BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sundar S, Kundu J, Kundu SC. Biopolymeric nanoparticles. Sci Technol Adv Mater 2010;11:014104. [PMID: 27877319 DOI: 10.1088/1468-6996/11/1/014104] [Cited by in Crossref: 166] [Cited by in F6Publishing: 138] [Article Influence: 13.8] [Reference Citation Analysis]
Number Citing Articles
1 Ishak KA, Annuar MSM, Ahmad N. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique. Appl Biochem Biotechnol 2017;183:1191-208. [DOI: 10.1007/s12010-017-2492-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Heinze T, Siebert M, Berlin P, Koschella A. Biofunctional Materials Based on Amino Cellulose Derivatives - A Nanobiotechnological Concept: Amino Celluloses. Macromol Biosci 2016;16:10-42. [DOI: 10.1002/mabi.201500184] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
3 Lamri M, Bhattacharya T, Boukid F, Chentir I, Dib AL, Das D, Djenane D, Gagaoua M. Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. Foods 2021;10:2633. [PMID: 34828914 DOI: 10.3390/foods10112633] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Verma D, Gulati N, Kaul S, Mukherjee S, Nagaich U. Protein Based Nanostructures for Drug Delivery. J Pharm (Cairo) 2018;2018:9285854. [PMID: 29862118 DOI: 10.1155/2018/9285854] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 11.3] [Reference Citation Analysis]
5 Go EJ, Kim EJ, Hur W. In vitro cellular uptake of fibroin microspheres and its dependency on the cell cycle stage. Journal of Microencapsulation 2012;30:124-31. [DOI: 10.3109/02652048.2012.704951] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
6 Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, Kundu SC. Silk proteins for biomedical applications: Bioengineering perspectives. Progress in Polymer Science 2014;39:251-67. [DOI: 10.1016/j.progpolymsci.2013.09.002] [Cited by in Crossref: 265] [Cited by in F6Publishing: 162] [Article Influence: 33.1] [Reference Citation Analysis]
7 Gandhi SS, Yan H, Kim C. Thermoresponsive Gelatin Nanogels. ACS Macro Lett 2014;3:1210-4. [DOI: 10.1021/mz500499q] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
8 Castro RI, Morales-Quintana L, Alvarado N, Guzmán L, Forero-Doria O, Valenzuela-Riffo F, Laurie VF. Design and Optimization of a Self-Assembling Complex Based on Microencapsulated Calcium Alginate and Glutathione (CAG) Using Response Surface Methodology. Polymers (Basel) 2021;13:2080. [PMID: 34202791 DOI: 10.3390/polym13132080] [Reference Citation Analysis]
9 Ma Y, Canup BSB, Tong X, Dai F, Xiao B. Multi-Responsive Silk Fibroin-Based Nanoparticles for Drug Delivery. Front Chem 2020;8:585077. [PMID: 33240846 DOI: 10.3389/fchem.2020.585077] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
10 Verma ML, Dhanya B, Sukriti, Rani V, Thakur M, Jeslin J, Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules 2020;154:390-412. [DOI: 10.1016/j.ijbiomac.2020.03.105] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
11 Dib I, Fauconnier ML, Sindic M, Belmekki F, Assaidi A, Berrabah M, Mekhfi H, Aziz M, Legssyer A, Bnouham M, Ziyyat A. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC Complement Altern Med 2017;17:82. [PMID: 28143473 DOI: 10.1186/s12906-017-1598-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
12 Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020;49:5008-57. [PMID: 32538379 DOI: 10.1039/c8cs01021h] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
13 Zhou Y, Tang H, Wu P. Volume phase transition mechanism of poly[oligo(ethylene glycol)methacrylate] based thermo-responsive microgels with poly(ionic liquid) cross-linkers. Phys Chem Chem Phys 2015;17:25525-35. [DOI: 10.1039/c5cp03676c] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
14 de Siqueira EC, Rebouças JS, Pinheiro IO, Formiga FR. Levan-based nanostructured systems: An overview. Int J Pharm 2020;580:119242. [PMID: 32199961 DOI: 10.1016/j.ijpharm.2020.119242] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
15 García-embid S, Di Renzo F, De Matteis L, Spreti N, M. de la Fuente J. Magnetic separation and high reusability of chloroperoxidase entrapped in multi polysaccharide micro-supports. Applied Catalysis A: General 2018;560:94-102. [DOI: 10.1016/j.apcata.2018.04.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
16 Wang W, Huang D, Kang Y, Wang A. One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids and Surfaces B: Biointerfaces 2013;106:51-9. [DOI: 10.1016/j.colsurfb.2013.01.030] [Cited by in Crossref: 96] [Cited by in F6Publishing: 69] [Article Influence: 10.7] [Reference Citation Analysis]
17 Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020;25:E3760. [PMID: 32824757 DOI: 10.3390/molecules25163760] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
18 Gonzalez-Melo C, Garcia-Brand AJ, Quezada V, Reyes LH, Muñoz-Camargo C, Cruz JC. Highly Efficient Synthesis of Type B Gelatin and Low Molecular Weight Chitosan Nanoparticles: Potential Applications as Bioactive Molecule Carriers and Cell-Penetrating Agents. Polymers (Basel) 2021;13:4078. [PMID: 34883582 DOI: 10.3390/polym13234078] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Nesterenko EP, Nesterenko PN, Connolly D, He X, Floris P, Duffy E, Paull B. Nano-particle modified stationary phases for high-performance liquid chromatography. Analyst 2013;138:4229. [DOI: 10.1039/c3an00508a] [Cited by in Crossref: 57] [Cited by in F6Publishing: 39] [Article Influence: 6.3] [Reference Citation Analysis]
