BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Keidar M. Plasma for cancer treatment. Plasma Sources Sci Technol 2015;24:033001. [DOI: 10.1088/0963-0252/24/3/033001] [Cited by in Crossref: 223] [Cited by in F6Publishing: 71] [Article Influence: 31.9] [Reference Citation Analysis]
Number Citing Articles
1 Chen Z, Chen G, Obenchain R, Zhang R, Bai F, Fang T, Wang H, Lu Y, Wirz RE, Gu Z. Cold atmospheric plasma delivery for biomedical applications. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.03.001] [Reference Citation Analysis]
2 Norberg SA, Johnsen E, Kushner MJ. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces. J Appl Phys 2015;118:013301. [DOI: 10.1063/1.4923345] [Cited by in Crossref: 112] [Cited by in F6Publishing: 22] [Article Influence: 16.0] [Reference Citation Analysis]
3 Colonna G, D’ammando G, Pietanza LD. The role of molecular vibration in nanosecond repetitively pulsed discharges and in DBDs in hydrogen plasmas. Plasma Sources Sci Technol 2016;25:054001. [DOI: 10.1088/0963-0252/25/5/054001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
4 Hong YC, Ma SH, Kim K, Shin YW. Multihole dielectric barrier discharge with asymmetric electrode arrangement in water and application to sterilization of aqua pathogens. Chemical Engineering Journal 2019;374:133-43. [DOI: 10.1016/j.cej.2019.05.178] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
5 Zhao W, Alwahabi ZT. Diagnostics of Air Purification Plasma Device by Spatially Resolved Emission Spectroscopy. Plasma 2022;5:206-20. [DOI: 10.3390/plasma5020016] [Reference Citation Analysis]
6 Yusupov M, Van der Paal J, Neyts E, Bogaerts A. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochimica et Biophysica Acta (BBA) - General Subjects 2017;1861:839-47. [DOI: 10.1016/j.bbagen.2017.01.030] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 15.0] [Reference Citation Analysis]
7 Yao X, Yan D, Lin L, Sherman JH, Peters KB, Keir ST, Keidar M. Cold Plasma Discharge Tube Enhances Antitumoral Efficacy of Temozolomide. ACS Appl Bio Mater 2022. [PMID: 35324138 DOI: 10.1021/acsabm.2c00018] [Reference Citation Analysis]
8 Liu W, Zheng Q, Hu M, Zhao L, Li Z. Study of generation characteristics of glow-type atmospheric-pressure plasma jet based on DC discharge in air. Plasma Sci Technol 2019;21:125404. [DOI: 10.1088/2058-6272/ab4160] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Muccignat DL, Stokes PW, Cocks DG, Gascooke JR, Jones DB, Brunger MJ, White RD. Simulating the Feasibility of Using Liquid Micro-Jets for Determining Electron–Liquid Scattering Cross-Sections. IJMS 2022;23:3354. [DOI: 10.3390/ijms23063354] [Reference Citation Analysis]
10 Khan MSI, Lee E, Kim Y. A submerged dielectric barrier discharge plasma inactivation mechanism of biofilms produced by Escherichia coli O157:H7, Cronobacter sakazakii, and Staphylococcus aureus. Sci Rep 2016;6. [DOI: 10.1038/srep37072] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
11 Jezeh MA, Tayebi T, Khani MR, Niknejad H, Shokri B. Direct cold atmospheric plasma and plasma‐activated medium effects on breast and cervix cancer cells. Plasma Process Polym 2020;17:1900241. [DOI: 10.1002/ppap.201900241] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
12 Yan D, Xiao H, Zhu W, Nourmohammadi N, Zhang LG, Bian K, Keidar M. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. J Phys D: Appl Phys 2017;50:055401. [DOI: 10.1088/1361-6463/aa53d6] [Cited by in Crossref: 54] [Cited by in F6Publishing: 15] [Article Influence: 10.8] [Reference Citation Analysis]
13 Takeda K, Sasaki S, Luo W, Takashima K, Kaneko T. Experimental detection of liquid-phase OH radical decay originating from atmospheric-pressure plasma exposure. Appl Phys Express 2021;14:056001. [DOI: 10.35848/1882-0786/abf80e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zandsalimi F, Aghamiri S, Roshanzamiri S, Shahmohamadnejad S, Ghanbarian H. The emerging role of cold atmospheric plasma in glioblastoma therapy. Plasma Process Polym 2020;17:1900189. [DOI: 10.1002/ppap.201900189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Sasaki S, Honda R, Hokari Y, Takashima K, Kanzaki M, Kaneko T. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution. J Phys D: Appl Phys 2016;49:334002. [DOI: 10.1088/0022-3727/49/33/334002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 6] [Article Influence: 5.7] [Reference Citation Analysis]
