BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Akashi S, Saitoh S, Wakabayashi Y, Kikuchi T, Takamura N, Nagai Y, Kusumoto Y, Fukase K, Kusumoto S, Adachi Y. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J Exp Med. 2003;198:1035-1042. [PMID: 14517279 DOI: 10.1084/jem.20031076] [Cited by in Crossref: 280] [Cited by in F6Publishing: 258] [Article Influence: 15.6] [Reference Citation Analysis]
Number Citing Articles
1 Coats SR, Pham TT, Bainbridge BW, Reife RA, Darveau RP. MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J Immunol 2005;175:4490-8. [PMID: 16177092 DOI: 10.4049/jimmunol.175.7.4490] [Cited by in Crossref: 119] [Cited by in F6Publishing: 114] [Article Influence: 7.4] [Reference Citation Analysis]
2 Mishra V, Pathak C. Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. International Journal of Biological Macromolecules 2019;122:425-51. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
3 Drennan MB, Stijlemans B, Van Den Abbeele J, Quesniaux VJ, Barkhuizen M, Brombacher F, De Baetselier P, Ryffel B, Magez S. The Induction of a Type 1 Immune Response following a Trypanosoma brucei Infection Is MyD88 Dependent. J Immunol 2005;175:2501-9. [DOI: 10.4049/jimmunol.175.4.2501] [Cited by in Crossref: 105] [Cited by in F6Publishing: 90] [Article Influence: 6.6] [Reference Citation Analysis]
4 Cazzola M, Matera MG, Pezzuto G. Inflammation--a new therapeutic target in pneumonia. Respiration 2005;72:117-26. [PMID: 15824518 DOI: 10.1159/000084039] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
5 Shimizu T, Tashiro-yamaji J, Hayashi M, Inoue Y, Ibata M, Kubota T, Tanigawa N, Yoshida R. HLA-B62 as a possible ligand for the human homologue of mouse macrophage MHC receptor 2 (MMR2) on monocytes. Gene 2010;454:31-8. [DOI: 10.1016/j.gene.2010.01.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
6 Garcia MM, Goicoechea C, Molina-Álvarez M, Pascual D. Toll-like receptor 4: A promising crossroads in the diagnosis and treatment of several pathologies. Eur J Pharmacol 2020;874:172975. [PMID: 32017939 DOI: 10.1016/j.ejphar.2020.172975] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
7 Burguillos MA, Svensson M, Schulte T, Boza-Serrano A, Garcia-Quintanilla A, Kavanagh E, Santiago M, Viceconte N, Oliva-Martin MJ, Osman AM. Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. Cell Rep. 2015; Epub ahead of print. [PMID: 25753426 DOI: 10.1016/j.celrep.2015.02.012] [Cited by in Crossref: 153] [Cited by in F6Publishing: 135] [Article Influence: 25.5] [Reference Citation Analysis]
8 Behm C, Blufstein A, Gahn J, Noroozkhan N, Moritz A, Rausch-Fan X, Andrukhov O. Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to Toll-Like Receptor 2 Agonists. Mediators Inflamm 2019;2019:8127301. [PMID: 31178663 DOI: 10.1155/2019/8127301] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
9 Shimura H, Nitahara A, Ito A, Tomiyama K, Ito M, Kawai K. Up-regulation of cell surface Toll-like receptor 4-MD2 expression on dendritic epidermal T cells after the emigration from epidermis during cutaneous inflammation. J Dermatol Sci 2005;37:101-10. [PMID: 15659328 DOI: 10.1016/j.jdermsci.2004.11.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 1.2] [Reference Citation Analysis]
10 Ruysschaert JM, Lonez C. Role of lipid microdomains in TLR-mediated signalling. Biochim Biophys Acta 2015;1848:1860-7. [PMID: 25797518 DOI: 10.1016/j.bbamem.2015.03.014] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
11 Xu Y, Shrestha N, Préat V, Beloqui A. Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. Journal of Controlled Release 2020;322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 28.0] [Reference Citation Analysis]
12 Yew KH, Carpenter C, Duncan RS, Harrison CJ. Human cytomegalovirus induces TLR4 signaling components in monocytes altering TIRAP, TRAM and downstream interferon-beta and TNF-alpha expression. PLoS One. 2012;7:e44500. [PMID: 22970235 DOI: 10.1371/journal.pone.0044500] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
13 Rajaiah R, Perkins DJ, Ireland DD, Vogel SN. CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance. Proc Natl Acad Sci U S A 2015;112:8391-6. [PMID: 26106158 DOI: 10.1073/pnas.1424980112] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 13.5] [Reference Citation Analysis]
14 Zimmer SM, Zughaier SM, Tzeng YL, Stephens DS. Human MD-2 discrimination of meningococcal lipid A structures and activation of TLR4. Glycobiology 2007;17:847-56. [PMID: 17545685 DOI: 10.1093/glycob/cwm057] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
15 Harada K, Isse K, Nakanuma Y. Interferon gamma accelerates NF-kappaB activation of biliary epithelial cells induced by Toll-like receptor and ligand interaction. J Clin Pathol. 2006;59:184-190. [PMID: 16443736 DOI: 10.1136/jcp.2004.023507] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 4.6] [Reference Citation Analysis]
16 Zhou W, Yuan W, Huang L, Wang P, Rong X, Tang J. Association of neonatal necrotizing enterocolitis with myeloid differentiation-2 and GM2 activator protein genetic polymorphisms. Mol Med Rep 2015;12:974-80. [PMID: 25816011 DOI: 10.3892/mmr.2015.3499] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kennedy MN, Mullen GE, Leifer CA, Lee C, Mazzoni A, Dileepan KN, Segal DM. A complex of soluble MD-2 and lipopolysaccharide serves as an activating ligand for Toll-like receptor 4. J Biol Chem 2004;279:34698-704. [PMID: 15175334 DOI: 10.1074/jbc.M405444200] [Cited by in Crossref: 81] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
18 Vester SK, Beavil RL, Lynham S, Beavil AJ, Cunninghame Graham DS, McDonnell JM, Vyse TJ. Nucleolin acts as the receptor for C1QTNF4 and supports C1QTNF4-mediated innate immunity modulation. J Biol Chem 2021;296:100513. [PMID: 33676896 DOI: 10.1016/j.jbc.2021.100513] [Reference Citation Analysis]
