BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bernatoniene J, Zhang Q, Dogan S, Mitchell TJ, Paton JC, Finn A. Induction of CC and CXC chemokines in human antigen-presenting dendritic cells by the pneumococcal proteins pneumolysin and CbpA, and the role played by toll-like receptor 4, NF-kappaB, and mitogen-activated protein kinases. J Infect Dis 2008;198:1823-33. [PMID: 18945182 DOI: 10.1086/593177] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Rodrigues F, Foster D, Nicoli E, Trotter C, Vipond B, Muir P, Gonçalves G, Januário L, Finn A. Relationships between rhinitis symptoms, respiratory viral infections and nasopharyngeal colonization with Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus in children attending daycare. Pediatr Infect Dis J 2013;32:227-32. [PMID: 23558321 DOI: 10.1097/INF.0b013e31827687fc] [Cited by in Crossref: 49] [Cited by in F6Publishing: 31] [Article Influence: 6.1] [Reference Citation Analysis]
2 Gupta R, Bhatty M, Swiatlo E, Nanduri B. Role of an iron-dependent transcriptional regulator in the pathogenesis and host response to infection with Streptococcus pneumoniae. PLoS One 2013;8:e55157. [PMID: 23437050 DOI: 10.1371/journal.pone.0055157] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
3 Cao J, Gong Y, Yin Y, Wang L, Ying B, Chen T, Zhang X. Pneumococcal proteins PspA and PspC induce CXCL8 production in human neutrophils: implications in pneumococcal infections. Microbes Infect 2010;12:1051-60. [PMID: 20670689 DOI: 10.1016/j.micinf.2010.07.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
4 Coleman JR, Papamichail D, Yano M, García-Suárez Mdel M, Pirofski LA. Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias. J Infect Dis 2011;203:1264-73. [PMID: 21343143 DOI: 10.1093/infdis/jir010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
5 Hamel-Côté G, Lapointe F, Gendron D, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-induced interleukin-8 expression by protein tyrosine phosphatase 1B. Cell Commun Signal 2019;17:21. [PMID: 30832675 DOI: 10.1186/s12964-019-0334-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
6 Hotze EM, Tweten RK. Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 2012;1818:1028-38. [PMID: 21835159 DOI: 10.1016/j.bbamem.2011.07.036] [Cited by in Crossref: 130] [Cited by in F6Publishing: 120] [Article Influence: 13.0] [Reference Citation Analysis]
7 Zafar MA, Wang Y, Hamaguchi S, Weiser JN. Host-to-Host Transmission of Streptococcus pneumoniae Is Driven by Its Inflammatory Toxin, Pneumolysin. Cell Host Microbe 2017;21:73-83. [PMID: 28081446 DOI: 10.1016/j.chom.2016.12.005] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 17.8] [Reference Citation Analysis]
8 Banerjee A, Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell Microbiol 2010;12:1576-88. [PMID: 20557315 DOI: 10.1111/j.1462-5822.2010.01490.x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 5.2] [Reference Citation Analysis]
9 Lecours M, Gottschalk M, Houde M, Lemire P, Fittipaldi N, Segura M. Critical Role for Streptococcussuis Cell Wall Modifications and Suilysin in Resistance to Complement-Dependent Killing by Dendritic Cells. The Journal of Infectious Diseases 2011;204:919-29. [DOI: 10.1093/infdis/jir415] [Cited by in Crossref: 77] [Cited by in F6Publishing: 76] [Article Influence: 7.7] [Reference Citation Analysis]
10 Dessing MC, Hirst RA, de Vos AF, van der Poll T. Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice. PLoS One 2009;4:e7993. [PMID: 19956717 DOI: 10.1371/journal.pone.0007993] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]
11 Spelmink L, Sender V, Hentrich K, Kuri T, Plant L, Henriques-Normark B. Toll-Like Receptor 3/TRIF-Dependent IL-12p70 Secretion Mediated by Streptococcus pneumoniae RNA and Its Priming by Influenza A Virus Coinfection in Human Dendritic Cells. mBio 2016;7:e00168-16. [PMID: 26956584 DOI: 10.1128/mBio.00168-16] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
12 Duraisingham SS, Hornig J, Gotch F, Patterson S. CD34-derived human Langerhans cells stimulate a T helper type 2 response independently of extracellular-signal-regulated kinase phosphorylation. Immunology 2010;131:210-9. [PMID: 20465567 DOI: 10.1111/j.1365-2567.2010.03295.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
13 Dogan S, Zhang Q, Pridmore AC, Mitchell TJ, Finn A, Murdoch C. Pneumolysin-induced CXCL8 production by nasopharyngeal epithelial cells is dependent on calcium flux and MAPK activation via Toll-like receptor 4. Microbes Infect 2011;13:65-75. [PMID: 20974276 DOI: 10.1016/j.micinf.2010.10.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
14 Parker D, Martin FJ, Soong G, Harfenist BS, Aguilar JL, Ratner AJ, Fitzgerald KA, Schindler C, Prince A. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. mBio 2011;2:e00016-11. [PMID: 21586648 DOI: 10.1128/mBio.00016-11] [Cited by in Crossref: 105] [Cited by in F6Publishing: 73] [Article Influence: 10.5] [Reference Citation Analysis]