20 Rashwan AK, Karim N, Xu Y, Xie J, Cui H, Mozafari MR, Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit Rev Food Sci Nutr 2021;:1-24. [PMID: 34661483 DOI: 10.1080/10408398.2021.1987858] [Reference Citation Analysis]
21 Mazayen ZM, Ghoneim AM, Elbatanony RS, Basalious EB, Bendas ER. Pharmaceutical nanotechnology: from the bench to the market. Futur J Pharm Sci 2022;8. [DOI: 10.1186/s43094-022-00400-0] [Reference Citation Analysis]
22 Long X, Ren J, Zhang C, Ji F, Jia L. Facile and Controllable Fabrication of Protein-Only Nanoparticles through Photo-Induced Crosslinking of Albumin and Their Application as DOX Carriers. Nanomaterials (Basel) 2019;9:E797. [PMID: 31137647 DOI: 10.3390/nano9050797] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
23 Lin YS, Huang KS, Yang CH, Wang CY, Yang YS, Hsu HC, Liao YJ, Tsai CW. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS One 2012;7:e33184. [PMID: 22470443 DOI: 10.1371/journal.pone.0033184] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]
24 Hronik-Tupaj M, Raja WK, Tang-Schomer M, Omenetto FG, Kaplan DL. Neural responses to electrical stimulation on patterned silk films. J Biomed Mater Res A 2013;101:2559-72. [PMID: 23401351 DOI: 10.1002/jbm.a.34565] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
25 Mallepally RR, Marin MA, Mchugh MA. CO2-assisted synthesis of silk fibroin hydrogels and aerogels. Acta Biomaterialia 2014;10:4419-24. [DOI: 10.1016/j.actbio.2014.06.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
26 Karim N, Shishir MRI, Rashwan AK, Ke H, Chen W. Suppression of palmitic acid-induced hepatic oxidative injury by neohesperidin-loaded pectin-chitosan decorated nanoliposomes. Int J Biol Macromol 2021;183:908-17. [PMID: 33965489 DOI: 10.1016/j.ijbiomac.2021.05.010] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Sepúlveda-Rivas S, Leal MS, Pedrozo Z, Kogan MJ, Ocaranza MP, Morales JO. Nanoparticle-Mediated Angiotensin-(1-9) Drug Delivery for the Treatment of Cardiac Hypertrophy. Pharmaceutics 2021;13:822. [PMID: 34206106 DOI: 10.3390/pharmaceutics13060822] [Reference Citation Analysis]
28 Mkedder I, Travelet C, Durand-terrasson A, Halila S, Dubreuil F, Borsali R. Preparation and enzymatic hydrolysis of nanoparticles made from single xyloglucan polysaccharide chain. Carbohydrate Polymers 2013;94:934-9. [DOI: 10.1016/j.carbpol.2013.02.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
29 Feracci H, Gutierrez BS, Hempel W, Gil IS. Organic Nanoparticles. Nanobiotechnology - Inorganic Nanoparticles vs Organic Nanoparticles. Elsevier; 2012. pp. 197-230. [DOI: 10.1016/b978-0-12-415769-9.00008-x] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
30 Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387-1408. [PMID: 21388145 DOI: 10.1021/bm200083n] [Cited by in Crossref: 1142] [Cited by in F6Publishing: 919] [Article Influence: 103.8] [Reference Citation Analysis]
31 Ivleva E, Obraztsova E, Pavlova E, Morozova O, Ivanov D, Kononikhin A, Klinov D. Albumin-stabilized fluorescent metal nanoclusters: fabrication, physico-chemical properties and cytotoxicity. Materials & Design 2020;192:108771. [DOI: 10.1016/j.matdes.2020.108771] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Sarkar S, Gulati K, Mishra A, Poluri KM. Protein nanocomposites: Special inferences to lysozyme based nanomaterials. International Journal of Biological Macromolecules 2020;151:467-82. [DOI: 10.1016/j.ijbiomac.2020.02.179] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
33 Ding D, Jiang X. Drug Delivery from Protein-Based Nanoparticles. In: Gu Z, editor. Bioinspired and Biomimetic Polymer Systems for Drug and Gene Delivery. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. pp. 149-70. [DOI: 10.1002/9783527672752.ch6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
34 Chen M, Shao Z, Chen X. Paclitaxel-loaded silk fibroin nanospheres. J Biomed Mater Res 2012;100A:203-10. [DOI: 10.1002/jbm.a.33265] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 4.9] [Reference Citation Analysis]
35 Jamshidzadeh A, Heidari R, Mohammadi-samani S, Azarpira N, Najbi A, Jahani P, Abdoli N. A Comparison between the Nephrotoxic Profile of Gentamicin and Gentamicin Nanoparticles in Mice: GENTAMICIN NANOPARTICLES NEPHROTOXICITY. J Biochem Mol Toxicol 2015;29:57-62. [DOI: 10.1002/jbt.21667] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
36 Román J, Cabañas MV, Peña J, Vallet-Regí M. Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds. Sci Technol Adv Mater 2011;12:045003. [PMID: 27877422 DOI: 10.1088/1468-6996/12/4/045003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
37 Huang K, Lin Y, Yang C, Tsai C, Hsu M. In situ synthesis of twin monodispersed alginate microparticles. Soft Matter 2011;7:6713. [DOI: 10.1039/c0sm01361g] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
38 Nezhad-mokhtari P, Arsalani N, Ghorbani M, Hamishehkar H. Development of biocompatible fluorescent gelatin nanocarriers for cell imaging and anticancer drug targeting. J Mater Sci 2018;53:10679-91. [DOI: 10.1007/s10853-018-2371-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