19 Zhang H, Xu X, Liu Z, Sun-Waterhouse D, Wang J, Ma C, Waterhouse GIN, Kang W. Effects of edpetiline from Fritillaria on inflammation and oxidative stress induced by LPS stimulation in RAW264.7 macrophages. Acta Biochim Biophys Sin (Shanghai) 2021;53:229-37. [PMID: 33399208 DOI: 10.1093/abbs/gmaa160] [Reference Citation Analysis]
20 Viriyakosol S, Tobias PS, Kirkland TN. Mutational analysis of membrane and soluble forms of human MD-2. J Biol Chem 2006;281:11955-64. [PMID: 16467306 DOI: 10.1074/jbc.M511627200] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
21 Kuno M, Nemoto K, Ninomiya N, Inagaki E, Kubota M, Matsumoto T, Yokota H. The novel selective toll-like receptor 4 signal transduction inhibitor tak-242 prevents endotoxaemia in conscious Guinea-pigs. Clin Exp Pharmacol Physiol 2009;36:589-93. [PMID: 19673945 DOI: 10.1111/j.1440-1681.2008.05121.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
22 Panda SK, Kumar S, Tupperwar NC, Vaidya T, George A, Rath S, Bal V, Ravindran B. Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. PLoS Pathog 2012;8:e1002717. [PMID: 22654663 DOI: 10.1371/journal.ppat.1002717] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 5.9] [Reference Citation Analysis]
23 He Z, Riva M, Björk P, Swärd K, Mörgelin M, Leanderson T, Ivars F. CD14 Is a Co-Receptor for TLR4 in the S100A9-Induced Pro-Inflammatory Response in Monocytes. PLoS One 2016;11:e0156377. [PMID: 27228163 DOI: 10.1371/journal.pone.0156377] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 5.6] [Reference Citation Analysis]
24 Savov JD, Brass DM, Lawson BL, McElvania-Tekippe E, Walker JK, Schwartz DA. Toll-like receptor 4 antagonist (E5564) prevents the chronic airway response to inhaled lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 2005;289:L329-37. [PMID: 15833764 DOI: 10.1152/ajplung.00014.2005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 3.1] [Reference Citation Analysis]
25 Scott MJ, Liu S, Shapiro RA, Vodovotz Y, Billiar TR. Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism. Hepatology 2009;49:1695-708. [PMID: 19296467 DOI: 10.1002/hep.22839] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 5.0] [Reference Citation Analysis]
26 An J, Cho J. Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide. J Anim Sci Technol 2021;63:114-24. [PMID: 33987589 DOI: 10.5187/jast.2021.e12] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Tsukamoto H, Ihara H, Ito R, Ukai I, Suzuki N, Kimoto M, Tomioka Y, Ikeda Y. MD-2-dependent human Toll-like receptor 4 monoclonal antibodies detect extracellular association of Toll-like receptor 4 with extrinsic soluble MD-2 on the cell surface. Biochem Biophys Res Commun 2013;440:31-6. [PMID: 24021278 DOI: 10.1016/j.bbrc.2013.09.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
28 Zhang R, Kramer JS, Smith JD, Allen BN, Leeper CN, Li X, Morton LD, Gallazzi F, Ulery BD. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity. AAPS J 2018;20. [DOI: 10.1208/s12248-018-0233-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 7] [Article Influence: 9.7] [Reference Citation Analysis]
29 Liaunardy-Jopeace A, Bryant CE, Gay NJ. The COP II adaptor protein TMED7 is required to initiate and mediate the delivery of TLR4 to the plasma membrane. Sci Signal 2014;7:ra70. [PMID: 25074978 DOI: 10.1126/scisignal.2005275] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
30 Kusumoto S, Fukase K. Synthesis of endotoxic principle of bacterial lipopolysaccharide and its recognition by the innate immune systems of hosts. Chem Rec 2006;6:333-43. [PMID: 17304523 DOI: 10.1002/tcr.20098] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
31 Kobayashi M, Saitoh S, Tanimura N, Takahashi K, Kawasaki K, Nishijima M, Fujimoto Y, Fukase K, Akashi-takamura S, Miyake K. Regulatory Roles for MD-2 and TLR4 in Ligand-Induced Receptor Clustering. J Immunol 2006;176:6211-8. [DOI: 10.4049/jimmunol.176.10.6211] [Cited by in Crossref: 131] [Cited by in F6Publishing: 123] [Article Influence: 8.7] [Reference Citation Analysis]
32 Savva A, Roger T. Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 2013;4:387. [PMID: 24302927 DOI: 10.3389/fimmu.2013.00387] [Cited by in Crossref: 162] [Cited by in F6Publishing: 155] [Article Influence: 20.3] [Reference Citation Analysis]
33 Fort MM, Mozaffarian A, Stöver AG, Correia Jda S, Johnson DA, Crane RT, Ulevitch RJ, Persing DH, Bielefeldt-Ohmann H, Probst P. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J Immunol. 2005;174:6416-6423. [PMID: 15879143 DOI: 10.4049/jimmunol.174.10.6416] [Cited by in Crossref: 150] [Cited by in F6Publishing: 147] [Article Influence: 9.4] [Reference Citation Analysis]
34 Matlack R, Yeh K, Rosini L, Gonzalez D, Taylor J, Silberman D, Pennello A, Riggs J. Peritoneal macrophages suppress T-cell activation by amino acid catabolism. Immunology 2006;117:386-95. [PMID: 16476058 DOI: 10.1111/j.1365-2567.2005.02312.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
35 Balestrieri B, Granata F, Loffredo S, Petraroli A, Scalia G, Morabito P, Cardamone C, Varricchi G, Triggiani M. Phenotypic and Functional Heterogeneity of Low-Density and High-Density Human Lung Macrophages. Biomedicines 2021;9:505. [PMID: 34064389 DOI: 10.3390/biomedicines9050505] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Okamoto N, Mizote K, Honda H, Saeki A, Watanabe Y, Yamaguchi-Miyamoto T, Fukui R, Tanimura N, Motoi Y, Akashi-Takamura S, Kato T, Fujishita S, Kimura T, Ohto U, Shimizu T, Hirokawa T, Miyake K, Fukase K, Fujimoto Y, Nagai Y, Takatsu K. Funiculosin variants and phosphorylated derivatives promote innate immune responses via the Toll-like receptor 4/myeloid differentiation factor-2 complex. J Biol Chem 2017;292:15378-94. [PMID: 28754693 DOI: 10.1074/jbc.M117.791780] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Itoh K, Watanabe A, Funami K, Seya T, Matsumoto M. The clathrin-mediated endocytic pathway participates in dsRNA-induced IFN-beta production. J Immunol 2008;181:5522-9. [PMID: 18832709 DOI: 10.4049/jimmunol.181.8.5522] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 4.7] [Reference Citation Analysis]