16 Yatom S, Luo Y, Xiong Q, Bruggeman PJ. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production. J Phys D: Appl Phys 2017;50:415204. [DOI: 10.1088/1361-6463/aa879c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 4.4] [Reference Citation Analysis]
17 Liu Z, Xu D, Zhou C, Cui Q, He T, Chen Z, Liu D, Chen H, Kong MG. Effects of the Pulse Polarity on Helium Plasma Jets: Discharge Characteristics, Key Reactive Species, and Inactivation of Myeloma Cell. Plasma Chem Plasma Process 2018;38:953-68. [DOI: 10.1007/s11090-018-9920-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
18 Mollakhalili-meybodi N, Yousefi M, Nematollahi A, Khorshidian N. Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. Eur Food Res Technol 2021;247:1579-94. [DOI: 10.1007/s00217-021-03750-w] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Vafeas P, Papadopoulos PK, Vafakos GP, Svarnas P, Doschoris M. Modelling the electric field in reactors yielding cold atmospheric-pressure plasma jets. Sci Rep 2020;10:5694. [PMID: 32231234 DOI: 10.1038/s41598-020-61939-7] [Reference Citation Analysis]
20 Keidar M, Robert E. Preface to Special Topic: Plasmas for Medical Applications. Physics of Plasmas 2015;22:121901. [DOI: 10.1063/1.4933406] [Cited by in Crossref: 30] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
21 Ki SH, Park JK, Sung C, Lee CB, Uhm H, Choi EH, Baik KY. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma. J Phys D: Appl Phys 2016;49:085401. [DOI: 10.1088/0022-3727/49/8/085401] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
22 Czapka T, Maliszewska I, Olesiak-bańska J. Influence of Atmospheric Pressure Non-thermal Plasma on Inactivation of Biofilm Cells. Plasma Chem Plasma Process 2018;38:1181-97. [DOI: 10.1007/s11090-018-9925-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Kim DY, Kim SJ, Joh HM, Chung TH. Characterization of an atmospheric pressure plasma jet array and its application to cancer cell treatment using plasma activated medium. Physics of Plasmas 2018;25:073505. [DOI: 10.1063/1.5037249] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 3.8] [Reference Citation Analysis]
24 Yan D, Lin L, Zvansky M, Kohanzadeh L, Taban S, Chriqui S, Keidar M. Improving Seed Germination by Cold Atmospheric Plasma. Plasma 2022;5:98-110. [DOI: 10.3390/plasma5010008] [Reference Citation Analysis]
25 Dai X, Zhang Z, Zhang J, Ostrikov K(. Dosing: The key to precision plasma oncology. Plasma Process Polym 2020;17:1900178. [DOI: 10.1002/ppap.201900178] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
26 Jo A, Joh HM, Chung J, Chung T. Cell viability and measurement of reactive species in gas- and liquid-phase exposed by a microwave-excited atmospheric pressure argon plasma jet. Current Applied Physics 2020;20:562-71. [DOI: 10.1016/j.cap.2020.02.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
27 Reiazi R, Akbari ME, Norozi A, Etedadialiabadi M. Application of Cold Atmospheric Plasma (CAP) in Cancer Therapy: A Review. Int J Cancer Manag 2017;10. [DOI: 10.5812/ijcp.8728] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
28 Keidar M. A prospectus on innovations in the plasma treatment of cancer. Physics of Plasmas 2018;25:083504. [DOI: 10.1063/1.5034355] [Cited by in Crossref: 43] [Cited by in F6Publishing: 12] [Article Influence: 10.8] [Reference Citation Analysis]
29 Naidis GV, Babaeva NY. Modeling of streamer dynamics in helium plasma jets driven by modulated voltage pulses. Physics of Plasmas 2019;26:094501. [DOI: 10.1063/1.5115779] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
30 Morabit Y, Hasan MI, Whalley RD, Robert E, Modic M, Walsh JL. A review of the gas and liquid phase interactions in low-temperature plasma jets used for biomedical applications. Eur Phys J D 2021;75. [DOI: 10.1140/epjd/s10053-020-00004-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
31 Simeni MS, Baratte E, Zhang C, Frederickson K, Adamovich IV. Electric field measurements in nanosecond pulse discharges in air over liquid water surface. Plasma Sources Sci Technol 2018;27:015011. [DOI: 10.1088/1361-6595/aaa06e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Cheng X, Rajjoub K, Sherman J, Canady J, Recek N, Yan D, Bian K, Murad F, Keidar M. Cold Plasma Accelerates the Uptake of Gold Nanoparticles Into Glioblastoma Cells: Cold plasma accelerates the uptake of gold …. Plasma Process Polym 2015;12:1364-9. [DOI: 10.1002/ppap.201500093] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 2.9] [Reference Citation Analysis]