39 Bialik-wąs K, Pielichowski K, Zielina M. Acrylic hydrogels containing MET-loaded poly(acrylic acid-co-methyl methacrylate) micro- and nanoparticles. J Polym Res 2015;22. [DOI: 10.1007/s10965-014-0623-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Vimal A, Kumar A. l-asparaginase: Need for an Expedition from an Enzymatic Molecule to Antimicrobial Drug. Int J Pept Res Ther 2022;28:9. [PMID: 34867131 DOI: 10.1007/s10989-021-10312-x] [Reference Citation Analysis]
41 Jardim KV, Joanitti GA, Azevedo RB, Parize AL. Physico-chemical characterization and cytotoxicity evaluation of curcumin loaded in chitosan/chondroitin sulfate nanoparticles. Mater Sci Eng C Mater Biol Appl 2015;56:294-304. [PMID: 26249593 DOI: 10.1016/j.msec.2015.06.036] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 8.1] [Reference Citation Analysis]
42 Tegegne B, Chimuka L, Chandravanshi BS, Zewge F. Molecularly imprinted polymer for adsorption of venlafaxine, albendazole, ciprofloxacin and norfloxacin in aqueous environment. Separation Science and Technology 2021;56:2217-31. [DOI: 10.1080/01496395.2020.1819323] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Zhao J. Chitosan-Based Gels: Drug Delivery Systems. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis; 2015. pp. 1546-77. [DOI: 10.1081/e-ebpp-120052285] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
44 Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, Lam MK, Ho YC, Lim JW, Chin Wei L. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered 2020;11:328-55. [PMID: 32138595 DOI: 10.1080/21655979.2020.1736240] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
45 Liu R, Wang L, Huang R, Su R, Qi W, Yu Y, He Z. Self-assembled oligomeric procyanidin–insulin hybrid nanoparticles: a novel strategy for controllable insulin delivery. Biomater Sci 2013;1:834. [DOI: 10.1039/c3bm60066a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
46 Jiménez-cruz E, Arroyo-maya IJ, Hernández-arana A, Cornejo-mazón M, Hernández-sánchez H. Protein-Based Nanoparticles. In: Hernández-sánchez H, Gutiérrez-lópez GF, editors. Food Nanoscience and Nanotechnology. Cham: Springer International Publishing; 2015. pp. 69-79. [DOI: 10.1007/978-3-319-13596-0_5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
47 Morozova OV, Pavlova ER, Bagrov DV, Barinov NA, Prusakov KA, Isaeva EI, Podgorsky VV, Basmanov DV, Klinov DV. Protein nanoparticles with ligand-binding and enzymatic activities. Int J Nanomedicine 2018;13:6637-46. [PMID: 30425479 DOI: 10.2147/IJN.S177627] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Zahariev N, Marudova M, Milenkova S, Uzunova Y, Pilicheva B. Casein Micelles as Nanocarriers for Benzydamine Delivery. Polymers (Basel) 2021;13:4357. [PMID: 34960907 DOI: 10.3390/polym13244357] [Reference Citation Analysis]
49 Huang H, Fu M, Chen M. Preparation, Characteristics, and Formation Mechanism of Oyster Peptide-Zinc Nanoparticles. J Ocean Univ China 2019;18:953-61. [DOI: 10.1007/s11802-019-4007-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
50 Hosseini M, Montazer M, Damerchely R. Enhancing Dye-ability and Antibacterial Features of Silk through Pre-treatment with Chitosan. Journal of Engineered Fibers and Fabrics 2013;8:155892501300800. [DOI: 10.1177/155892501300800313] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
51 Galvin P, Thompson D, Ryan KB, Mccarthy A, Moore AC, Burke CS, Dyson M, Maccraith BD, Gun’ko YK, Byrne MT, Volkov Y, Keely C, Keehan E, Howe M, Duffy C, Macloughlin R. Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications. Cell Mol Life Sci 2012;69:389-404. [DOI: 10.1007/s00018-011-0856-6] [Cited by in Crossref: 61] [Cited by in F6Publishing: 47] [Article Influence: 5.5] [Reference Citation Analysis]
52 Ma X, Hargrove D, Dong Q, Song D, Chen J, Wang S, Lu X, Cho YK, Fan T, Lei Y. Novel green and red autofluorescent protein nanoparticles for cell imaging and in vivo biodegradation imaging and modeling. RSC Adv 2016;6:50091-9. [DOI: 10.1039/c6ra06783b] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
53 Vinceković M, Jalšenjak N, Topolovec-Pintarić S, Đermić E, Bujan M, Jurić S. Encapsulation of Biological and Chemical Agents for Plant Nutrition and Protection: Chitosan/Alginate Microcapsules Loaded with Copper Cations and Trichoderma viride. J Agric Food Chem 2016;64:8073-83. [PMID: 27715032 DOI: 10.1021/acs.jafc.6b02879] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
54 Kandile NG, Mohamed HM. New chitosan derivatives inspired on heterocyclic anhydride of potential bioactive for medical applications. Int J Biol Macromol 2021;182:1543-53. [PMID: 34022310 DOI: 10.1016/j.ijbiomac.2021.05.076] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Mansor NI, Nordin N, Mohamed F, Ling KH, Rosli R, Hassan Z. Crossing the Blood-Brain Barrier: A Review on Drug Delivery Strategies for Treatment of the Central Nervous System Diseases. Curr Drug Deliv 2019;16:698-711. [PMID: 31456519 DOI: 10.2174/1567201816666190828153017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
56 Kim J, Pramanick S, Lee D, Park H, Kim WJ. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci 2015;3:1002-17. [PMID: 26221935 DOI: 10.1039/c5bm00039d] [Cited by in Crossref: 52] [Cited by in F6Publishing: 9] [Article Influence: 7.4] [Reference Citation Analysis]
57 Luo Y. Perspectives on important considerations in designing nanoparticles for oral delivery applications in food. Journal of Agriculture and Food Research 2020;2:100031. [DOI: 10.1016/j.jafr.2020.100031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