38 Fujimoto T, Yamazaki S, Eto-kimura A, Takeshige K, Muta T. The Amino-terminal Region of Toll-like Receptor 4 Is Essential for Binding to MD-2 and Receptor Translocation to the Cell Surface. Journal of Biological Chemistry 2004;279:47431-7. [DOI: 10.1074/jbc.m408724200] [Cited by in Crossref: 29] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
39 Ryu JK, Kim SJ, Rah SH, Kang JI, Jung HE, Lee D, Lee HK, Lee JO, Park BS, Yoon TY, Kim HM. Reconstruction of LPS Transfer Cascade Reveals Structural Determinants within LBP, CD14, and TLR4-MD2 for Efficient LPS Recognition and Transfer. Immunity 2017;46:38-50. [PMID: 27986454 DOI: 10.1016/j.immuni.2016.11.007] [Cited by in Crossref: 124] [Cited by in F6Publishing: 100] [Article Influence: 24.8] [Reference Citation Analysis]
40 Saitoh S. Chaperones and transport proteins regulate TLR4 trafficking and activation. Immunobiology 2009;214:594-600. [PMID: 19250701 DOI: 10.1016/j.imbio.2008.11.012] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
41 Tsukamoto H, Ukai I, Yamagata Y, Takeuchi S, Kubota K, Kozakai S, Suzuki N, Kimoto M, Tomioka Y. Leucine-rich repeat 2 of human Toll-like receptor 4 contains the binding site for inhibitory monoclonal antibodies. FEBS Letters 2015;589:3893-8. [DOI: 10.1016/j.febslet.2015.11.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
42 Koraha J, Tsuneyoshi N, Kimoto M, Gauchat JF, Nakatake H, Fukudome K. Comparison of lipopolysaccharide-binding functions of CD14 and MD-2. Clin Diagn Lab Immunol 2005;12:1292-7. [PMID: 16275943 DOI: 10.1128/CDLI.12.11.1292-1297.2005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Tsuneyoshi N, Kohara J, Bahrun U, Saitoh S, Akashi S, Gauchat JF, Kimoto M, Fukudome K. Penta-acylated lipopolisaccharide binds to murine MD-2 but does not induce the oligomerization of TLR4 required for signal transduction. Cell Immunol 2006;244:57-64. [PMID: 17420011 DOI: 10.1016/j.cellimm.2007.02.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
44 Coats SR, Do CT, Karimi-Naser LM, Braham PH, Darveau RP. Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cell Microbiol 2007;9:1191-202. [PMID: 17217428 DOI: 10.1111/j.1462-5822.2006.00859.x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 3.0] [Reference Citation Analysis]
45 Wakabayashi Y, Kobayashi M, Akashi-takamura S, Tanimura N, Konno K, Takahashi K, Ishii T, Mizutani T, Iba H, Kouro T, Takaki S, Takatsu K, Oda Y, Ishihama Y, Saitoh S, Miyake K. A Protein Associated with Toll-Like Receptor 4 (PRAT4A) Regulates Cell Surface Expression of TLR4. J Immunol 2006;177:1772-9. [DOI: 10.4049/jimmunol.177.3.1772] [Cited by in Crossref: 79] [Cited by in F6Publishing: 69] [Article Influence: 5.3] [Reference Citation Analysis]
46 Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, Milne S, Myers D, Park H, Ryan A, Thompson BM, Wang E, Zhao Y, Brown HA, Merrill AH, Raetz CR, Russell DW, Subramaniam S, Dennis EA. Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 2010;51:2785-97. [PMID: 20574076 DOI: 10.1194/jlr.M008748] [Cited by in Crossref: 146] [Cited by in F6Publishing: 66] [Article Influence: 13.3] [Reference Citation Analysis]
47 Gauthier AE, Chandler CE, Poli V, Gardner FM, Tekiau A, Smith R, Bonham KS, Cordes EE, Shank TM, Zanoni I, Goodlett DR, Biller SJ, Ernst RK, Rotjan RD, Kagan JC. Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Sci Immunol 2021;6:eabe0531. [PMID: 33712473 DOI: 10.1126/sciimmunol.abe0531] [Reference Citation Analysis]
48 Mazgaeen L, Gurung P. Recent Advances in Lipopolysaccharide Recognition Systems. Int J Mol Sci 2020;21:E379. [PMID: 31936182 DOI: 10.3390/ijms21020379] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 39.0] [Reference Citation Analysis]
49 Cheng Z, Taylor B, Ourthiague DR, Hoffmann A. Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation. Sci Signal 2015;8:ra69. [PMID: 26175492 DOI: 10.1126/scisignal.aaa5208] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 10.7] [Reference Citation Analysis]
50 Shibata T, Takemura N, Motoi Y, Goto Y, Karuppuchamy T, Izawa K, Li X, Akashi-Takamura S, Tanimura N, Kunisawa J, Kiyono H, Akira S, Kitamura T, Kitaura J, Uematsu S, Miyake K. PRAT4A-dependent expression of cell surface TLR5 on neutrophils, classical monocytes and dendritic cells. Int Immunol 2012;24:613-23. [PMID: 22836022 DOI: 10.1093/intimm/dxs068] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
51 Tashiro-yamaji J, Kubota T, Yoshida R. Macrophage MHC receptor 2: A novel receptor on allograft (H-2DdKd)-induced macrophage (H-2DbKb) recognizing an MHC class I molecule, H-2Kd, in mice. Gene 2006;384:1-8. [DOI: 10.1016/j.gene.2006.07.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.0] [Reference Citation Analysis]
52 Sha T, Sunamoto M, Kitazaki T, Sato J, Ii M, Iizawa Y. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol 2007;571:231-9. [PMID: 17632100 DOI: 10.1016/j.ejphar.2007.06.027] [Cited by in Crossref: 121] [Cited by in F6Publishing: 115] [Article Influence: 8.6] [Reference Citation Analysis]
53 Walsh C, Gangloff M, Monie T, Smyth T, Wei B, McKinley TJ, Maskell D, Gay N, Bryant C. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol 2008;181:1245-54. [PMID: 18606678 DOI: 10.4049/jimmunol.181.2.1245] [Cited by in Crossref: 101] [Cited by in F6Publishing: 91] [Article Influence: 7.8] [Reference Citation Analysis]
54 Lin YC, Huang DY, Chu CL, Lin YL, Lin WW. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci Signal 2013;6:ra71. [PMID: 23962979 DOI: 10.1126/scisignal.2003973] [Cited by in Crossref: 45] [Cited by in F6Publishing: 60] [Article Influence: 5.6] [Reference Citation Analysis]