33 Li W, Yu H, Ding D, Chen Z, Wang Y, Wang S, Li X, Keidar M, Zhang W. Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radic Biol Med 2019;130:71-81. [PMID: 30342190 DOI: 10.1016/j.freeradbiomed.2018.10.429] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 8.8] [Reference Citation Analysis]
34 Stancampiano A, Selaković N, Gherardi M, Puač N, Petrović ZL, Colombo V. Characterisation of a multijet plasma device by means of mass spectrometric detection and iCCD imaging. J Phys D: Appl Phys 2018;51:484004. [DOI: 10.1088/1361-6463/aae2f2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
35 Cheng X, Rajjoub K, Shashurin A, Yan D, Sherman JH, Bian K, Murad F, Keidar M. Enhancing cold atmospheric plasma treatment of cancer cells by static magnetic field. Bioelectromagnetics 2017;38:53-62. [DOI: 10.1002/bem.22014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
36 Knoll AJ, Luan P, Bartis EAJ, Kondeti VSSK, Bruggeman PJ, Oehrlein GS. Cold Atmospheric Pressure Plasma VUV Interactions With Surfaces: Effect of Local Gas Environment and Source Design. Plasma Process Polym 2016;13:1069-79. [DOI: 10.1002/ppap.201600043] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
37 Motrescu I, Nagatsu M. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure. ACS Appl Mater Interfaces 2016;8:12528-33. [PMID: 27116255 DOI: 10.1021/acsami.6b02483] [Cited by in Crossref: 25] [Cited by in F6Publishing: 7] [Article Influence: 4.2] [Reference Citation Analysis]
38 Szili EJ, Oh J, Fukuhara H, Bhatia R, Gaur N, Nguyen CK, Hong S, Ito S, Ogawa K, Kawada C, Shuin T, Tsuda M, Furihata M, Kurabayashi A, Furuta H, Ito M, Inoue K, Hatta A, Short RD. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour. Plasma Sources Sci Technol 2018;27:014001. [DOI: 10.1088/1361-6595/aa9b3b] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 7.4] [Reference Citation Analysis]
39 Hong Q, Bartolomei M, Esposito F, Coletti C, Sun Q, Pirani F. Reconciling experimental and theoretical vibrational deactivation in low-energy O + N2 collisions. Phys Chem Chem Phys 2021;23:15475-9. [PMID: 34156045 DOI: 10.1039/d1cp01976g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Xu H, Zhu Y, Du M, Wang Y, Ju S, Ma R, Jiao Z. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. Water Res 2021;188:116513. [PMID: 33091801 DOI: 10.1016/j.watres.2020.116513] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
41 Kumar N, Park JH, Jeon SN, Park BS, Choi EH, Attri P. The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells. J Phys D: Appl Phys 2016;49:115401. [DOI: 10.1088/0022-3727/49/11/115401] [Cited by in Crossref: 55] [Cited by in F6Publishing: 19] [Article Influence: 9.2] [Reference Citation Analysis]
42 Baghel SS, Gupta S, Gangwar RK, Srivastava R. Diagnostics of low-temperature neon plasma through a fine-structure resolved collisional–radiative model. Plasma Sources Sci Technol 2019;28:115010. [DOI: 10.1088/1361-6595/ab4684] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
43 Oh J, Szili EJ, Gaur N, Hong S, Furuta H, Kurita H, Mizuno A, Hatta A, Short RD. How to assess the plasma delivery of RONS into tissue fluid and tissue. J Phys D: Appl Phys 2016;49:304005. [DOI: 10.1088/0022-3727/49/30/304005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 17] [Article Influence: 9.3] [Reference Citation Analysis]
44 Pranda MA, Murugesan BJ, Knoll AJ, Oehrlein GS, Stroka KM. Sensitivity of tumor versus normal cell migration and morphology to cold atmospheric plasma‐treated media in varying culture conditions. Plasma Process Polym 2020;17:1900103. [DOI: 10.1002/ppap.201900103] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
45 Zhang J, Li B, Xu S, Liu D, Zhang H, Xu D, Guo L, Kong MG. Study of the anticancer effects of a helium plasma jet combined with four anticancer drugs on 3D bladder tumour spheroids. Plasma Process Polym 2021;18:2000226. [DOI: 10.1002/ppap.202000226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
46 Xu Z, Lan Y, Ma J, Shen J, Han W, Hu S, Ye C, Xi W, Zhang Y, Yang C, Zhao X, Cheng C. Applications of atmospheric pressure plasma in microbial inactivation and cancer therapy: a brief review. Plasma Sci Technol 2020;22:103001. [DOI: 10.1088/2058-6272/ab9ddd] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