58 Paques JP. Alginate Nanospheres Prepared by Internal or External Gelation with Nanoparticles. Microencapsulation and Microspheres for Food Applications. Elsevier; 2015. pp. 39-55. [DOI: 10.1016/b978-0-12-800350-3.00004-2] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
59 Mikani M, Torabizadeh H, Rahmanian R. Magnetic soy protein isolate-bovine serum albumin nanoparticles preparation as a carrier for inulinase immobilisation. IET Nanobiotechnol 2018;12:633-9. [PMID: 30095425 DOI: 10.1049/iet-nbt.2017.0188] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
60 Connolly D, Currivan S, Paull B. Polymeric monolithic materials modified with nanoparticles for separation and detection of biomolecules: A review. Proteomics 2012;12:2904-17. [DOI: 10.1002/pmic.201200142] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
61 Trif M, Florian PE, Roseanu A, Moisei M, Craciunescu O, Astete CE, Sabliov CM. Cytotoxicity and intracellular fate of PLGA and chitosan-coated PLGA nanoparticles in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. J Biomed Mater Res A 2015;103:3599-611. [PMID: 25976509 DOI: 10.1002/jbm.a.35498] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
62 Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol 2014;71:141-6. [PMID: 24863916 DOI: 10.1016/j.ijbiomac.2014.05.036] [Cited by in Crossref: 124] [Cited by in F6Publishing: 87] [Article Influence: 15.5] [Reference Citation Analysis]
63 Vichare R, Hossain CM, Ali KA, Dutta D, Sneed K, Biswal MR. Collagen-based nanomaterials in drug delivery and biomedical applications. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. Elsevier; 2021. pp. 427-45. [DOI: 10.1016/b978-0-12-820874-8.00008-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Karami E, Behdani M, Kazemi-lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. Journal of Drug Delivery Science and Technology 2020;55:101471. [DOI: 10.1016/j.jddst.2019.101471] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
65 Ferreira AV, Volkov V, Abreu AS, Azoia N, Botelho CM, Cavaco‐paulo A. Orange IV stabilizes silk fibroin microemulsions. Eng Life Sci 2015;15:400-9. [DOI: 10.1002/elsc.201400190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
66 Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013;113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Cited by in Crossref: 922] [Cited by in F6Publishing: 743] [Article Influence: 102.4] [Reference Citation Analysis]
67 Akbari-alavijeh S, Shaddel R, Jafari SM. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids 2020;105:105774. [DOI: 10.1016/j.foodhyd.2020.105774] [Cited by in Crossref: 48] [Cited by in F6Publishing: 21] [Article Influence: 24.0] [Reference Citation Analysis]
68 Ghane N, Beigi M, Labbaf S, Nasr-esfahani M, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B 2020;8:10712-38. [DOI: 10.1039/d0tb01842b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
69 Aluigi A, Sotgiu G, Ferroni C, Duchi S, Lucarelli E, Martini C, Posati T, Guerrini A, Ballestri M, Corticelli F, Varchi G. Chlorin e6 keratin nanoparticles for photodynamic anticancer therapy. RSC Adv 2016;6:33910-8. [DOI: 10.1039/c6ra04208b] [Cited by in Crossref: 18] [Article Influence: 3.0] [Reference Citation Analysis]
70 Ravi PR, Vats R, Balija J, Adapa SPN, Aditya N. Modified pullulan nanoparticles for oral delivery of lopinavir: Formulation and pharmacokinetic evaluation. Carbohydrate Polymers 2014;110:320-8. [DOI: 10.1016/j.carbpol.2014.03.099] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
71 Zhang J, Liang L, Tian Z, Chen L, Subirade M. Preparation and in vitro evaluation of calcium-induced soy protein isolate nanoparticles and their formation mechanism study. Food Chemistry 2012;133:390-9. [DOI: 10.1016/j.foodchem.2012.01.049] [Cited by in Crossref: 116] [Cited by in F6Publishing: 96] [Article Influence: 11.6] [Reference Citation Analysis]
72 Matalanis A, Jones OG, Mcclements DJ. Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocolloids 2011;25:1865-80. [DOI: 10.1016/j.foodhyd.2011.04.014] [Cited by in Crossref: 328] [Cited by in F6Publishing: 242] [Article Influence: 29.8] [Reference Citation Analysis]
73 Wen H, Yin Y, Huang C, Pan W, Liang D. Encapsulation of RNA by negatively charged human serum albumin via physical interactions. Sci China Chem 2017;60:130-5. [DOI: 10.1007/s11426-016-0094-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
74 Ali IH, Ouf A, Elshishiny F, Taskin MB, Song J, Dong M, Chen M, Siam R, Mamdouh W. Antimicrobial and Wound-Healing Activities of Graphene-Reinforced Electrospun Chitosan/Gelatin Nanofibrous Nanocomposite Scaffolds. ACS Omega. [DOI: 10.1021/acsomega.1c05095] [Reference Citation Analysis]
75 Wen Y, Dong H, Wang K, Li Y, Li Y. Self-Templated, Green-Synthetic, Size-Controlled Protein Nanoassembly as a Robust Nanoplatform for Biomedical Application. ACS Appl Mater Interfaces 2018;10:11457-66. [DOI: 10.1021/acsami.7b19201] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
76 Rastogi V, Samyn P. Bio-Based Coatings for Paper Applications. Coatings 2015;5:887-930. [DOI: 10.3390/coatings5040887] [Cited by in Crossref: 100] [Cited by in F6Publishing: 40] [Article Influence: 14.3] [Reference Citation Analysis]