55 Ulevitch RJ. Therapeutics targeting the innate immune system. Nat Rev Immunol. 2004;4:512-520. [PMID: 15229470 DOI: 10.1038/nri1396] [Cited by in Crossref: 222] [Cited by in F6Publishing: 188] [Article Influence: 13.1] [Reference Citation Analysis]
56 Miyake K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol. 2004;12:186-192. [PMID: 15051069 DOI: 10.1016/j.tim.2004.02.009] [Cited by in Crossref: 221] [Cited by in F6Publishing: 195] [Article Influence: 13.0] [Reference Citation Analysis]
57 Godefroy E, Gallois A, Idoyaga J, Merad M, Tung N, Monu N, Saenger Y, Fu Y, Ravindran R, Pulendran B, Jotereau F, Trombetta S, Bhardwaj N. Activation of toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic-cell-mediated inflammatory responses. Cell Rep 2014;9:1856-70. [PMID: 25466255 DOI: 10.1016/j.celrep.2014.10.067] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
58 Kawahara K. Synthetic chemistry with friendships that unveiled the long-lasting mystery of lipid A. Innate Immun 2019;25:203-12. [PMID: 30894093 DOI: 10.1177/1753425919835298] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
59 Nemoto E, Honda T, Kanaya S, Takada H, Shimauchi H. Expression of functional Toll-like receptors and nucleotide-binding oligomerization domain proteins in murine cementoblasts and their upregulation during cell differentiation. J Periodontal Res 2008;43:585-93. [PMID: 18565134 DOI: 10.1111/j.1600-0765.2008.01096.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
60 Kawamoto T, Ii M, Kitazaki T, Iizawa Y, Kimura H. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol. 2008;584:40-48. [PMID: 18299127 DOI: 10.1016/j.ejphar.2008.01.026] [Cited by in Crossref: 188] [Cited by in F6Publishing: 185] [Article Influence: 14.5] [Reference Citation Analysis]
61 Jacque B, Stephan K, Smirnova I, Kim B, Gilling D, Poltorak A. Mice expressing high levels of soluble CD14 retain LPS in the circulation and are resistant to LPS-induced lethality. Eur J Immunol 2006;36:3007-16. [PMID: 17039565 DOI: 10.1002/eji.200636038] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
62 Behm C, Nemec M, Weissinger F, Rausch MA, Andrukhov O, Jonke E. MMPs and TIMPs Expression Levels in the Periodontal Ligament during Orthodontic Tooth Movement: A Systematic Review of In Vitro and In Vivo Studies. Int J Mol Sci 2021;22:6967. [PMID: 34203475 DOI: 10.3390/ijms22136967] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Lee HS, Chung SH, Song MY, Kim SS, Shin HD, Shim WJ, Han AR, Lee JS. Effects of bee venom on the maturation of murine dendritic cells stimulated by LPS. J Ethnopharmacol 2008;120:215-9. [PMID: 18790041 DOI: 10.1016/j.jep.2008.08.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
64 Tyrer PC, Ruth Foxwell A, Kyd JM, Otczyk DC, Cripps AW. Receptor mediated targeting of M-cells. Vaccine 2007;25:3204-9. [DOI: 10.1016/j.vaccine.2007.01.028] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 2.4] [Reference Citation Analysis]
65 Hermann C. Review: variability of host-pathogen interaction. J Endotoxin Res 2007;13:199-218. [PMID: 17956939 DOI: 10.1177/0968051907082605] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
66 Paramo T, Tomasio SM, Irvine KL, Bryant CE, Bond PJ. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response. Sci Rep 2015;5:17997. [PMID: 26647780 DOI: 10.1038/srep17997] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
67 Li H, Kim W, Jiang J, Lee S, Youn H, Moon E, Kim T, Ye S, Ryu J, Kang T, Koppula S, Park P, Choi D, Lee K. MyD88-dependent toll-like receptor signaling is required for murine macrophages response to IS2. International Immunopharmacology 2011;11:1578-83. [DOI: 10.1016/j.intimp.2011.05.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
68 Casella CR, Mitchell TC. Inefficient TLR4/MD-2 heterotetramerization by monophosphoryl lipid A. PLoS One 2013;8:e62622. [PMID: 23638128 DOI: 10.1371/journal.pone.0062622] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
69 Tsuneyoshi N, Fukudome K, Kohara J, Tomimasu R, Gauchat JF, Nakatake H, Kimoto M. The functional and structural properties of MD-2 required for lipopolysaccharide binding are absent in MD-1. J Immunol 2005;174:340-4. [PMID: 15611257 DOI: 10.4049/jimmunol.174.1.340] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 2.4] [Reference Citation Analysis]
70 Song WS, Kim J, Choi C, Lee W, Yoon S. TLR5 binding and activation by KMRC011, a flagellin-derived radiation countermeasure. Biochemical and Biophysical Research Communications 2019;508:570-5. [DOI: 10.1016/j.bbrc.2018.11.080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
71 Shin YP, Lee JH, Choi RY, Lee HJ, Baek M, Kim IW, Seo M, Kim MA, Kim SH, Hwang JS. Antiseptic effect of antimicrobial peptide psacotheasin 2 derived from the yellow-spotted longicorn beetle (Psacothea hilaris). Dev Comp Immunol 2021;123:104140. [PMID: 34033840 DOI: 10.1016/j.dci.2021.104140] [Reference Citation Analysis]
72 Garate JA, Oostenbrink C. Lipid A from lipopolysaccharide recognition: structure, dynamics and cooperativity by molecular dynamics simulations. Proteins 2013;81:658-74. [PMID: 23184816 DOI: 10.1002/prot.24223] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
73 Visintin A, Halmen KA, Latz E, Monks BG, Golenbock DT. Pharmacological Inhibition of Endotoxin Responses Is Achieved by Targeting the TLR4 Coreceptor, MD-2. J Immunol 2005;175:6465-72. [DOI: 10.4049/jimmunol.175.10.6465] [Cited by in Crossref: 120] [Cited by in F6Publishing: 108] [Article Influence: 7.5] [Reference Citation Analysis]
74 Scott MJ, Billiar TR. Beta2-integrin-induced p38 MAPK activation is a key mediator in the CD14/TLR4/MD2-dependent uptake of lipopolysaccharide by hepatocytes. J Biol Chem. 2008;283:29433-29446. [PMID: 18701460 DOI: 10.1074/jbc.m803905200] [Cited by in Crossref: 79] [Cited by in F6Publishing: 54] [Article Influence: 6.1] [Reference Citation Analysis]
