BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schweigert IV, Vagapov S, Lin L, Keidar M. Enhancement of atmospheric plasma jet–target interaction with an external ring electrode. J Phys D: Appl Phys 2019;52:295201. [DOI: 10.1088/1361-6463/ab1319] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Mcdonnell C, Irwin R, White S, Graham W, Riley D. Optical diagnosis of a kHz-driven helium atmospheric pressure plasma jet. J Plasma Phys 2022;88. [DOI: 10.1017/s0022377822000538] [Reference Citation Analysis]
2 Schweigert IV, Alexandrov AL, Zakrevsky DE. Self-organization of touching-target current with ac voltage in atmospheric pressure plasma jet for medical application parameters. Plasma Sources Sci Technol 2020;29:12LT02. [DOI: 10.1088/1361-6595/abc93f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
3 Bokhan PA, Belskaya EV, Gugin PP, Lavrukhin MA, Zakrevsky DE, Schweigert IV. Investigation of the characteristics and mechanism of subnanosecond switching of a new type of plasmas switches. II switching devices based on a combination of ‘open’ and capillary discharges—eptrons. Plasma Sources Sci Technol 2020;29:084001. [DOI: 10.1088/1361-6595/ab9d91] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
4 Viegas P, Hofmans M, van Rooij O, Obrusník A, Klarenaar B, Bonaventura Z, Guaitella O, Sobota A, Bourdon A. Corrigendum: Interaction of an atmospheric pressure plasma jet with grounded and floating metallic targets: simulations and experiments (2020 Plasma Sources Sci. Technol. 29 095011). Plasma Sources Sci Technol 2021;30:129501. [DOI: 10.1088/1361-6595/ac381d] [Reference Citation Analysis]
5 Babaeva NY, Naidis GV. Universal nature and specific features of streamers in various dielectric media. J Phys D: Appl Phys 2021;54:223002. [DOI: 10.1088/1361-6463/abe9e0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
6 Viegas P, Hofmans M, van Rooij O, Obrusník A, L M Klarenaar B, Bonaventura Z, Guaitella O, Sobota A, Bourdon A. Interaction of an atmospheric pressure plasma jet with grounded and floating metallic targets: simulations and experiments. Plasma Sources Sci Technol 2020;29:095011. [DOI: 10.1088/1361-6595/aba7ec] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
7 Babaeva NY, Naidis GV. Control of plasma jet dynamics by externally applied electric fields. Plasma Sources Sci Technol 2021;30:095003. [DOI: 10.1088/1361-6595/ac1ee3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Viegas P, Bourdon A. Numerical Study of Jet–Target Interaction: Influence of Dielectric Permittivity on the Electric Field Experienced by the Target. Plasma Chem Plasma Process 2020;40:661-83. [DOI: 10.1007/s11090-019-10033-6] [Cited by in Crossref: 15] [Article Influence: 5.0] [Reference Citation Analysis]
9 Huo J, Ronzello J, Rontey A, Wang Y, Jacobs L, Sommerer T, Cao Y. Development of an arc root model for studying the electrode vaporization and its influence on arc dynamics. AIP Advances 2020;10:085324. [DOI: 10.1063/5.0012159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Schweigert I, Zakrevsky D, Gugin P, Yelak E, Golubitskaya E, Troitskaya O, Koval O. Interaction of Cold Atmospheric Argon and Helium Plasma Jets with Bio-Target with Grounded Substrate Beneath. Applied Sciences 2019;9:4528. [DOI: 10.3390/app9214528] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 4.3] [Reference Citation Analysis]