77 Al Saqr A, Wani SUD, Gangadharappa HV, Aldawsari MF, Khafagy ES, Lila ASA. Enhanced Cytotoxic Activity of Docetaxel-Loaded Silk Fibroin Nanoparticles against Breast Cancer Cells. Polymers (Basel) 2021;13:1416. [PMID: 33925581 DOI: 10.3390/polym13091416] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Benn Felix J, Chaki SP, Xu Y, Ficht TA, Rice-Ficht AC, Cook WE. Protective antibody response following oral vaccination with microencapsulated Bacillus Anthracis Sterne strain 34F2 spores. NPJ Vaccines 2020;5:59. [PMID: 32685200 DOI: 10.1038/s41541-020-0208-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Li S, Yuan C, Chen J, Chen D, Chen Z, Chen W, Yan S, Hu P, Xue J, Li R, Zheng K, Huang M. Nanoparticle Binding to Urokinase Receptor on Cancer Cell Surface Triggers Nanoparticle Disintegration and Cargo Release. Theranostics 2019;9:884-99. [PMID: 30809315 DOI: 10.7150/thno.29445] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
80 Mohammad-taheri M, Vasheghani-farahani E, Hosseinkhani H, Shojaosadati SA, Soleimani M. Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system. Iran Polym J 2012;21:239-51. [DOI: 10.1007/s13726-012-0027-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
81 Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak K, Srivastava S, Pandey A, Garg VK, Sethi G, Bishayee A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin Cancer Biol 2021;69:5-23. [PMID: 31421264 DOI: 10.1016/j.semcancer.2019.08.014] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 19.3] [Reference Citation Analysis]
82 Samrot AV, Sean TC, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, Abubakar A, Ali HH, Angalene JLA, Suresh Kumar S. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. International Journal of Biological Macromolecules 2020;165:3088-105. [DOI: 10.1016/j.ijbiomac.2020.10.104] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
83 De Matteis L, Alleva M, Serrano-Sevilla I, García-Embid S, Stepien G, Moros M, de la Fuente JM. Controlling Properties and Cytotoxicity of Chitosan Nanocapsules by Chemical Grafting. Mar Drugs 2016;14:E175. [PMID: 27706041 DOI: 10.3390/md14100175] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
84 Zhao Z, Chen A, Li Y, Hu J, Liu X, Li J, Zhang Y, Li G, Zheng Z. Fabrication of silk fibroin nanoparticles for controlled drug delivery. J Nanopart Res 2012;14. [DOI: 10.1007/s11051-012-0736-5] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
85 Evans KO, Skory C, Compton DL, Cormier R, Côté GL, Kim S, Appell M. Development and Physical Characterization of α-Glucan Nanoparticles. Molecules 2020;25:E3807. [PMID: 32825708 DOI: 10.3390/molecules25173807] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Gayathri S, Ghosh OSN, Viswanath AK, Sudhakara P, Reddy MJK, Shanmugharaj A. Synthesis of YF3: Yb, Er upconverting nanofluorophores using chitosan and their cytotoxicity in MCF-7 cells. International Journal of Biological Macromolecules 2015;72:1308-12. [DOI: 10.1016/j.ijbiomac.2014.10.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
87 Zhang H, Liu P, Peng X, Chen S, Zhang K. Interfacial Synthesis of Cellulose-Derived Solvent-Responsive Nanoparticles via Schiff Base Reaction. ACS Sustainable Chem Eng 2019;7:16595-603. [DOI: 10.1021/acssuschemeng.9b03919] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
88 Dias AM, Hussain A, Marcos AS, Roque AC. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 2011;29:142-55. [PMID: 20959138 DOI: 10.1016/j.biotechadv.2010.10.003] [Cited by in Crossref: 232] [Cited by in F6Publishing: 173] [Article Influence: 19.3] [Reference Citation Analysis]
89 Hu Y, Bao C, Li D, You L, Du Y, Liu B, Li X, Ren F, Li Y. The construction of enzymolyzed α-lactalbumin based micellar nanoassemblies for encapsulating various kinds of hydrophobic bioactive compounds. Food Funct 2019;10:8263-72. [DOI: 10.1039/c9fo02035g] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
90 Seo YC, Choi WY, Lee CG, Cha SW, Kim YO, Kim JC, Drummen GP, Lee HY. Enhanced immunomodulatory activity of gelatin-encapsulated Rubus coreanus Miquel nanoparticles. Int J Mol Sci 2011;12:9031-56. [PMID: 22272118 DOI: 10.3390/ijms12129031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
91 Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021;11:682. [PMID: 34357054 DOI: 10.3390/life11070682] [Reference Citation Analysis]
92 Spadari CC, de Bastiani FWMDS, Lopes LB, Ishida K. Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int J Nanomedicine 2019;14:5187-99. [PMID: 31371955 DOI: 10.2147/IJN.S205350] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 11.7] [Reference Citation Analysis]
93 López-cebral R, Romero-caamaño V, Seijo B, Alvarez-lorenzo C, Martín-pastor M, Concheiro Á, Landin M, Sanchez A. Spermidine Cross-Linked Hydrogels as a Controlled Release Biomimetic Approach for Cloxacillin. Mol Pharmaceutics 2014;11:2358-71. [DOI: 10.1021/mp500067z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
94 Türkoğlu T, Taşcıoğlu S. Novel strategy for the ionotropic crosslinking of chitosan-alginate polyelectrolyte complexes: ARTICLE. J Appl Polym Sci 2014;131:n/a-n/a. [DOI: 10.1002/app.40019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
95 Martins JT, Bourbon AI, Pinheiro AC, Fasolin LH, Vicente AA. Protein-Based Structures for Food Applications: From Macro to Nanoscale. Front Sustain Food Syst 2018;2:77. [DOI: 10.3389/fsufs.2018.00077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