15 Cao J, Gong Y, Li D, Yin N, Chen T, Xu W, Zhang X, Yin Y. CD4(+) T lymphocytes mediated protection against invasive pneumococcal infection induced by mucosal immunization with ClpP and CbpA. Vaccine 2009;27:2838-44. [PMID: 19366577 DOI: 10.1016/j.vaccine.2009.02.093] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
16 Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 2012;11:237-56. [PMID: 22309671 DOI: 10.1586/erv.11.189] [Cited by in Crossref: 85] [Cited by in F6Publishing: 77] [Article Influence: 9.4] [Reference Citation Analysis]
17 Chapman SJ, Khor CC, Vannberg FO, Rautanen A, Walley A, Segal S, Moore CE, Davies RJ, Day NP, Peshu N, Crook DW, Berkley JA, Williams TN, Scott JA, Hill AV. Common NFKBIL2 polymorphisms and susceptibility to pneumococcal disease: a genetic association study. Crit Care 2010;14:R227. [PMID: 21171993 DOI: 10.1186/cc9377] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
18 Chen TC, Tsai JP, Huang HJ, Teng CC, Chien SJ, Kuo HC, Huang WS, Chen CN. Regulation of cyclooxygenase-2 expression in human bladder epithelial cells infected with type I fimbriated uropathogenic E. coli. Cell Microbiol 2011;13:1703-13. [PMID: 21790943 DOI: 10.1111/j.1462-5822.2011.01650.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
19 Tang X, Asano M, O'Reilly A, Farquhar A, Yang Y, Amar S. p53 is an important regulator of CCL2 gene expression. Curr Mol Med 2012;12:929-43. [PMID: 22804246 DOI: 10.2174/156652412802480844] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
20 Tang X, Amar S. p53 suppresses CCL2-induced subcutaneous tumor xenograft. Tumour Biol 2015;36:2801-8. [PMID: 25492482 DOI: 10.1007/s13277-014-2906-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
21 Mitchell D, Olive C. Regulation of Toll-like receptor-induced chemokine production in murine dendritic cells by mitogen-activated protein kinases. Molecular Immunology 2010;47:2065-73. [DOI: 10.1016/j.molimm.2010.04.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
22 Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020;11:1543. [PMID: 32714314 DOI: 10.3389/fmicb.2020.01543] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
23 Cao J, Gong Y, Dong S, Zhang L, Lai X, Zhang X, Yin Y. Pneumococcal ClpP modulates the maturation and activation of human dendritic cells: implications for pneumococcal infections. J Leukoc Biol 2013;93:737-49. [PMID: 23381472 DOI: 10.1189/jlb.0812428] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
24 Thapa R, Ray S, Keyel PA. Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020;12:E531. [PMID: 32825096 DOI: 10.3390/toxins12090531] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
25 He Z, Pian Y, Ren Z, Bi L, Yuan Y, Zheng Y, Jiang Y, Wang F. Increased production of suilysin contributes to invasive infection of the Streptococcus suis strain 05ZYH33. Mol Med Rep 2014;10:2819-26. [PMID: 25241621 DOI: 10.3892/mmr.2014.2586] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
26 Cao J, Chen T, Gong Y, Ying B, Li D, Xu W, Zhang X, Wang L, Yin Y. Molecular mechanisms of the secretion of cytokines and chemokines from human monocytes activated by pneumococcal surface protein A (PspA): Roles of mitogen-activated protein kinases and NF-kappaB. Microb Pathog 2010;48:220-9. [PMID: 20227479 DOI: 10.1016/j.micpath.2010.03.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
27 Bhatty M, Pruett SB, Swiatlo E, Nanduri B. Alcohol abuse and Streptococcus pneumoniae infections: consideration of virulence factors and impaired immune responses. Alcohol 2011;45:523-39. [PMID: 21827928 DOI: 10.1016/j.alcohol.2011.02.305] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
28 Laranjeira P, Gomes J, Pedreiro S, Pedrosa M, Martinho A, Antunes B, Ribeiro T, Santos F, Domingues R, Abecasis M, Trindade H, Paiva A. Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells. Stem Cells Int 2015;2015:819084. [PMID: 26060498 DOI: 10.1155/2015/819084] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
29 Kim YS, Kim JH, Woo M, Kim TS, Sohn KM, Lee YH, Jo EK, Yuk JM. Innate signaling mechanisms controlling Mycobacterium chelonae-mediated CCL2 and CCL5 expression in macrophages. J Microbiol 2015;53:864-74. [PMID: 26626357 DOI: 10.1007/s12275-015-5348-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
30 Dong J, Wang J, He Y, Li C, Zhou A, Cui J, Xu W, Zhong L, Yin Y, Zhang X, Wang H. GHIP in Streptococcus pneumoniae is involved in antibacterial resistance and elicits a strong innate immune response through TLR2 and JNK/p38MAPK. FEBS J 2014;281:3803-15. [PMID: 24989111 DOI: 10.1111/febs.12903] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
31 Cao J, Gong Y, Cai B, Feng W, Wu Y, Li L, Zou Y, Ying B, Wang L. Modulation of human bronchial epithelial cells by pneumococcal choline binding protein A. Human Immunology 2011;72:37-46. [DOI: 10.1016/j.humimm.2010.10.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
32 Yao H, Zhang H, Lan K, Wang H, Su Y, Li D, Song Z, Cui F, Yin Y, Zhang X. Purified Streptococcus pneumoniae Endopeptidase O (PepO) Enhances Particle Uptake by Macrophages in a Toll-Like Receptor 2- and miR-155-Dependent Manner. Infect Immun 2017;85:e01012-16. [PMID: 28193634 DOI: 10.1128/IAI.01012-16] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]