unique, Modular eNose Concept for Breath Diagnostics and Utilization of Calibration Transfer Methods in Breath Analysis Studies. Molecules 2021;26:3776. [PMID: 34205805 DOI: 10.3390/molecules26123776] [Reference Citation Analysis]
80 Ligor M, Ligor T, Bajtarevic A, Ager C, Pienz M, Klieber M, Denz H, Fiegl M, Hilbe W, Weiss W, Lukas P, Jamnig H, Hackl M, Buszewski B, Miekisch W, Schubert J, Amann A. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin Chem Lab Med 2009;47:550-60. [PMID: 19397483 DOI: 10.1515/CCLM.2009.133] [Cited by in Crossref: 163] [Cited by in F6Publishing: 56] [Article Influence: 12.5] [Reference Citation Analysis]
81 Zou X, Zhou W, Lu Y, Shen C, Hu Z, Wang H, Jiang H, Chu Y. Exhaled gases online measurements for esophageal cancer patients and healthy people by proton transfer reaction mass spectrometry. J Gastroenterol Hepatol. 2016;31:1837-1843. [PMID: 26996099 DOI: 10.1111/jgh.13380] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
82 He J, Sun X, Yang X. Human respiratory system as sink for volatile organic compounds: Evidence from field measurements. Indoor Air 2019;29:968-78. [DOI: 10.1111/ina.12602] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
83 Aksenov AA, Sandrock CE, Zhao W, Sankaran S, Schivo M, Harper R, Cardona CJ, Xing Z, Davis CE. Cellular scent of influenza virus infection. Chembiochem 2014;15:1040-8. [PMID: 24719290 DOI: 10.1002/cbic.201300695] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 6.0] [Reference Citation Analysis]
84 Fink T, Wolf A, Maurer F, Albrecht FW, Heim N, Wolf B, Hauschild AC, Bödeker B, Baumbach JI, Volk T, Sessler DI, Kreuer S. Volatile Organic Compounds during Inflammation and Sepsis in Rats. Anesthesiology 2015;122:117-26. [DOI: 10.1097/aln.0000000000000420] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
85 Westhoff M, Litterst P, Maddula S, Bödeker B, Rahmann S, Davies AN, Baumbach JI. Differentiation of chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control group by breath analysis using ion mobility spectrometry. Int J Ion Mobil Spec 2010;13:131-9. [DOI: 10.1007/s12127-010-0049-2] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
86 Jünger M, Bödeker B, Baumbach JI. Peak assignment in multi-capillary column–ion mobility spectrometry using comparative studies with gas chromatography–mass spectrometry for VOC analysis. Anal Bioanal Chem 2010;396:471-82. [DOI: 10.1007/s00216-009-3168-z] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 4.9] [Reference Citation Analysis]
87 King J, Koc H, Unterkofler K, Mochalski P, Kupferthaler A, Teschl G, Teschl S, Hinterhuber H, Amann A. Physiological modeling of isoprene dynamics in exhaled breath. J Theor Biol 2010;267:626-37. [PMID: 20869370 DOI: 10.1016/j.jtbi.2010.09.028] [Cited by in Crossref: 125] [Cited by in F6Publishing: 113] [Article Influence: 10.4] [Reference Citation Analysis]
88 Koc H, King J, Teschl G, Unterkofler K, Teschl S, Mochalski P, Hinterhuber H, Amann A. The role of mathematical modeling in VOC analysis using isoprene as a prototypic example. J Breath Res 2011;5:037102. [DOI: 10.1088/1752-7155/5/3/037102] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
89 Smith D, Španěl P. SIFT-MS and FA-MS methods for ambient gas phase analysis: developments and applications in the UK. Analyst 2015;140:2573-91. [DOI: 10.1039/c4an02049a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 3] [Article Influence: 3.6] [Reference Citation Analysis]
90 Mochalski P, King J, Klieber M, Unterkofler K, Hinterhuber H, Baumann M, Amann A. Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst 2013;138:2134-45. [PMID: 23435188 DOI: 10.1039/c3an36756h] [Cited by in Crossref: 121] [Cited by in F6Publishing: 113] [Article Influence: 13.4] [Reference Citation Analysis]
91 Hauschild AC, Frisch T, Baumbach JI, Baumbach J. Carotta: Revealing Hidden Confounder Markers in Metabolic Breath Profiles. Metabolites 2015;5:344-63. [PMID: 26065494 DOI: 10.3390/metabo5020344] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]