96 Bastakoti BP, Liao SH, Inoue M, Yusa SI, Imura M, Nakashima K, Wu KC, Yamauchi Y. pH-responsive polymeric micelles with core-shell-corona architectures as intracellular anti-cancer drug carriers. Sci Technol Adv Mater 2013;14:044402. [PMID: 27877587 DOI: 10.1088/1468-6996/14/4/044402] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
97 Pawar A, Thakkar S, Misra M. A bird's eye view of nanoparticles prepared by electrospraying: advancements in drug delivery field. Journal of Controlled Release 2018;286:179-200. [DOI: 10.1016/j.jconrel.2018.07.036] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
98 Román JV, Rodríguez-rodríguez JA, del Valle EMM, Galán MA. Synthesis of a new nanoparticle system based on electrostatic alginate-piperazine interactions: An Alginate-Piperazine Nanoparticle System. Polym Adv Technol 2016;27:623-9. [DOI: 10.1002/pat.3731] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
99 Shi A, Chen X, Liu L, Hu H, Liu H, Wang Q, Agyei D. Synthesis and characterization of calcium-induced peanut protein isolate nanoparticles. RSC Adv 2017;7:53247-54. [DOI: 10.1039/c7ra07987g] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
100 Mi Y, Liu Z, Deng J, Lei H, Zhu C, Fan D, Lv X. Microencapsulation of Phosphorylated Human-Like Collagen-Calcium Chelates for Controlled Delivery and Improved Bioavailability. Polymers (Basel) 2018;10:E185. [PMID: 30966221 DOI: 10.3390/polym10020185] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Masalova O, Kulikouskaya V, Shutava T, Agabekov V. Alginate and Chitosan Gel Nanoparticles for Efficient Protein Entrapment. Physics Procedia 2013;40:69-75. [DOI: 10.1016/j.phpro.2012.12.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
102 Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacological Research 2017;120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 9.6] [Reference Citation Analysis]
103 Wang Y, Chai Z, Ma L, Shi C, Shen T, Song J. Fabrication of boronic acid-functionalized nanoparticles via boronic acid–diol complexation for drug delivery. RSC Adv 2014;4:53877-84. [DOI: 10.1039/c4ra05034g] [Cited by in Crossref: 15] [Article Influence: 1.9] [Reference Citation Analysis]
104 Sugita P, Ambarsari L, Lidiniyah. Optimization of Ketoprofen-loaded Chitosan Nanoparticle Ultrasonication Process. Procedia Chemistry 2015;16:673-80. [DOI: 10.1016/j.proche.2015.12.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
105 Branca C, Wanderlingh U, D'angelo G, Crupi C, Rifici S. Study of the dynamical behavior of sodium alginate/myoglobin aqueous solutions: A dynamic light scattering study. Journal of Molecular Liquids 2015;209:294-300. [DOI: 10.1016/j.molliq.2015.06.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
106 Zhang L, Lin Y, Wang J, Yao W, Wu W, Jiang X. A Facile Strategy for Constructing Boron-Rich Polymer Nanoparticles via a Boronic Acid-Related Reaction: A Facile Strategy for Constructing Boron-Rich …. Macromol Rapid Commun 2011;32:534-9. [DOI: 10.1002/marc.201000757] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
107 Chen Y, Wang Z, Lu T, Gomez CB, Fang H, Wei Y, Tseng C. The Synergistic Anticancer Effect of Dual Drug- (Cisplatin/Epigallocatechin Gallate) Loaded Gelatin Nanoparticles for Lung Cancer Treatment. Journal of Nanomaterials 2020;2020:1-15. [DOI: 10.1155/2020/9181549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 El-sherbiny IM, Ali IH. Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering. In: Thakur VK, Thakur MK, editors. Eco-friendly Polymer Nanocomposites. New Delhi: Springer India; 2015. pp. 399-431. [DOI: 10.1007/978-81-322-2470-9_13] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
109 Pal RK, Kurland NE, Jiang C, Kundu SC, Zhang N, Yadavalli VK. Fabrication of precise shape-defined particles of silk proteins using photolithography. European Polymer Journal 2016;85:421-30. [DOI: 10.1016/j.eurpolymj.2016.10.038] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
110 Javadi Z, Tavanai H, Allafchian A, Morshed M. Fabrication of tragacanth and water soluble tragacanth nanoparticles through electrospraying. Polym Adv Technol 2018;29:2036-41. [DOI: 10.1002/pat.4311] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
111 Huang D, Wang W, Kang Y, Wang A. Efficient Adsorption and Recovery of Pb(II) from Aqueous Solution by a Granular pH-Sensitive Chitosan-based Semi-IPN Hydrogel. Journal of Macromolecular Science, Part A 2012;49:971-9. [DOI: 10.1080/10601325.2012.722859] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
112 Liu LS, Kost J, Yan F, Spiro RC. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications. Polymers 2012;4:997-1011. [DOI: 10.3390/polym4020997] [Cited by in Crossref: 64] [Cited by in F6Publishing: 35] [Article Influence: 6.4] [Reference Citation Analysis]
113 Alallam B, Altahhan S, Taher M, Mohd Nasir MH, Doolaanea AA. Electrosprayed Alginate Nanoparticles as CRISPR Plasmid DNA Delivery Carrier: Preparation, Optimization, and Characterization. Pharmaceuticals (Basel) 2020;13:E158. [PMID: 32707857 DOI: 10.3390/ph13080158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
114 Akbari-alavijeh S, Shaddel R, Jafari SM. Nanostructures of chitosan for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes. Elsevier; 2019. pp. 381-418. [DOI: 10.1016/b978-0-12-815663-6.00014-8] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
