BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oh J, Szili EJ, Gaur N, Hong S, Furuta H, Kurita H, Mizuno A, Hatta A, Short RD. How to assess the plasma delivery of RONS into tissue fluid and tissue. J Phys D: Appl Phys 2016;49:304005. [DOI: 10.1088/0022-3727/49/30/304005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 17] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Lu P, Boehm D, Bourke P, Cullen PJ. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Process Polym 2017;14:1600207. [DOI: 10.1002/ppap.201600207] [Cited by in Crossref: 74] [Cited by in F6Publishing: 26] [Article Influence: 14.8] [Reference Citation Analysis]
2 Oh J, Strudwick X, Short RD, Ogawa K, Hatta A, Furuta H, Gaur N, Hong S, Cowin AJ, Fukuhara H, Inoue K, Ito M, Charles C, Boswell RW, Bradley JW, Graves DB, Szili EJ. How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells. Appl Phys Lett 2016;109:203701. [DOI: 10.1063/1.4967880] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
3 Lu P, Boehm D, Cullen P, Bourke P. Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge. Appl Phys Lett 2017;110:264102. [DOI: 10.1063/1.4990525] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
4 Liu Z, Zhou C, Liu D, He T, Guo L, Xu D, Kong MG. Quantifying the concentration and penetration depth of long-lived RONS in plasma-activated water by UV absorption spectroscopy. AIP Advances 2019;9:015014. [DOI: 10.1063/1.5037660] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
5 Duriyasart F, Ohtani M, Oh JS, Hatta A, Kobiro K. A new approach to surface activation of porous nanomaterials using non-thermal helium atmospheric pressure plasma jet treatment. Chem Commun (Camb) 2017;53:6704-7. [PMID: 28560362 DOI: 10.1039/c7cc02927f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Bekeschus S, Lin A, Fridman A, Wende K, Weltmann K, Miller V. A Comparison of Floating-Electrode DBD and kINPen Jet: Plasma Parameters to Achieve Similar Growth Reduction in Colon Cancer Cells Under Standardized Conditions. Plasma Chem Plasma Process 2018;38:1-12. [DOI: 10.1007/s11090-017-9845-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 4] [Article Influence: 5.4] [Reference Citation Analysis]
7 Friedman PC. Cold atmospheric pressure (physical) plasma in dermatology: where are we today? Int J Dermatol 2020;59:1171-84. [PMID: 32783244 DOI: 10.1111/ijd.15110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
8 Szili EJ, Hong SH, Oh JS, Gaur N, Short RD. Tracking the Penetration of Plasma Reactive Species in Tissue Models. Trends Biotechnol 2018;36:594-602. [PMID: 28843839 DOI: 10.1016/j.tibtech.2017.07.012] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 9.6] [Reference Citation Analysis]
9 Duan J, Lu X, He G. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Physics of Plasmas 2017;24:073506. [DOI: 10.1063/1.4990554] [Cited by in Crossref: 47] [Cited by in F6Publishing: 21] [Article Influence: 9.4] [Reference Citation Analysis]
10 Corella Puertas E, Dzafic A, Coulombe S. Investigation of the Electrode Erosion in Pin-to-Liquid Discharges and Its Influence on Reactive Oxygen and Nitrogen Species in Plasma-Activated Water. Plasma Chem Plasma Process 2020;40:145-67. [DOI: 10.1007/s11090-019-10036-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
11 Van der Paal J, Hong S, Yusupov M, Gaur N, Oh J, Short RD, Szili EJ, Bogaerts A. How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage: an experimental and computational study. Phys Chem Chem Phys 2019;21:19327-41. [DOI: 10.1039/c9cp03520f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
12 Liu Z, Wang W, Liu D, Zhou C, He T, Xia W, Kong MG. Experimental investigation of behavior of bullets dynamics and production of RONS in helium APPJs-liquid interaction: The effect of additive gas components. Physics of Plasmas 2019;26:053507. [DOI: 10.1063/1.5063761] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
13 Bekeschus S, Favia P, Robert E, von Woedtke T. White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Process Polym 2018;16:1800033. [DOI: 10.1002/ppap.201800033] [Cited by in Crossref: 70] [Cited by in F6Publishing: 13] [Article Influence: 17.5] [Reference Citation Analysis]
14 Labay C, Roldán M, Tampieri F, Stancampiano A, Bocanegra PE, Ginebra MP, Canal C. Enhanced Generation of Reactive Species by Cold Plasma in Gelatin Solutions for Selective Cancer Cell Death. ACS Appl Mater Interfaces 2020;12:47256-69. [PMID: 33021783 DOI: 10.1021/acsami.0c12930] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Laroussi M. Plasma Medicine: A Brief Introduction. Plasma 2018;1:47-60. [DOI: 10.3390/plasma1010005] [Cited by in Crossref: 64] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
16 Siddique SS, Hardy GESJ, Bayliss KL. Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol 2018;67:1011-21. [DOI: 10.1111/ppa.12825] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 4.8] [Reference Citation Analysis]
17 Iwata N, Gamaleev V, Oh J, Ohta T, Hori M, Ito M. Investigation on the long‐term bactericidal effect and chemical composition of radical‐activated water. Plasma Process Polym 2019;16:1900055. [DOI: 10.1002/ppap.201900055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
18 Busco G, Robert E, Chettouh-Hammas N, Pouvesle JM, Grillon C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic Biol Med 2020;161:290-304. [PMID: 33039651 DOI: 10.1016/j.freeradbiomed.2020.10.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
19 Shimada K, Takashima K, Kimura Y, Nihei K, Konishi H, Kaneko T. Humidification effect of air plasma effluent gas on suppressing conidium germination of a plant pathogenic fungus in the liquid phase. Plasma Process Polym 2020;17:1900004. [DOI: 10.1002/ppap.201900004] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
20 Kawasaki T, Mitsugi F, Koga K, Shiratani M. Local supply of reactive oxygen species into a tissue model by atmospheric-pressure plasma-jet exposure. Journal of Applied Physics 2019;125:213303. [DOI: 10.1063/1.5091740] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
21 Oh, Szili, Hatta, Ito, Shirafuji. Tailoring the Chemistry of Plasma-Activated Water Using a DC-Pulse-Driven Non-Thermal Atmospheric-Pressure Helium Plasma Jet. Plasma 2019;2:127-37. [DOI: 10.3390/plasma2020010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
22 Duan J, Gan L, Nie L, Sun F, Lu X, He G. On the penetration of reactive oxygen and nitrogen species generated by a plasma jet into and through mice skin with/without stratum corneum. Physics of Plasmas 2019;26:043504. [DOI: 10.1063/1.5082160] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
23 Ghimire B, Szili EJ, Lamichhane P, Short RD, Lim JS, Attri P, Masur K, Weltmann K, Hong S, Choi EH. The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet. Appl Phys Lett 2019;114:093701. [DOI: 10.1063/1.5086522] [Cited by in Crossref: 33] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
24 Wende K, von Woedtke T, Weltmann KD, Bekeschus S. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol Chem 2018;400:19-38. [PMID: 30403650 DOI: 10.1515/hsz-2018-0242] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]