BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Machala Z, Tarabová B, Sersenová D, Janda M, Hensel K. Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J Phys D: Appl Phys 2019;52:034002. [DOI: 10.1088/1361-6463/aae807] [Cited by in Crossref: 84] [Cited by in F6Publishing: 18] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Veronico V, Favia P, Fracassi F, Gristina R, Sardella E. The active role of organic molecules in the formation of long‐lived reactive oxygen and nitrogen species in plasma‐treated water solutions. Plasma Process Polym. [DOI: 10.1002/ppap.202100158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Baek KH, Yong HI, Yoo JH, Kim JW, Byeon YS, Lim J, Yoon SY, Ryu S, Jo C. Antimicrobial effects and mechanism of plasma activated fine droplets produced from arc discharge plasma on planktonic Listeria monocytogenes and Escherichia coli O157:H7. J Phys D: Appl Phys 2020;53:124002. [DOI: 10.1088/1361-6463/ab634d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
3 Dimitrakellis P, Giannoglou M, Xanthou ZM, Gogolides E, Taoukis P, Katsaros G. Application of plasma‐activated water as an antimicrobial washing agent of fresh leafy produce. Plasma Process Polym 2021;18:2100030. [DOI: 10.1002/ppap.202100030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Kučerová K, Machala Z, Hensel K. Transient Spark Discharge Generated in Various N2/O2 Gas Mixtures: Reactive Species in the Gas and Water and Their Antibacterial Effects. Plasma Chem Plasma Process 2020;40:749-73. [DOI: 10.1007/s11090-020-10082-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
5 Khlyustova A, Labay C, Machala Z, Ginebra M, Canal C. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Front Chem Sci Eng 2019;13:238-52. [DOI: 10.1007/s11705-019-1801-8] [Cited by in Crossref: 70] [Cited by in F6Publishing: 15] [Article Influence: 23.3] [Reference Citation Analysis]
6 Seyfi P, Heidari A, Khademi A, Golghand M, Gharavi M, Ghomi H. The effect of modulated electric field on characteristic of SDBD ‐like plasma jet for surface modification. Contributions to Plasma Physics 2021;61. [DOI: 10.1002/ctpp.202000155] [Reference Citation Analysis]
7 Pastorek M, Suchoňová M, Konečná B, Pásztor S, Petrus J, Ivašková N, Celec P, Gardlík R, Machala Z, Tóthová Ľ. The Effect of Air Plasma Activated Liquid on Uropathogenic Bacteria. Plasma Chem Plasma Process. [DOI: 10.1007/s11090-022-10239-1] [Reference Citation Analysis]
8 Wang S, Yang D, Zhou R, Zhou R, Fang Z, Wang W, Ostrikov K(. Mode transition and plasma characteristics of nanosecond pulse gas–liquid discharge: Effect of grounding configuration. Plasma Process Polym 2020;17:1900146. [DOI: 10.1002/ppap.201900146] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
9 Liu Z, Wang W, Liu D, Zhou C, He T, Xia W, Kong MG. Experimental investigation of behavior of bullets dynamics and production of RONS in helium APPJs-liquid interaction: The effect of additive gas components. Physics of Plasmas 2019;26:053507. [DOI: 10.1063/1.5063761] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
10 Tachibana K, Nakamura T. Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water. J Phys D: Appl Phys 2019;52:385202. [DOI: 10.1088/1361-6463/ab2529] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 5.3] [Reference Citation Analysis]
11 Zhao Y, Ojha S, Burgess CM, Sun D, Tiwari BK. Influence of various fish constituents on inactivation efficacy of plasma‐activated water. Int J Food Sci Technol 2020;55:2630-41. [DOI: 10.1111/ijfs.14516] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