115 Taki A, Smooker P. Small Wonders-The Use of Nanoparticles for Delivering Antigen. Vaccines (Basel) 2015;3:638-61. [PMID: 26350599 DOI: 10.3390/vaccines3030638] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
116 Raveendran S, Rochani AK, Maekawa T, Kumar DS. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers. Materials (Basel) 2017;10:E929. [PMID: 28796191 DOI: 10.3390/ma10080929] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
117 Li X, Ji N, Li M, Zhang S, Xiong L, Sun Q. Morphology and Structural Properties of Novel Short Linear Glucan/Protein Hybrid Nanoparticles and Their Influence on the Rheological Properties of Starch Gel. J Agric Food Chem 2017;65:7955-65. [DOI: 10.1021/acs.jafc.7b02800] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
118 Wu W, Gaucher C, Fries I, Hu X, Maincent P, Sapin-minet A. Polymer nanocomposite particles of S -nitrosoglutathione: A suitable formulation for protection and sustained oral delivery. International Journal of Pharmaceutics 2015;495:354-61. [DOI: 10.1016/j.ijpharm.2015.08.074] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
119 Joye IJ, Mcclements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends in Food Science & Technology 2013;34:109-23. [DOI: 10.1016/j.tifs.2013.10.002] [Cited by in Crossref: 176] [Cited by in F6Publishing: 127] [Article Influence: 19.6] [Reference Citation Analysis]
120 Naskar D, Sapru S, Ghosh AK, Reis RL, Dey T, Kundu SC. Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomed Mater 2021;16. [PMID: 34428758 DOI: 10.1088/1748-605X/ac20a0] [Reference Citation Analysis]
121 Patrinoiu G, Calderón-moreno JM, Culita DC, Birjega R, Ene R, Carp O. Carbonaceous spheres—an unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres. Journal of Solid State Chemistry 2013;202:291-9. [DOI: 10.1016/j.jssc.2013.03.045] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
122 Donsì F, Sessa M, Ferrari G. Nanometric-Size Delivery Systems for Bioactive Compounds for the Nutraceutical and Food Industries. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F, editors. Bio-Nanotechnology. Oxford: Blackwell Publishing Ltd.; 2013. pp. 619-66. [DOI: 10.1002/9781118451915.ch37] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
123 Gull N, Khan SM, Islam A, Butt MTZ. Hydrogels used for Biomedical Applications. In: Visakh P, Bayraktar O, Menon G, editors. Bio Monomers for Green Polymeric Composite Materials. Chichester: John Wiley & Sons, Inc.; 2019. pp. 175-99. [DOI: 10.1002/9781119301714.ch9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
124 Chassenieux C, Durand D, Jyotishkumar P, Thomas S. Biopolymers: State of the Art, New Challenges, and Opportunities. In: Thomas S, Durand D, Chassenieux C, Jyotishkumar P, editors. Handbook of Biopolymer-Based Materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. pp. 1-6. [DOI: 10.1002/9783527652457.ch1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
125 Hazeri N, Tavanai H, Moradi AR. Production and properties of electrosprayed sericin nanopowder. Sci Technol Adv Mater 2012;13:035010. [PMID: 27877498 DOI: 10.1088/1468-6996/13/3/035010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
126 De Matteis L, Mitchell SG, de la Fuente JM. Supramolecular antimicrobial capsules assembled from polyoxometalates and chitosan. J Mater Chem B 2014;2:7114-7. [DOI: 10.1039/c4tb01460j] [Cited by in Crossref: 19] [Article Influence: 2.4] [Reference Citation Analysis]
127 Youngren SR, Tekade RK, Gustilo B, Hoffmann PR, Chougule MB. STAT6 siRNA matrix-loaded gelatin nanocarriers: formulation, characterization, and ex vivo proof of concept using adenocarcinoma cells. Biomed Res Int 2013;2013:858946. [PMID: 24191252 DOI: 10.1155/2013/858946] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
128 Brewer AK, Striegel AM. Characterizing a spheroidal nanocage drug delivery vesicle using multi-detector hydrodynamic chromatography. Anal Bioanal Chem 2011;399:1507-14. [DOI: 10.1007/s00216-010-4073-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
129 Paik S, Nguyen HH, Ryu J, Che J, Kang TS, Lee JK, Song CW, Ko S. Robust size control of bovine serum albumin (BSA) nanoparticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chemistry 2013;141:695-701. [DOI: 10.1016/j.foodchem.2013.04.059] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
130 Umerska A, Paluch KJ, Santos-martinez MJ, Medina C, Corrigan OI, Tajber L. Chondroitin-based nanoplexes as peptide delivery systems – Investigations into the self-assembly process, solid-state and extended release characteristics. European Journal of Pharmaceutics and Biopharmaceutics 2015;93:242-53. [DOI: 10.1016/j.ejpb.2015.04.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
131 Spadari CC, Lopes LB, Ishida K. Potential Use of Alginate-Based Carriers As Antifungal Delivery System. Front Microbiol 2017;8:97. [PMID: 28194145 DOI: 10.3389/fmicb.2017.00097] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
132 Lin BL, Zhang JZ, Lu LJ, Mao JJ, Cao MH, Mao XH, Zhang F, Duan XH, Zheng CS, Zhang LM, Shen J. Superparamagnetic Iron Oxide Nanoparticles-Complexed Cationic Amylose for In Vivo Magnetic Resonance Imaging Tracking of Transplanted Stem Cells in Stroke. Nanomaterials (Basel). 2017;7. [PMID: 28489049 DOI: 10.3390/nano7050107] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