75 Watanabe Y, Nagai Y, Honda H, Okamoto N, Yamamoto S, Hamashima T, Ishii Y, Tanaka M, Suganami T, Sasahara M, Miyake K, Takatsu K. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice. Sci Rep 2016;6:23097. [PMID: 26975571 DOI: 10.1038/srep23097] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 10.0] [Reference Citation Analysis]
76 Srivastava A, Casey H, Johnson N, Levy O, Malley R. Recombinant bactericidal/permeability-increasing protein rBPI21 protects against pneumococcal disease. Infect Immun 2007;75:342-9. [PMID: 17101667 DOI: 10.1128/IAI.01089-06] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
77 Vagenende V, Ching T, Chua R, Thirumoorthi N, Gagnon P. Amide-Mediated Hydrogen Bonding at Organic Crystal/Water Interfaces Enables Selective Endotoxin Binding with Picomolar Affinity. ACS Appl Mater Interfaces 2013;5:4472-8. [DOI: 10.1021/am401018q] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
78 Saitoh S, Miyake K. Mechanism regulating cell surface expression and activation of Toll-like receptor 4. Chem Rec 2006;6:311-9. [PMID: 17304555 DOI: 10.1002/tcr.20093] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
79 Nayak SK, Shibasaki Y, Nakanishi T. Immune responses to live and inactivated Nocardia seriolae and protective effect of recombinant interferon gamma (rIFN γ) against nocardiosis in ginbuna crucian carp, Carassius auratus langsdorfii. Fish & Shellfish Immunology 2014;39:354-64. [DOI: 10.1016/j.fsi.2014.05.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
80 Drummond R, Cauvi DM, Hawisher D, Song D, Niño DF, Coimbra R, Bickler S, De Maio A. Deletion of scavenger receptor A gene in mice resulted in protection from septic shock and modulation of TLR4 signaling in isolated peritoneal macrophages. Innate Immun 2013;19:30-41. [PMID: 22751446 DOI: 10.1177/1753425912449548] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
81 Austin JW, Gilchrist C, Fehlings MG. High molecular weight hyaluronan reduces lipopolysaccharide mediated microglial activation: Hyaluronan reduces microglial activation. Journal of Neurochemistry 2012;122:344-55. [DOI: 10.1111/j.1471-4159.2012.07789.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
82 Kawanishi Y, Tominaga A, Okuyama H, Fukuoka S, Taguchi T, Kusumoto Y, Yawata T, Fujimoto Y, Ono S, Shimizu K. Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV-M glioma cells through Toll-like receptor 4: Regulation of glioma by Spirulina CPS. Microbiol Immunol 2013;57:63-73. [DOI: 10.1111/1348-0421.12001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
83 Honda H, Nagai Y, Matsunaga T, Saitoh S, Akashi-Takamura S, Hayashi H, Fujii I, Miyake K, Muraguchi A, Takatsu K. Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner. J Leukoc Biol. 2012;91:967-976. [PMID: 22422925 DOI: 10.1189/jlb.0112038] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 6.6] [Reference Citation Analysis]
84 Zhang JP, Yang Y, Levy O, Chen C. Human neonatal peripheral blood leukocytes demonstrate pathogen-specific coordinate expression of TLR2, TLR4/MD2, and MyD88 during bacterial infection in vivo. Pediatr Res 2010;68:479-83. [PMID: 20805788 DOI: 10.1203/PDR.0b013e3181f90810] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
85 Rajagopal R, Waller AS, Mendoza JD, Wightman PD. The covalent modification and regulation of TLR8 in HEK-293 cells stimulated with imidazoquinoline agonists. Biochem J 2008;409:275-87. [PMID: 17868034 DOI: 10.1042/BJ20070519] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
86 D'Este F, Tomasinsig L, Skerlavaj B, Zanetti M. Modulation of cytokine gene expression by cathelicidin BMAP-28 in LPS-stimulated and -unstimulated macrophages. Immunobiology 2012;217:962-71. [PMID: 22317752 DOI: 10.1016/j.imbio.2012.01.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
87 Hung LC, Lin CC, Hung SK, Wu BC, Jan MD, Liou SH, Fu SL. A synthetic analog of alpha-galactosylceramide induces macrophage activation via the TLR4-signaling pathways. Biochem Pharmacol 2007;73:1957-70. [PMID: 17445776 DOI: 10.1016/j.bcp.2007.03.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 2.6] [Reference Citation Analysis]
88 Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113:153-162. [PMID: 15379975 DOI: 10.1111/j.1365-2567.2004.01976.x] [Cited by in Crossref: 762] [Cited by in F6Publishing: 695] [Article Influence: 44.8] [Reference Citation Analysis]
89 Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 2008;9:361-8. [PMID: 18297073 DOI: 10.1038/ni1569] [Cited by in Crossref: 839] [Cited by in F6Publishing: 794] [Article Influence: 64.5] [Reference Citation Analysis]
90 Anwar MA, Panneerselvam S, Shah M, Choi S. Insights into the species-specific TLR4 signaling mechanism in response to Rhodobacter sphaeroides lipid A detection. Sci Rep 2015;5:7657. [PMID: 25563849 DOI: 10.1038/srep07657] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
91 Kagan JC. Lipopolysaccharide Detection across the Kingdoms of Life. Trends Immunol 2017;38:696-704. [PMID: 28551077 DOI: 10.1016/j.it.2017.05.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
92 Nahori MA, Fournié-Amazouz E, Que-Gewirth NS, Balloy V, Chignard M, Raetz CR, Saint Girons I, Werts C. Differential TLR recognition of leptospiral lipid A and lipopolysaccharide in murine and human cells. J Immunol 2005;175:6022-31. [PMID: 16237097 DOI: 10.4049/jimmunol.175.9.6022] [Cited by in Crossref: 125] [Cited by in F6Publishing: 112] [Article Influence: 7.8] [Reference Citation Analysis]
93 El-Obeid A, Hassib A, Pontén F, Westermark B. Effect of herbal melanin on IL-8: a possible role of Toll-like receptor 4 (TLR4). Biochem Biophys Res Commun 2006;344:1200-6. [PMID: 16650380 DOI: 10.1016/j.bbrc.2006.04.035] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