47 Yoshimura S, Otsubo Y, Yamashita A, Ishikawa K. Insights into normothermic treatment with direct irradiation of atmospheric pressure plasma for biological applications. Jpn J Appl Phys 2021;60:010502. [DOI: 10.35848/1347-4065/abcbd2] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
48 Zhang S, Rousseau A, Dufour T. Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer. RSC Adv 2017;7:31244-51. [DOI: 10.1039/c7ra04663d] [Cited by in Crossref: 40] [Article Influence: 8.0] [Reference Citation Analysis]
49 Ara ES, Noghreiyan AV, Sazgarnia A. Evaluation of photodynamic effect of Indocyanine green (ICG) on the colon and glioblastoma cancer cell lines pretreated by cold atmospheric plasma. Photodiagnosis Photodyn Ther 2021;35:102408. [PMID: 34171459 DOI: 10.1016/j.pdpdt.2021.102408] [Reference Citation Analysis]
50 Chen Z, Cheng X, Lin L, Keidar M. Cold atmospheric plasma discharged in water and its potential use in cancer therapy. J Phys D: Appl Phys 2017;50:015208. [DOI: 10.1088/1361-6463/50/1/015208] [Cited by in Crossref: 27] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
51 Sasaki S, Zheng Y, Mokudai T, Kanetaka H, Tachikawa M, Kanzaki M, Kaneko T. Continuous release of O 2 /ONOO in plasma‐exposed HEPES‐buffered saline promotes TRP channel‐mediated uptake of a large cation. Plasma Process Polym 2020;17:1900257. [DOI: 10.1002/ppap.201900257] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
52 Reuter S, von Woedtke T, Weltmann K. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D: Appl Phys 2018;51:233001. [DOI: 10.1088/1361-6463/aab3ad] [Cited by in Crossref: 161] [Cited by in F6Publishing: 27] [Article Influence: 40.3] [Reference Citation Analysis]
53 Lu N, Zhang C, Shang K, Jiang N, Li J, Wu Y. Dielectric barrier discharge plasma assisted CO 2 conversion: understanding the effects of reactor design and operating parameters. J Phys D: Appl Phys 2019;52:224003. [DOI: 10.1088/1361-6463/ab0ebb] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
54 Chen Z, Lin L, Cheng X, Gjika E, Keidar M. Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Process Polym 2016;13:1151-6. [DOI: 10.1002/ppap.201600086] [Cited by in Crossref: 30] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
55 Cordeiro RM, Yusupov M, Razzokov J, Bogaerts A. Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences. J Phys Chem B 2020;124:1082-9. [DOI: 10.1021/acs.jpcb.9b08172] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
56 Wolff CM, Steuer A, Stoffels I, von Woedtke T, Weltmann K, Bekeschus S, Kolb JF. Combination of cold plasma and pulsed electric fields – A rationale for cancer patients in palliative care. Clinical Plasma Medicine 2019;16:100096. [DOI: 10.1016/j.cpme.2020.100096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Ki SH, Sin S, Shin J, Kwon YW, Chae MW, Uhm HS, Baik KY, Choi EH. Hemoglobin as a Diagnosing Molecule for Biological Effects of Atmospheric-Pressure Plasma. Plasma Chem Plasma Process 2018;38:937-52. [DOI: 10.1007/s11090-018-9917-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
58 Lotfy K, Khalil SM, El-raheem HA. Inactivation by helium cold atmospheric pressure plasma for Escherichia coli and Staphylococcus aureus. J Theor Appl Phys 2020;14:37-45. [DOI: 10.1007/s40094-019-00362-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
59 Laroussi M, Lu X, Keidar M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. Journal of Applied Physics 2017;122:020901. [DOI: 10.1063/1.4993710] [Cited by in Crossref: 127] [Cited by in F6Publishing: 22] [Article Influence: 25.4] [Reference Citation Analysis]
60 Szili EJ, Hong SH, Oh JS, Gaur N, Short RD. Tracking the Penetration of Plasma Reactive Species in Tissue Models. Trends Biotechnol 2018;36:594-602. [PMID: 28843839 DOI: 10.1016/j.tibtech.2017.07.012] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 9.6] [Reference Citation Analysis]
61 Li Y, Hu X, Li H, Zhang Y, Chen H. Investigation of cold atmospheric plasma treatment in polydimethylsiloxane microfluidic devices with a transmural method. J Phys Condens Matter 2018;30:384001. [PMID: 30095440 DOI: 10.1088/1361-648X/aad981] [Reference Citation Analysis]