12 Nippatlapalli N, Ramakrishnan K, Philip L. Enhanced degradation of complex organic compounds in wastewater using different novel continuous flow non - Thermal pulsed corona plasma discharge reactors. Environ Res 2021;203:111807. [PMID: 34400163 DOI: 10.1016/j.envres.2021.111807] [Reference Citation Analysis]
13 Simon S, Salgado B, Hasan MI, Sivertsvik M, Fernández EN, Walsh JL. Influence of Potable Water Origin on the Physicochemical and Antimicrobial Properties of Plasma Activated Water. Plasma Chem Plasma Process. [DOI: 10.1007/s11090-021-10221-3] [Reference Citation Analysis]
14 Morabit Y, Hasan MI, Whalley RD, Robert E, Modic M, Walsh JL. A review of the gas and liquid phase interactions in low-temperature plasma jets used for biomedical applications. Eur Phys J D 2021;75. [DOI: 10.1140/epjd/s10053-020-00004-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
15 Liao X, Liu D, Chen S, Ye X, Ding T. Degradation of antibiotic resistance contaminants in wastewater by atmospheric cold plasma: kinetics and mechanisms. Environ Technol 2021;42:58-71. [PMID: 31099316 DOI: 10.1080/09593330.2019.1620866] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Wang S, Liu Y, Zhou R, Liu F, Fang Z, Ostrikov K(, Cullen PJ. Microsecond pulse gas–liquid discharges in atmospheric nitrogen and oxygen: Discharge mode, stability, and plasma characteristics. Plasma Process Polym 2021;18:2000135. [DOI: 10.1002/ppap.202000135] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
17 Ranieri P, Sponsel N, Kizer J, Rojas‐pierce M, Hernández R, Gatiboni L, Grunden A, Stapelmann K. Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Process Polym 2021;18:2000162. [DOI: 10.1002/ppap.202000162] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
18 Liu K, Ren W, Ran C, Zhou R, Tang W, Zhou R, Yang Z, Ostrikov K(. Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: effects of gas flow on chemical reactions. J Phys D: Appl Phys 2020;54:065201. [DOI: 10.1088/1361-6463/abc211] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 10.5] [Reference Citation Analysis]
19 Machado-Moreira B, Tiwari BK, Richards KG, Abram F, Burgess CM. Application of plasma activated water for decontamination of alfalfa and mung bean seeds. Food Microbiol 2021;96:103708. [PMID: 33494890 DOI: 10.1016/j.fm.2020.103708] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Medvecká V, Omasta S, Klas M, Mošovská S, Kyzek S, Zahoranová A. Plasma activated water prepared by different plasma sources: physicochemical properties and decontamination effect on lentils sprouts. Plasma Sci Technol 2021;24:015503. [DOI: 10.1088/2058-6272/ac3410] [Reference Citation Analysis]
21 Tarabová B, Lukeš P, Hammer MU, Jablonowski H, von Woedtke T, Reuter S, Machala Z. Fluorescence measurements of peroxynitrite/peroxynitrous acid in cold air plasma treated aqueous solutions. Phys Chem Chem Phys 2019;21:8883-96. [PMID: 30982833 DOI: 10.1039/c9cp00871c] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 6.3] [Reference Citation Analysis]
22 Xu Z, Zhou X, Yang W, Zhang Y, Ye Z, Hu S, Ye C, Li Y, Lan Y, Shen J, Ye X, Yang F, Cheng C. In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilm. Plasma Process Polym 2020;17:1900270. [DOI: 10.1002/ppap.201900270] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
23 Liang J, Zhou X, Zhao Z, Wang W, Yang D, Yuan H. Reactive oxygen and nitrogen species in Ar + N 2 + O 2 atmospheric-pressure nanosecond pulsed plasmas in contact with liquid. Physics of Plasmas 2019;26:023521. [DOI: 10.1063/1.5063707] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
