BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Szili EJ, Oh J, Fukuhara H, Bhatia R, Gaur N, Nguyen CK, Hong S, Ito S, Ogawa K, Kawada C, Shuin T, Tsuda M, Furihata M, Kurabayashi A, Furuta H, Ito M, Inoue K, Hatta A, Short RD. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour. Plasma Sources Sci Technol 2018;27:014001. [DOI: 10.1088/1361-6595/aa9b3b] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 7.4] [Reference Citation Analysis]
Number Citing Articles
1 Zhao J, Nie L. Five gaseous reactive oxygen and nitrogen species (RONS) density generated by microwave plasma jet. Physics of Plasmas 2019;26:073503. [DOI: 10.1063/1.5092840] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Zhang J, Liu D, Zhang H, Xia W, Liu Y, Sun B, Xu D, Guo L, Kong MG. Influence of liquid coverage on the anticancer effects of a helium plasma jet on 3D tumor spheroids. Plasma Process Polym 2020;17:1900213. [DOI: 10.1002/ppap.201900213] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
3 Duan J, Ma M, Yusupov M, Cordeiro RM, Lu X, Bogaerts A. The penetration of reactive oxygen and nitrogen species across the stratum corneum. Plasma Process Polym 2020;17:2000005. [DOI: 10.1002/ppap.202000005] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
4 Khlyustova A, Labay C, Machala Z, Ginebra M, Canal C. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Front Chem Sci Eng 2019;13:238-52. [DOI: 10.1007/s11705-019-1801-8] [Cited by in Crossref: 70] [Cited by in F6Publishing: 15] [Article Influence: 23.3] [Reference Citation Analysis]
5 Zhang H, Zhang J, Liu Z, Xu D, Guo L, Liu D, Kong MG. Evaluation of the anticancer effects induced by cold atmospheric plasma in 2D and 3D cell‐culture models. Plasma Process Polym 2019;16:1900072. [DOI: 10.1002/ppap.201900072] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
6 Gaur N, Kurita H, Oh J, Miyachika S, Ito M, Mizuno A, Cowin AJ, Allinson S, Short RD, Szili EJ. On cold atmospheric-pressure plasma jet induced DNA damage in cells. J Phys D: Appl Phys 2020;54:035203. [DOI: 10.1088/1361-6463/abb8ab] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
7 Choi EH, Kaushik NK, Hong YJ, Lim JS, Choi JS, Han I. Plasma bioscience for medicine, agriculture and hygiene applications. J Korean Phys Soc . [DOI: 10.1007/s40042-022-00442-w] [Reference Citation Analysis]
8 Friedman PC. Cold atmospheric pressure (physical) plasma in dermatology: where are we today? Int J Dermatol 2020;59:1171-84. [PMID: 32783244 DOI: 10.1111/ijd.15110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
9 Turrini E, Laurita R, Simoncelli E, Stancampiano A, Catanzaro E, Calcabrini C, Carulli G, Rousseau M, Gherardi M, Maffei F, Cocchi V, Lenzi M, Pellicioni V, Hrelia P, Colombo V, Fimognari C. Plasma‐activated medium as an innovative anticancer strategy: Insight into its cellular and molecular impact on in vitro leukemia cells. Plasma Process Polym 2020;17:2000007. [DOI: 10.1002/ppap.202000007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
10 Li X, Lin X, Wu K, Ren C, Liu R, Jia P. Regularly-swelling plumes generated in atmospheric pressure argon plasma jet excited by a biased sinusoidal voltage. Plasma Sources Sci Technol 2019;28:055006. [DOI: 10.1088/1361-6595/aaffff] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 4.3] [Reference Citation Analysis]
11 Yan D, Wang Q, Adhikari M, Malyavko A, Lin L, Zolotukhin DB, Yao X, Kirschner M, Sherman JH, Keidar M. A Physically Triggered Cell Death via Transbarrier Cold Atmospheric Plasma Cancer Treatment. ACS Appl Mater Interfaces 2020;12:34548-63. [PMID: 32648738 DOI: 10.1021/acsami.0c06500] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
12 Lv Y, Nie L, Duan J, Li Z, Lu X. Cold atmospheric plasma jet array for transdermal drug delivery. Plasma Process Polym 2021;18:2000180. [DOI: 10.1002/ppap.202000180] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Wanigasekara J, Barcia C, Cullen PJ, Tiwari B, Curtin JF. Plasma induced reactive oxygen species‐dependent cytotoxicity in glioblastoma 3D tumourspheres. Plasma Processes & Polymers. [DOI: 10.1002/ppap.202100157] [Reference Citation Analysis]
14 Malyavko A, Yan D, Wang Q, Klein AL, Patel KC, Sherman JH, Keidar M. Cold atmospheric plasma cancer treatment, direct versus indirect approaches. Mater Adv 2020;1:1494-505. [DOI: 10.1039/d0ma00329h] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
15 Zhang H, Zhang J, Xu S, Wang Z, Xu D, Guo L, Liu D, Kong MG, Rong M. Antitumor effects of hyperthermia with plasma‐treated solutions on 3D bladder tumor spheroids. Plasma Processes & Polymers 2021;18:2100070. [DOI: 10.1002/ppap.202100070] [Reference Citation Analysis]
16 Oh, Szili, Hatta, Ito, Shirafuji. Tailoring the Chemistry of Plasma-Activated Water Using a DC-Pulse-Driven Non-Thermal Atmospheric-Pressure Helium Plasma Jet. Plasma 2019;2:127-37. [DOI: 10.3390/plasma2020010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
17 Iwata N, Gamaleev V, Oh J, Ohta T, Hori M, Ito M. Investigation on the long‐term bactericidal effect and chemical composition of radical‐activated water. Plasma Process Polym 2019;16:1900055. [DOI: 10.1002/ppap.201900055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Kawasaki T, Mitsugi F, Koga K, Shiratani M. Local supply of reactive oxygen species into a tissue model by atmospheric-pressure plasma-jet exposure. Journal of Applied Physics 2019;125:213303. [DOI: 10.1063/1.5091740] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
19 Ghimire B, Szili EJ, Lamichhane P, Short RD, Lim JS, Attri P, Masur K, Weltmann K, Hong S, Choi EH. The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet. Appl Phys Lett 2019;114:093701. [DOI: 10.1063/1.5086522] [Cited by in Crossref: 33] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
20 Omran AV, Busco G, Ridou L, Dozias S, Grillon C, Pouvesle J, Robert E. Cold atmospheric single plasma jet for RONS delivery on large biological surfaces. Plasma Sources Sci Technol 2020;29:105002. [DOI: 10.1088/1361-6595/abaffd] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
21 Zhang H, Zhang J, Xu S, Liu Y, Sun B, Wang Z, Xu D, Guo L, Liu D, Kong MG. Comparison of the Anticancer Effects of Pulsed Electric Field and He + O2 Plasma Jet. Plasma Chem Plasma Process 2021;41:973-87. [DOI: 10.1007/s11090-021-10174-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Duan J, Gan L, Nie L, Sun F, Lu X, He G. On the penetration of reactive oxygen and nitrogen species generated by a plasma jet into and through mice skin with/without stratum corneum. Physics of Plasmas 2019;26:043504. [DOI: 10.1063/1.5082160] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
23 Liu T, Zeng Y, Xue X, Sui Y, Liang Y, Wang F, Feng F, Kim J. He-Plasma Jet Generation and Its Application for E. coli Sterilization. Journal of Spectroscopy 2021;2021:1-10. [DOI: 10.1155/2021/6671531] [Reference Citation Analysis]