62 Lamichhane P, Ghimire B, Mumtaz S, Paneru R, Ki SH, Choi EH. Control of hydrogen peroxide production in plasma activated water by utilizing nitrification. J Phys D: Appl Phys 2019;52:265206. [DOI: 10.1088/1361-6463/ab16a9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
63 Levchenko I, Keidar M, Cvelbar U, Mariotti D, Mai-prochnow A, Fang J, Ostrikov K(. Novel biomaterials: plasma-enabled nanostructures and functions. J Phys D: Appl Phys 2016;49:273001. [DOI: 10.1088/0022-3727/49/27/273001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
64 Wu S, Dong X, Mao W, Jiang J, Yue Y, Lu X, Zhang C. Observation of the stratified glow mode in helium/argon gas-confined barrier discharge at atmospheric pressure. Plasma Sources Sci Technol 2017;26:09LT01. [DOI: 10.1088/1361-6595/aa856d] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
65 Zhang J, Guo L, Chen Q, Zhang K, Wang T, An G, Zhang X, Li H, Ding G. Effects and mechanisms of cold atmospheric plasma on skin wound healing of rats. Contributions to Plasma Physics 2019;59:92-101. [DOI: 10.1002/ctpp.201800025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
66 Yan D, Wang Q, Malyavko A, Zolotukhin DB, Adhikari M, Sherman JH, Keidar M. The anti-glioblastoma effect of cold atmospheric plasma treatment: physical pathway v.s. chemical pathway. Sci Rep 2020;10:11788. [PMID: 32678153 DOI: 10.1038/s41598-020-68585-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
67 Yusupov M, Lackmann J, Razzokov J, Kumar S, Stapelmann K, Bogaerts A. Impact of plasma oxidation on structural features of human epidermal growth factor. Plasma Process Polym 2018;15:1800022. [DOI: 10.1002/ppap.201800022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
68 Chen F, Song J, Huang S, Xu S, Xia G, Yang D, Xu W, Sun J, Liu X. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas. J Phys D: Appl Phys 2016;49:365202. [DOI: 10.1088/0022-3727/49/36/365202] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
69 Verlackt CCW, Van Boxem W, Dewaele D, Lemière F, Sobott F, Benedikt J, Neyts EC, Bogaerts A. Mechanisms of Peptide Oxidation by Hydroxyl Radicals: Insight at the Molecular Scale. J Phys Chem C 2017;121:5787-99. [DOI: 10.1021/acs.jpcc.6b12278] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Kapaldo J, Han X, Ptasinska S. Shielding‐gas‐controlled atmospheric pressure plasma jets: Optical emission, reactive oxygen species, and the effect on cancer cells. Plasma Process Polym 2019;16:1800169. [DOI: 10.1002/ppap.201800169] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
71 Lu Y, Wu S, Cheng W, Lu X. Electric field measurements in an atmospheric-pressure microplasma jet using Stark polarization emission spectroscopy of helium atom. Eur Phys J Spec Top 2017;226:2979-89. [DOI: 10.1140/epjst/e2016-60334-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 2.6] [Reference Citation Analysis]
72 Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol 2018;36:615-26. [PMID: 29329724 DOI: 10.1016/j.tibtech.2017.11.001] [Cited by in Crossref: 130] [Cited by in F6Publishing: 67] [Article Influence: 32.5] [Reference Citation Analysis]
73 Lin L, Keidar M. A map of control for cold atmospheric plasma jets: From physical mechanisms to optimizations. Applied Physics Reviews 2021;8:011306. [DOI: 10.1063/5.0022534] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
74 Van der Paal J, Hong S, Yusupov M, Gaur N, Oh J, Short RD, Szili EJ, Bogaerts A. How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage: an experimental and computational study. Phys Chem Chem Phys 2019;21:19327-41. [DOI: 10.1039/c9cp03520f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
75 Trizio I, Rizzi V, Gristina R, Sardella E, Cosma P, Francioso E, von Woedtke T, Favia P. Plasma generated RONS in cell culture medium for in vitro studies of eukaryotic cells on Tissue Engineering scaffolds. Plasma Process Polym 2017;14:1700014. [DOI: 10.1002/ppap.201700014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
76 Pansare K, Vaid A, Singh SR, Rane R, Visani A, Ranjan M, Krishna CM, Sarin R, Joseph A. Effect of Cold Atmospheric Plasma Jet and Gamma Radiation Treatments on Gingivobuccal Squamous Cell Carcinoma and Breast Adenocarcinoma Cells. Plasma Chem Plasma Process 2022;42:163-78. [DOI: 10.1007/s11090-021-10212-4] [Reference Citation Analysis]