94 Inoue Y, Tashiro-yamaji J, Hayashi M, Kiyonari H, Shimizu T, Ibata M, Yamana H, Kubota T, Tanigawa N, Yoshida R. Transgene number-dependent, gene expression rate-independent rejection of Dd-, Kd-, or DdKd-transgened mouse skin or tumor cells from C57BL/6 (DbKb) mice: Y. Inoue et al. Microbiology and Immunology 2011;55:446-53. [DOI: 10.1111/j.1348-0421.2011.00337.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
95 Zhang J, Kumar A, Wheater M, Yu FS. Lack of MD-2 expression in human corneal epithelial cells is an underlying mechanism of lipopolysaccharide (LPS) unresponsiveness. Immunol Cell Biol 2009;87:141-8. [PMID: 18936773 DOI: 10.1038/icb.2008.75] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 1.8] [Reference Citation Analysis]
96 Zawawi KH, Kantarci A, Schulze-Späte U, Fujita T, Batista EL Jr, Amar S, Van Dyke TE. Moesin-induced signaling in response to lipopolysaccharide in macrophages. J Periodontal Res 2010;45:589-601. [PMID: 20546116 DOI: 10.1111/j.1600-0765.2010.01271.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
97 Shibata T, Motoi Y, Tanimura N, Yamakawa N, Akashi-Takamura S, Miyake K. Intracellular TLR4/MD-2 in macrophages senses Gram-negative bacteria and induces a unique set of LPS-dependent genes. Int Immunol 2011;23:503-10. [PMID: 21712422 DOI: 10.1093/intimm/dxr044] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
98 Tyrer P, Foxwell AR, Cripps AW, Apicella MA, Kyd JM. Microbial pattern recognition receptors mediate M-cell uptake of a gram-negative bacterium. Infect Immun. 2006;74:625-631. [PMID: 16369019 DOI: 10.1128/iai.74.1.625-631.2006] [Cited by in Crossref: 63] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
99 Falsig J, van Beek J, Hermann C, Leist M. Molecular basis for detection of invading pathogens in the brain. J Neurosci Res 2008;86:1434-47. [DOI: 10.1002/jnr.21590] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 2.6] [Reference Citation Analysis]
100 Nishitani C, Mitsuzawa H, Sano H, Shimizu T, Matsushima N, Kuroki Y. Toll-like receptor 4 region Glu24-Lys47 is a site for MD-2 binding: importance of CYS29 and CYS40. J Biol Chem 2006;281:38322-9. [PMID: 17056597 DOI: 10.1074/jbc.M606904200] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
101 Nie X, Nishitani C, Yamazoe M, Ariki S, Takahashi M, Shimizu T, Mitsuzawa H, Sawada K, Smith K, Crouch E, Nagae H, Takahashi H, Kuroki Y. Pulmonary Surfactant Protein D Binds MD-2 through the Carbohydrate Recognition Domain. Biochemistry 2008;47:12878-85. [DOI: 10.1021/bi8010175] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
102 Santander J, Kilbourne J, Park JY, Martin T, Loh A, Diaz I, Rojas R, Segovia C, DeNardo D, Curtiss R 3rd. Inflammatory effects of Edwardsiella ictaluri lipopolysaccharide modifications in catfish gut. Infect Immun 2014;82:3394-404. [PMID: 24866806 DOI: 10.1128/IAI.01697-14] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.1] [Reference Citation Analysis]
103 von Schlieffen E, Oskolkova OV, Schabbauer G, Gruber F, Blüml S, Genest M, Kadl A, Marsik C, Knapp S, Chow J, Leitinger N, Binder BR, Bochkov VN. Multi-hit inhibition of circulating and cell-associated components of the toll-like receptor 4 pathway by oxidized phospholipids. Arterioscler Thromb Vasc Biol 2009;29:356-62. [PMID: 19112167 DOI: 10.1161/ATVBAHA.108.173799] [Cited by in Crossref: 64] [Cited by in F6Publishing: 35] [Article Influence: 4.9] [Reference Citation Analysis]
104 Chen LW, Chang WJ, Chen PH, Hsu CM. Commensal microflora induce host defense and decrease bacterial translocation in burn mice through toll-like receptor 4. J Biomed Sci. 2010;17:48. [PMID: 20540783 DOI: 10.1186/1423-0127-17-48] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
105 Voss OH, Murakami Y, Pena MY, Lee HN, Tian L, Margulies DH, Street JM, Yuen PS, Qi CF, Krzewski K, Coligan JE. Lipopolysaccharide-Induced CD300b Receptor Binding to Toll-like Receptor 4 Alters Signaling to Drive Cytokine Responses that Enhance Septic Shock. Immunity 2016;44:1365-78. [PMID: 27261276 DOI: 10.1016/j.immuni.2016.05.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
106 Kondo Y, Ikeda K, Tokuda N, Nishitani C, Ohto U, Akashi-Takamura S, Ito Y, Uchikawa M, Kuroki Y, Taguchi R, Miyake K, Zhang Q, Furukawa K, Furukawa K. TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide. Proc Natl Acad Sci U S A 2013;110:4714-9. [PMID: 23471986 DOI: 10.1073/pnas.1218508110] [Cited by in Crossref: 42] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
107 Matsumoto M, Funami K, Oshiumi H, Seya T. Toll-IL-1-receptor-containing adaptor molecule-1: a signaling adaptor linking innate immunity to adaptive immunity. Prog Mol Biol Transl Sci 2013;117:487-510. [PMID: 23663980 DOI: 10.1016/B978-0-12-386931-9.00018-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
108 Ouburg S, Spaargaren J, den Hartog JE, Land JA, Fennema JS, Pleijster J, Peña AS, Morré SA; ICTI consortium. The CD14 functional gene polymorphism -260 C>T is not involved in either the susceptibility to Chlamydia trachomatis infection or the development of tubal pathology. BMC Infect Dis 2005;5:114. [PMID: 16368002 DOI: 10.1186/1471-2334-5-114] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.2] [Reference Citation Analysis]
109 Wang Z, Maruyama K, Sakisaka Y, Suzuki S, Tada H, Suto M, Saito M, Yamada S, Nemoto E. Cyclic Stretch Force Induces Periodontal Ligament Cells to Secrete Exosomes That Suppress IL-1β Production Through the Inhibition of the NF-κB Signaling Pathway in Macrophages. Front Immunol 2019;10:1310. [PMID: 31281309 DOI: 10.3389/fimmu.2019.01310] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
110 Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Jimack L, Taylor PR, Scott D, Franzoso G, Cook HT, Botto M. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat Commun 2014;5:3039. [PMID: 24423728 DOI: 10.1038/ncomms4039] [Cited by in Crossref: 87] [Cited by in F6Publishing: 84] [Article Influence: 14.5] [Reference Citation Analysis]