24 Veronico V, Favia P, Fracassi F, Gristina R, Sardella E. Validation of colorimetric assays for hydrogen peroxide, nitrate and nitrite ions in complex plasma‐treated water solutions. Plasma Process Polym 2021;18:2100062. [DOI: 10.1002/ppap.202100062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Liu Y, Liu D, Zhang J, Sun B, Luo S, Zhang H, Guo L, Rong M, Kong MG. Fluid model of plasma–liquid interaction: The effect of interfacial boundary conditions and Henry’s law constants. AIP Advances 2021;11:055019. [DOI: 10.1063/5.0042945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Wang Q, Salvi D. Recent progress in the application of plasma-activated water (PAW) for food decontamination. Current Opinion in Food Science 2021;42:51-60. [DOI: 10.1016/j.cofs.2021.04.012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Wang Z, Xu S, Liu D, Wang C, Chen J, Zhang J, Zhu M, Zhang J, Liu C, Guo L, Wang X, Rong M. An integrated device for preparation of plasma‐activated media with bactericidal properties: An in vitro and in vivo study. Contributions to Plasma Physics. [DOI: 10.1002/ctpp.202100125] [Reference Citation Analysis]
28 Akiyama H, Akiyama M. Pulsed Discharge Plasmas in Contact with Water and their Applications. IEEJ Trans Elec Electron Eng 2021;16:6-14. [DOI: 10.1002/tee.23282] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
29 Girard-Sahun F, Badets V, Lefrançois P, Sojic N, Clement F, Arbault S. Reactive Oxygen Species Generated by Cold Atmospheric Plasmas in Aqueous Solution: Successful Electrochemical Monitoring in Situ under a High Voltage System. Anal Chem 2019;91:8002-7. [PMID: 31247715 DOI: 10.1021/acs.analchem.9b01912] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Ndiffo Yemeli GB, Švubová R, Kostolani D, Kyzek S, Machala Z. The effect of water activated by nonthermal air plasma on the growth of farm plants: Case of maize and barley. Plasma Process Polym 2021;18:2000205. [DOI: 10.1002/ppap.202000205] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
31 Raud S, Raud J, Jõgi I, Piller C, Plank T, Talviste R, Teesalu T, Vasar E. The Production of Plasma Activated Water in Controlled Ambient Gases and its Impact on Cancer Cell Viability. Plasma Chem Plasma Process 2021;41:1381-95. [DOI: 10.1007/s11090-021-10183-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ning W, Lai J, Kruszelnicki J, Foster JE, Dai D, Kushner MJ. Propagation of positive discharges in an air bubble having an embedded water droplet. Plasma Sources Sci Technol 2021;30:015005. [DOI: 10.1088/1361-6595/abc830] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Kutasi K, Krstulović N, Jurov A, Salamon K, Popović D, Milošević S. Controlling: the composition of plasma-activated water by Cu ions. Plasma Sources Sci Technol 2021;30:045015. [DOI: 10.1088/1361-6595/abf078] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Girard-Sahun F, Lefrançois P, Badets V, Arbault S, Clement F. Direct Sensing of Superoxide and Its Relatives Reactive Oxygen and Nitrogen Species in Phosphate Buffers during Cold Atmospheric Plasmas Exposures. Anal Chem 2022. [PMID: 35343678 DOI: 10.1021/acs.analchem.1c04998] [Reference Citation Analysis]
35 Jaworek A, Gañán-calvo AM, Machala Z. Low temperature plasmas and electrosprays. J Phys D: Appl Phys 2019;52:233001. [DOI: 10.1088/1361-6463/ab0fdb] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
36 Yu R, Liu Z, Lin J, He X, Liu L, Xiong Q, Chen Q, Ostrikov K(. Colorimetric quantification of aqueous hydrogen peroxide in the DC plasma-liquid system. Plasma Sci Technol 2021;23:055504. [DOI: 10.1088/2058-6272/abf47f] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Rezaeinezhad A, Mirmiranpour H, Ghomi H. Effect of the controlled‐atmosphere helium plasma jet on chemical modification of glycated enzymatic protein. Contributions to Plasma Physics 2022;62. [DOI: 10.1002/ctpp.202100115] [Reference Citation Analysis]