77 Luan P, Oehrlein GS. Stages of polymer transformation during remote plasma oxidation (RPO) at atmospheric pressure. J Phys D: Appl Phys 2018;51:135201. [DOI: 10.1088/1361-6463/aaaf60] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
78 Labay C, Roldán M, Tampieri F, Stancampiano A, Bocanegra PE, Ginebra MP, Canal C. Enhanced Generation of Reactive Species by Cold Plasma in Gelatin Solutions for Selective Cancer Cell Death. ACS Appl Mater Interfaces 2020;12:47256-69. [PMID: 33021783 DOI: 10.1021/acsami.0c12930] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
79 Yan D, Lin L, Xu W, Nourmohammadi N, Sherman JH, Keidar M. Cold plasma-based control of the activation of pancreatic adenocarcinoma cells. J Phys D: Appl Phys 2019;52:445202. [DOI: 10.1088/1361-6463/ab36d4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
80 Lin L, Yan D, Lee T, Keidar M. Self‐Adaptive Plasma Chemistry and Intelligent Plasma Medicine. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202100112] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Yusupov M, Yan D, Cordeiro RM, Bogaerts A. Atomic scale simulation of H 2 O 2 permeation through aquaporin: toward the understanding of plasma cancer treatment. J Phys D: Appl Phys 2018;51:125401. [DOI: 10.1088/1361-6463/aaae7a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 5.8] [Reference Citation Analysis]
82 Kawasaki T, Mitsugi F, Koga K, Shiratani M. Local supply of reactive oxygen species into a tissue model by atmospheric-pressure plasma-jet exposure. Journal of Applied Physics 2019;125:213303. [DOI: 10.1063/1.5091740] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
83 Yan D, Horkowitz A, Wang Q, Keidar M. On the selective killing of cold atmospheric plasma cancer treatment: Status and beyond. Plasma Process Polym 2021;18:2100020. [DOI: 10.1002/ppap.202100020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Sasaki S, Kanzaki M, Hokari Y, Tominami K, Mokudai T, Kanetaka H, Kaneko T. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation. Jpn J Appl Phys 2016;55:07LG04. [DOI: 10.7567/jjap.55.07lg04] [Cited by in Crossref: 9] [Article Influence: 1.5] [Reference Citation Analysis]
85 Lu X, Keidar M, Laroussi M, Choi E, Szili E, Ostrikov K. Transcutaneous plasma stress: From soft-matter models to living tissues. Materials Science and Engineering: R: Reports 2019;138:36-59. [DOI: 10.1016/j.mser.2019.04.002] [Cited by in Crossref: 55] [Cited by in F6Publishing: 11] [Article Influence: 18.3] [Reference Citation Analysis]
86 Kelly S, Golda J, Turner MM, Schulz-von der Gathen V. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet. J Phys D: Appl Phys 2015;48:444002. [DOI: 10.1088/0022-3727/48/44/444002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 2.9] [Reference Citation Analysis]
87 Tian Z, Hou Z. Development of a minimizable pulsed plasma source with structure induced focusability. Journal of Applied Physics 2022;131:024503. [DOI: 10.1063/5.0074853] [Reference Citation Analysis]
88 Cheng H, Xu J, Li X, Liu D, Lu X. On the dose of plasma medicine: Equivalent total oxidation potential (ETOP). Physics of Plasmas 2020;27:063514. [DOI: 10.1063/5.0008881] [Cited by in Crossref: 25] [Cited by in F6Publishing: 2] [Article Influence: 12.5] [Reference Citation Analysis]
89 Fanelli F, Fracassi F, Lapenna A, Angarano V, Palazzo G, Mallardi A. Atmospheric Pressure Cold Plasma: A Friendly Environment for Dry Enzymes. Adv Mater Interfaces 2018;5:1801373. [DOI: 10.1002/admi.201801373] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
90 Xiang L, Xu X, Zhang S, Cai D, Dai X. Cold atmospheric plasma conveys selectivity on triple negative breast cancer cells both in vitro and in vivo. Free Radic Biol Med 2018;124:205-13. [PMID: 29870749 DOI: 10.1016/j.freeradbiomed.2018.06.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 9.8] [Reference Citation Analysis]
91 Fukuhara H, Szili EJ, Oh J, Chiaki K, Yamamoto S, Kurabayashi A, Furihata M, Tsuda M, Furuta H, Lindsay HD, Short RD, Hatta A, Inoue K. Oxidative Stress Pathways Linked to Apoptosis Induction by Low-Temperature Plasma Jet Activated Media in Bladder Cancer Cells: An In Vitro and In Vivo Study. Plasma 2022;5:233-46. [DOI: 10.3390/plasma5020018] [Reference Citation Analysis]
92 Lin L, Keidar M. Cold atmospheric plasma jet in an axial DC electric field. Physics of Plasmas 2016;23:083529. [DOI: 10.1063/1.4961924] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