111 Vamadevan AS, Fukata M, Arnold ET, Thomas LS, Hsu D, Abreu MT. Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis. Innate Immun. 2010;16:93-103. [PMID: 19710105 DOI: 10.1177/1753425909339231] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 5.2] [Reference Citation Analysis]
112 Bozza S, Campo S, Arseni B, Inforzato A, Ragnar L, Bottazzi B, Mantovani A, Moretti S, Oikonomous V, De Santis R, Carvalho A, Salvatori G, Romani L. PTX3 Binds MD-2 and Promotes TRIF-Dependent Immune Protection in Aspergillosis. J I 2014;193:2340-8. [DOI: 10.4049/jimmunol.1400814] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
113 Sun Q, Jin HJ, Bond JS. Disruption of the meprin alpha and beta genes in mice alters homeostasis of monocytes and natural killer cells. Exp Hematol 2009;37:346-56. [PMID: 19110362 DOI: 10.1016/j.exphem.2008.10.016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
114 Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci. 2010;30:8285-8295. [PMID: 20554880 DOI: 10.1523/jneurosci.0976-10.2010] [Cited by in Crossref: 347] [Cited by in F6Publishing: 187] [Article Influence: 31.5] [Reference Citation Analysis]
115 O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61:177-197. [PMID: 19474110 DOI: 10.1124/pr.109.001073] [Cited by in Crossref: 302] [Cited by in F6Publishing: 271] [Article Influence: 25.2] [Reference Citation Analysis]
116 Papavlassopoulos M, Stamme C, Thon L, Adam D, Hillemann D, Seydel U, Schromm AB. MaxiK Blockade Selectively Inhibits the Lipopolysaccharide-Induced IκB-α/NF-κB Signaling Pathway in Macrophages. J Immunol 2006;177:4086-93. [DOI: 10.4049/jimmunol.177.6.4086] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
117 Weber AN, Moncrieffe MC, Gangloff M, Imler JL, Gay NJ. Ligand-receptor and receptor-receptor interactions act in concert to activate signaling in the Drosophila toll pathway. J Biol Chem. 2005;280:22793-22799. [PMID: 15795223 DOI: 10.1074/jbc.m502074200] [Cited by in Crossref: 51] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
118 Csak T, Velayudham A, Hritz I, Petrasek J, Levin I, Lippai D, Catalano D, Mandrekar P, Dolganiuc A, Kurt-Jones E, Szabo G. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am J Physiol Gastrointest Liver Physiol. 2011;300:G433-G441. [PMID: 21233280 DOI: 10.1152/ajpgi.00163.2009] [Cited by in Crossref: 152] [Cited by in F6Publishing: 149] [Article Influence: 15.2] [Reference Citation Analysis]
119 Leon-ponte M, Kirchhof MG, Sun T, Stephens T, Singh B, Sandhu S, Madrenas J. Polycationic lipids inhibit the pro-inflammatory response to LPS. Immunology Letters 2005;96:73-83. [DOI: 10.1016/j.imlet.2004.07.019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
120 Lee SH, Lillehoj HS, Park MS, Baldwin C, Tompkins D, Wagner B, Del Cacho E, Babu U, Min W. Development and characterization of mouse monoclonal antibodies reactive with chicken CD80. Comparative Immunology, Microbiology and Infectious Diseases 2011;34:273-9. [DOI: 10.1016/j.cimid.2011.01.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
121 Ghiselli R, Giacometti A, Cirioni O, Mocchegiani F, Orlando F, Silvestri C, Di Matteo F, Abbruzzetti A, Scalise G, Saba V. Efficacy of the bovine antimicrobial peptide indolicidin combined with piperacillin/tazobactam in experimental rat models of polymicrobial peritonitis: . Critical Care Medicine 2008;36:240-5. [DOI: 10.1097/01.ccm.0000292157.60632.89] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
122 Moreno C, Merino J, Ramírez N, Echeverría A, Pastor F, Sánchez-Ibarrola A. Lipopolysaccharide needs soluble CD14 to interact with TLR4 in human monocytes depleted of membrane CD14. Microbes Infect 2004;6:990-5. [PMID: 15345230 DOI: 10.1016/j.micinf.2004.05.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
123 Zhu Z, Zhang H, Zhang X, He S, Dong W, Wang X, Chen Y, Liu X, Guo C. Lipopolysaccharide Downregulates CD163 Expression to Inhibit PRRSV Infection via TLR4-NF-κB Pathway. Front Microbiol 2020;11:501. [PMID: 32269560 DOI: 10.3389/fmicb.2020.00501] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
124 Oduro KA Jr, Liu F, Tan Q, Kim CK, Lubman O, Fremont D, Mills JC, Choi K. Myeloid skewing in murine autoimmune arthritis occurs in hematopoietic stem and primitive progenitor cells. Blood 2012;120:2203-13. [PMID: 22855602 DOI: 10.1182/blood-2011-11-391342] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
125 Dolganiuc A, Bakis G, Kodys K, Mandrekar P, Szabo G. Acute ethanol treatment modulates Toll-like receptor-4 association with lipid rafts. Alcohol Clin Exp Res. 2006;30:76-85. [PMID: 16433734 DOI: 10.1111/j.1530-0277.2006.00003.x] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 4.4] [Reference Citation Analysis]
126 Gautier T, Klein A, Deckert V, Desrumaux C, Ogier N, Sberna AL, Paul C, Le Guern N, Athias A, Montange T, Monier S, Piard F, Jiang XC, Masson D, Lagrost L. Effect of plasma phospholipid transfer protein deficiency on lethal endotoxemia in mice. J Biol Chem 2008;283:18702-10. [PMID: 18458077 DOI: 10.1074/jbc.M802802200] [Cited by in Crossref: 47] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
127 Matsuura M, Kawasaki K, Kawahara K, Mitsuyama M. Evasion of human innate immunity without antagonizing TLR4 by mutant Salmonella enterica serovar Typhimurium having penta-acylated lipid A. Innate Immun 2012;18:764-73. [PMID: 22419537 DOI: 10.1177/1753425912440599] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
128 Lissauer ME, Johnson SB, Bochicchio GV, Feild CJ, Cross AS, Hasday JD, Whiteford CC, Nussbaumer WA, Towns M, Scalea TM. Differential expression of toll-like receptor genes: sepsis compared with sterile inflammation 1 day before sepsis diagnosis. Shock 2009;31:238-44. [PMID: 18665047 DOI: 10.1097/SHK.0b013e3181834991] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