133 Jiménez-sánchez M, Pérez-morales R, Goycoolea FM, Mueller M, Praznik W, Loeppert R, Bermúdez-morales V, Zavala-padilla G, Ayala M, Olvera C. Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties. Carbohydrate Polymers 2019;215:160-9. [DOI: 10.1016/j.carbpol.2019.03.060] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
134 Yhee JY, Son S, Kim N, Choi K, Kwon IC. Theranostic applications of organic nanoparticles for cancer treatment. MRS Bull 2014;39:239-49. [DOI: 10.1557/mrs.2014.30] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
135 Arif M, Chi Z, Liu YJ, Liu CG. Preparation, characterization, and in vitro drug release behavior of thiolated alginate nanoparticles loaded budesonide as a potential drug delivery system toward inflammatory bowel diseases. J Biomater Sci Polym Ed 2020;31:2299-317. [PMID: 32727293 DOI: 10.1080/09205063.2020.1803034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Gazme B, Madadlou A. Fabrication of whey protein–pectin conjugate particles through laccase-induced gelation of microemulsified nanodroplets. Food Hydrocolloids 2014;40:189-95. [DOI: 10.1016/j.foodhyd.2014.02.017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
137 Focsan AL, Polyakov NE, Kispert LD. Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability-The Way of Bioavailability Improvement. Molecules 2019;24:E3947. [PMID: 31683692 DOI: 10.3390/molecules24213947] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
138 Ebrahimgol F, Tavanai H, Alihosseini F, Khayamian T. Electrosprayed recovered wool keratin nanoparticles: ELECTROSPRAYED RECOVERED WOOL KERATIN NANOPARTICLES. Polym Adv Technol 2014;25:1001-7. [DOI: 10.1002/pat.3342] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
139 Rescignano N, Tarpani L, Tiribuzi R, Montesano S, Martino S, Latterini L, Kenny JM, Armentano I. Protein encapsulation in biodegradable polymeric nanoparticles: morphology, fluorescence behaviour and stem cell uptake. Macromol Biosci 2013;13:1204-12. [PMID: 23776101 DOI: 10.1002/mabi.201300140] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
140 Abolhasani A, Heidari F, Abolhasani H. Development and characterization of chitosan nanoparticles containing an indanonic tricyclic spiroisoxazoline derivative using ion-gelation method: an in vitro study. Drug Dev Ind Pharm 2020;46:1604-12. [PMID: 32812474 DOI: 10.1080/03639045.2020.1811304] [Reference Citation Analysis]
141 Zhao Z, Li Y, Chen A, Zheng Z, Hu J, Li J, Li G. Generation of Silk Fibroin Nanoparticles via Solution-Enhanced Dispersion by Supercritical CO 2. Ind Eng Chem Res 2013;52:3752-61. [DOI: 10.1021/ie301907f] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
142 Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 2012;157:168-82. [PMID: 21839127 DOI: 10.1016/j.jconrel.2011.07.031] [Cited by in Crossref: 791] [Cited by in F6Publishing: 722] [Article Influence: 71.9] [Reference Citation Analysis]
143 Manivasagan P, Bharathiraja S, Moorthy MS, Oh Y, Seo H, Oh J. Marine Biopolymer-Based Nanomaterials as a Novel Platform for Theranostic Applications. Polymer Reviews 2017;57:631-67. [DOI: 10.1080/15583724.2017.1311914] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 4.6] [Reference Citation Analysis]
144 Gao J, Liu C, Shi J, Ni F, Shen Q, Xie H, Wang K, Lei Q, Fang W, Ren G. The regulation of sodium alginate on the stability of ovalbumin-pectin complexes for VD3 encapsulation and in vitro simulated gastrointestinal digestion study. Food Research International 2021;140:110011. [DOI: 10.1016/j.foodres.2020.110011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
145 Stounbjerg L, Vestergaard C, Andreasen B, Ipsen R. Beverage clouding agents: Review of principles and current manufacturing. Food Reviews International 2018;34:613-38. [DOI: 10.1080/87559129.2017.1373286] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
146 Wang A, Wang W. Gum-g-Copolymers: Synthesis, Properties, and Applications. In: Kalia S, Sabaa M, editors. Polysaccharide Based Graft Copolymers. Berlin: Springer Berlin Heidelberg; 2013. pp. 149-203. [DOI: 10.1007/978-3-642-36566-9_5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
147 Şahutoğlu AS, Akgül C. Fine-tuned preparation of cross-linked laccase nanoaggregates. Biocatalysis and Biotransformation 2019;37:431-47. [DOI: 10.1080/10242422.2019.1602610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
148 Ma X, Sun X, Chen J, Lei Y. Natural or Natural-Synthetic Hybrid Polymer-Based Fluorescent Polymeric Materials for Bio-imaging-Related Applications. Appl Biochem Biotechnol 2017;183:461-87. [DOI: 10.1007/s12010-017-2570-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
149 Esquivel R, Juárez J, Almada M, Ibarra J, Valdez MA. Synthesis and Characterization of New Thiolated Chitosan Nanoparticles Obtained by Ionic Gelation Method. International Journal of Polymer Science 2015;2015:1-18. [DOI: 10.1155/2015/502058] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
150 Wang Y, Chai Z, Wang N, Ren X, Gao M. Preparation and responsive behaviors of chitosan-functionalized nanoparticles via a boronic acid-related reaction. Journal of Biomaterials Science, Polymer Edition 2015;26:617-28. [DOI: 10.1080/09205063.2015.1053169] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]