93 Ishaq M, Bazaka K, Ostrikov K. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells. Physics of Plasmas 2015;22:122003. [DOI: 10.1063/1.4933366] [Cited by in Crossref: 38] [Cited by in F6Publishing: 9] [Article Influence: 5.4] [Reference Citation Analysis]
94 Malyavko A, Yan D, Wang Q, Klein AL, Patel KC, Sherman JH, Keidar M. Cold atmospheric plasma cancer treatment, direct versus indirect approaches. Mater Adv 2020;1:1494-505. [DOI: 10.1039/d0ma00329h] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
95 Xu G, Liu J, Yao C, Chen S, Lin F, Li P, Shi X, Zhang G. Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells. Physics of Plasmas 2017;24:083504. [DOI: 10.1063/1.4994552] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.6] [Reference Citation Analysis]
96 Dai X, Bazaka K, Richard DJ, Thompson ERW, Ostrikov KK. The Emerging Role of Gas Plasma in Oncotherapy. Trends Biotechnol 2018;36:1183-98. [PMID: 30033340 DOI: 10.1016/j.tibtech.2018.06.010] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
97 Zhang J, Zhang H, Liu D, Liu Y, Sun B, Wang Z, Xu D, Guo L, Kong MG. Study on the anticancer area and depth of a He plasma jet based on 2D monolayer cells and 3D tumor spheroids. J Phys D: Appl Phys 2020;53:175201. [DOI: 10.1088/1361-6463/ab6fce] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
98 Naidis GV. Modeling of Streamer Dynamics in Atmospheric-Pressure Air Plasma Jets: Modeling of Streamer Dynamics…. Plasma Process Polym 2017;14:1600127. [DOI: 10.1002/ppap.201600127] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
99 Wu S, Lu X, Yue Y, Dong X, Pei X. Effects of the tube diameter on the propagation of helium plasma plume via electric field measurement. Physics of Plasmas 2016;23:103506. [DOI: 10.1063/1.4964280] [Cited by in Crossref: 26] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
100 Klose S, Ellis J, Riedel F, Schröter S, Niemi K, Semenov IL, Weltmann K, Gans T, O’connell D, van Helden JH. The spatial distribution of hydrogen and oxygen atoms in a cold atmospheric pressure plasma jet. Plasma Sources Sci Technol 2020;29:125018. [DOI: 10.1088/1361-6595/abcc4f] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
101 Keidar M, Yan D, Beilis II, Trink B, Sherman JH. Plasmas for Treating Cancer: Opportunities for Adaptive and Self-Adaptive Approaches. Trends Biotechnol 2018;36:586-93. [PMID: 28755977 DOI: 10.1016/j.tibtech.2017.06.013] [Cited by in Crossref: 78] [Cited by in F6Publishing: 44] [Article Influence: 15.6] [Reference Citation Analysis]
102 Jiang Y, Cheng J, Sun D. Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends in Food Science & Technology 2020;98:129-39. [DOI: 10.1016/j.tifs.2020.02.009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 18] [Article Influence: 16.5] [Reference Citation Analysis]
103 Adhikari ER, Ptasinska S. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage. Eur Phys J D 2016;70. [DOI: 10.1140/epjd/e2016-70274-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
104 Klose S, Manfred KM, Norman HC, Ritchie GAD, van Helden JH. The spatial distribution of HO 2 in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy. Plasma Sources Sci Technol 2020;29:085011. [DOI: 10.1088/1361-6595/aba206] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
105 Levchenko I, Bazaka K, Baranov O, Sankaran RM, Nomine A, Belmonte T, Xu S. Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation. Applied Physics Reviews 2018;5:021103. [DOI: 10.1063/1.5024865] [Cited by in Crossref: 38] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
106 Xu R, Chen Z, Keidar M, Leng Y. The impact of radicals in cold atmospheric plasma on the structural modification of gap junction: a reactive molecular dynamics study. International Journal of Smart and Nano Materials 2018;10:144-55. [DOI: 10.1080/19475411.2018.1541936] [Cited by in Crossref: 13] [Article Influence: 3.3] [Reference Citation Analysis]
107 Tarabová B, Lukeš P, Janda M, Hensel K, Šikurová L, Machala Z. Specificity of detection methods of nitrites and ozone in aqueous solutions activated by air plasma. Plasma Process Polym 2018;15:1800030. [DOI: 10.1002/ppap.201800030] [Cited by in Crossref: 34] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