38 Pawłat J, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K. Evaluation of Oxidative Species in Gaseous and Liquid Phase Generated by Mini-Gliding Arc Discharge. Plasma Chem Plasma Process 2019;39:627-42. [DOI: 10.1007/s11090-019-09974-9] [Cited by in Crossref: 29] [Article Influence: 9.7] [Reference Citation Analysis]
39 Kosumsupamala K, Thana P, Palee N, Lamasai K, Kuensaen C, Ngamjarurojana A, Yangkhamman P, Boonyawan D. Air to H2-N2 Pulse Plasma Jet for In-Vitro Plant Tissue Culture Process: Source Characteristics. Plasma Chem Plasma Process. [DOI: 10.1007/s11090-022-10228-4] [Reference Citation Analysis]
40 Kutasi K, Tombácz E. Efficient trapping of RONS in gelatin and physiological solutions. Plasma Processes & Polymers 2022;19:2100077. [DOI: 10.1002/ppap.202100077] [Reference Citation Analysis]
41 Feizollahi E, Iqdiam B, Vasanthan T, Thilakarathna MS, Roopesh MS. Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains. Applied Sciences 2020;10:3530. [DOI: 10.3390/app10103530] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
42 Tan J, Karwe MV. Inactivation and removal of Enterobacter aerogenes biofilm in a model piping system using plasma-activated water (PAW). Innovative Food Science & Emerging Technologies 2021;69:102664. [DOI: 10.1016/j.ifset.2021.102664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
43 Gómez-López VM, Pataro G, Tiwari B, Gozzi M, Meireles MÁA, Wang S, Guamis B, Pan Z, Ramaswamy H, Sastry S, Kuntz F, Cullen PJ, Vidyarthi SK, Ling B, Quevedo JM, Strasser A, Vignali G, Veggi PC, Gervilla R, Kotilainen HM, Pelacci M, Viganó J, Morata A. Guidelines on reporting treatment conditions for emerging technologies in food processing. Crit Rev Food Sci Nutr 2021;:1-25. [PMID: 33764212 DOI: 10.1080/10408398.2021.1895058] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
44 Zhao YM, Patange A, Sun DW, Tiwari B. Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Compr Rev Food Sci Food Saf 2020;19:3951-79. [PMID: 33337045 DOI: 10.1111/1541-4337.12644] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
45 Mai‐prochnow A, Alam D, Zhou R, Zhang T, Ostrikov K(, Cullen PJ. Microbial decontamination of chicken using atmospheric plasma bubbles. Plasma Process Polym 2021;18:2000052. [DOI: 10.1002/ppap.202000052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
46 Wright A, Uprety B, Shaw A, Shama G, Iza F, Bandulasena H. Effect of humic acid on E. coli disinfection in a microbubble-gas plasma reactor. Journal of Water Process Engineering 2019;31:100881. [DOI: 10.1016/j.jwpe.2019.100881] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Zhao YM, Ojha S, Burgess CM, Sun DW, Tiwari BK. Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state. J Appl Microbiol 2020;129:1248-60. [PMID: 32358824 DOI: 10.1111/jam.14677] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
48 Maršálek B, Maršálková E, Odehnalová K, Pochylý F, Rudolf P, Stahel P, Rahel J, Čech J, Fialová S, Zezulka Š. Removal of Microcystis aeruginosa through the Combined Effect of Plasma Discharge and Hydrodynamic Cavitation. Water 2020;12:8. [DOI: 10.3390/w12010008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Huang L, Guo L, Qi Y, Chen M, Niyazi G, Yang L, Zhang F, Zhang J, Yao Z, Yan J, Wang Z, Liu D. Bactericidal effect of surface plasma under different discharge modes. Physics of Plasmas 2021;28:123501. [DOI: 10.1063/5.0068094] [Reference Citation Analysis]
50 Kchaou M, Abuhasel K, Khadr M, Hosni F, Alquraish M. Surface Disinfection to Protect against Microorganisms: Overview of Traditional Methods and Issues of Emergent Nanotechnologies. Applied Sciences 2020;10:6040. [DOI: 10.3390/app10176040] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]