108 Mehrabifard R, Mehdian H, Hajisharifi K, Amini E. Improving Cold Atmospheric Pressure Plasma Efficacy on Breast Cancer Cells Control-Ability and Mortality Using Vitamin C and Static Magnetic Field. Plasma Chem Plasma Process 2020;40:511-26. [DOI: 10.1007/s11090-019-10050-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
109 Fofana M, Buñay J, Judée F, Baron S, Menecier S, Nivoix M, Perisse F, Vacavant A, Balandraud X. Selective treatments of prostate tumor cells with a cold atmospheric plasma jet. Clinical Plasma Medicine 2020;17-18:100098. [DOI: 10.1016/j.cpme.2020.100098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
110 Yan D, Nourmohammadi N, Talbot A, Sherman JH, Keidar M. The strong anti-glioblastoma capacity of the plasma-stimulated lysine-rich medium. J Phys D: Appl Phys 2016;49:274001. [DOI: 10.1088/0022-3727/49/27/274001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
111 Zhao S, Han R, Li Y, Lu C, Chen X, Xiong Z, Mao X. Investigation of the mechanism of enhanced and directed differentiation of neural stem cells by an atmospheric plasma jet: A gene-level study. Journal of Applied Physics 2019;125:163301. [DOI: 10.1063/1.5060650] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
112 Benstâali W, Larbi Daho Bachir N, Bendella S, Belasri A, Harrache Z, Caillier B. Theoretical Kinetics Investigation of Krypton Dielectric Barrier Discharge for UV Lamp. Plasma Chem Plasma Process 2020;40:1585-603. [DOI: 10.1007/s11090-020-10110-1] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
113 Tian W, Kushner MJ. Long-term effects of multiply pulsed dielectric barrier discharges in air on thin water layers over tissue: stationary and random streamers. J Phys D: Appl Phys 2015;48:494002. [DOI: 10.1088/0022-3727/48/49/494002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 4.6] [Reference Citation Analysis]
114 Kimura Y, Takashima K, Sasaki S, Kaneko T. Investigation on dinitrogen pentoxide roles on air plasma effluent exposure to liquid water solution. J Phys D: Appl Phys 2019;52:064003. [DOI: 10.1088/1361-6463/aaf15a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
115 Veda Prakash G, Behera N, Patel K, Kumar A. Concise characterization of cold atmospheric pressure helium plasma jet. AIP Advances 2021;11:085329. [DOI: 10.1063/5.0061857] [Reference Citation Analysis]
116 Ma J, Zhang H, Cheng C, Shen J, Bao L, Han W. Contribution of hydrogen peroxide to non-thermal atmospheric pressure plasma induced A549 lung cancer cell damage. Plasma Process Polym 2017;14:1600162. [DOI: 10.1002/ppap.201600162] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
117 Bekeschus S, Rödder K, Schmidt A, Stope MB, von Woedtke T, Miller V, Fridman A, Weltmann K, Masur K, Metelmann H, Wende K, Hasse S. Cold physical plasma selects for specific T helper cell subsets with distinct cells surface markers in a caspase-dependent and NF-κB-independent manner. Plasma Process Polym 2016;13:1144-50. [DOI: 10.1002/ppap.201600080] [Cited by in Crossref: 25] [Cited by in F6Publishing: 8] [Article Influence: 4.2] [Reference Citation Analysis]
118 Yan D, Wang Q, Adhikari M, Malyavko A, Lin L, Zolotukhin DB, Yao X, Kirschner M, Sherman JH, Keidar M. A Physically Triggered Cell Death via Transbarrier Cold Atmospheric Plasma Cancer Treatment. ACS Appl Mater Interfaces 2020;12:34548-63. [PMID: 32648738 DOI: 10.1021/acsami.0c06500] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
119 Yang Y, Li Z, Nie L, Lu X. Effect of liquid-dissolved gas components on concentrations of the aqueous reactive oxygen and nitrogen species. Journal of Applied Physics 2019;125:223302. [DOI: 10.1063/1.5085258] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
120 Lee MU, Lee JK, Yun GS. Generation of energetic electrons in pulsed microwave plasmas. Plasma Process Polym 2018;15:1700124. [DOI: 10.1002/ppap.201700124] [Cited by in Crossref: 9] [Article Influence: 1.8] [Reference Citation Analysis]
121 Dai X, Yu L, Zhao X, Ostrikov KK. Nanomaterials for oncotherapies targeting the hallmarks of cancer. Nanotechnology 2020;31:392001. [PMID: 32503023 DOI: 10.1088/1361-6528/ab99f1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
122 Choi J, Eom IS, Kim SJ, Kwon YW, Joh HM, Jeong BS, Chung TH. Characterization of a microwave-excited atmospheric-pressure argon plasma jet using two-parallel-wires transmission line resonator. Physics of Plasmas 2017;24:093516. [DOI: 10.1063/1.4989728] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]