129 Saitoh S, Akashi S, Yamada T, Tanimura N, Matsumoto F, Fukase K, Kusumoto S, Kosugi A, Miyake K. Ligand-dependent Toll-like receptor 4 (TLR4)-oligomerization is directly linked with TLR4-signaling. Journal of Endotoxin Research 2004;10:257-60. [DOI: 10.1177/09680519040100041001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 14] [Article Influence: 6.4] [Reference Citation Analysis]
130 Jeyaseelan S, Chu HW, Young SK, Freeman MW, Worthen GS. Distinct roles of pattern recognition receptors CD14 and Toll-like receptor 4 in acute lung injury. Infect Immun. 2005;73:1754-1763. [PMID: 15731076 DOI: 10.1128/iai.73.3.1754-1763.2005] [Cited by in Crossref: 80] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
131 Rasekhi M, Mohammadi-Sangcheshmeh A, Daliri M, Bakhtiarizadeh M, Shariati V, Rahimi M, Hajarizadeh A, Nazari SA, Ross PJ, Tvrdá E. Transcriptional profile of ovine oocytes matured under lipopolysaccharide treatment in vitro. Theriogenology 2020;157:70-8. [PMID: 32805644 DOI: 10.1016/j.theriogenology.2020.07.034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
132 Appleby SL, Mitrofan CG, Crosby A, Hoenderdos K, Lodge K, Upton PD, Yates CM, Nash GB, Chilvers ER, Morrell NW. Bone Morphogenetic Protein 9 Enhances Lipopolysaccharide-Induced Leukocyte Recruitment to the Vascular Endothelium. J Immunol 2016;197:3302-14. [PMID: 27647829 DOI: 10.4049/jimmunol.1601219] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
133 Lee S, Kim K, Rhyu I, Koh S, Lee D, Choi B. Phenol/water extract of Treponema socranskii subsp. socranskii as an antagonist of Toll-like receptor 4 signalling. Microbiology 2006;152:535-46. [DOI: 10.1099/mic.0.28470-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
134 Yamakawa N, Ohto U, Akashi-takamura S, Takahashi K, Saitoh S, Tanimura N, Suganami T, Ogawa Y, Shibata T, Shimizu T, Miyake K. Human TLR4 polymorphism D299G/T399I alters TLR4/MD-2 conformation and response to a weak ligand monophosphoryl lipid A. International Immunology 2013;25:45-52. [DOI: 10.1093/intimm/dxs084] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
135 Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Silvestri C, Mocchegiani F, Licci A, Skerlavaj B, Rocchi M, Saba V, Zanetti M, Scalise G. LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother 2006;50:1672-9. [PMID: 16641434 DOI: 10.1128/AAC.50.5.1672-1679.2006] [Cited by in Crossref: 103] [Cited by in F6Publishing: 46] [Article Influence: 6.9] [Reference Citation Analysis]
136 Ferrero RL. Innate immune recognition of the extracellular mucosal pathogen, Helicobacter pylori. Mol Immunol. 2005;42:879-885. [PMID: 15829277 DOI: 10.1016/j.molimm.2004.12.001] [Cited by in Crossref: 66] [Cited by in F6Publishing: 66] [Article Influence: 4.1] [Reference Citation Analysis]
137 Toda H, Shibasaki Y, Koike T, Ohtani M, Takizawa F, Ototake M, Moritomo T, Nakanishi T. Alloantigen-specific killing is mediated by CD8-positive T cells in fish. Developmental & Comparative Immunology 2009;33:646-52. [DOI: 10.1016/j.dci.2008.11.008] [Cited by in Crossref: 84] [Cited by in F6Publishing: 68] [Article Influence: 7.0] [Reference Citation Analysis]
138 Di Nardo A, Braff MH, Taylor KR, Na C, Granstein RD, Mcinturff JE, Krutzik S, Modlin RL, Gallo RL. Cathelicidin Antimicrobial Peptides Block Dendritic Cell TLR4 Activation and Allergic Contact Sensitization. J Immunol 2007;178:1829-34. [DOI: 10.4049/jimmunol.178.3.1829] [Cited by in Crossref: 107] [Cited by in F6Publishing: 103] [Article Influence: 7.6] [Reference Citation Analysis]
139 Nilsen N, Nonstad U, Khan N, Knetter CF, Akira S, Sundan A, Espevik T, Lien E. Lipopolysaccharide and double-stranded RNA up-regulate toll-like receptor 2 independently of myeloid differentiation factor 88. J Biol Chem 2004;279:39727-35. [PMID: 15190057 DOI: 10.1074/jbc.M405027200] [Cited by in Crossref: 44] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
140 Shinohara H, Inoue A, Toyama-Sorimachi N, Nagai Y, Yasuda T, Suzuki H, Horai R, Iwakura Y, Yamamoto T, Karasuyama H, Miyake K, Yamanashi Y. Dok-1 and Dok-2 are negative regulators of lipopolysaccharide-induced signaling. J Exp Med 2005;201:333-9. [PMID: 15699069 DOI: 10.1084/jem.20041817] [Cited by in Crossref: 63] [Cited by in F6Publishing: 61] [Article Influence: 3.9] [Reference Citation Analysis]
141 Kanoh H, Nitta T, Go S, Inamori KI, Veillon L, Nihei W, Fujii M, Kabayama K, Shimoyama A, Fukase K, Ohto U, Shimizu T, Watanabe T, Shindo H, Aoki S, Sato K, Nagasaki M, Yatomi Y, Komura N, Ando H, Ishida H, Kiso M, Natori Y, Yoshimura Y, Zonca A, Cattaneo A, Letizia M, Ciampa M, Mauri L, Prinetti A, Sonnino S, Suzuki A, Inokuchi JI. Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity. EMBO J 2020;39:e101732. [PMID: 32378734 DOI: 10.15252/embj.2019101732] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
142 De Smedt-peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Layé S. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem 2008;105:296-307. [DOI: 10.1111/j.1471-4159.2007.05129.x] [Cited by in Crossref: 126] [Cited by in F6Publishing: 111] [Article Influence: 9.7] [Reference Citation Analysis]
143 Navia-Pelaez JM, Choi SH, Dos Santos Aggum Capettini L, Xia Y, Gonen A, Agatisa-Boyle C, Delay L, Gonçalves Dos Santos G, Catroli GF, Kim J, Lu JW, Saylor B, Winkels H, Durant CP, Ghosheh Y, Beaton G, Ley K, Kufareva I, Corr M, Yaksh TL, Miller YI. Normalization of cholesterol metabolism in spinal microglia alleviates neuropathic pain. J Exp Med 2021;218:e20202059. [PMID: 33970188 DOI: 10.1084/jem.20202059] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Hoebe K, Jiang Z, Tabeta K, Du X, Georgel P, Crozat K, Beutler B. Genetic Analysis of Innate Immunity. Elsevier; 2006. pp. 175-226. [DOI: 10.1016/s0065-2776(06)91005-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
145 Prohinar P, Re F, Widstrom R, Zhang D, Teghanemt A, Weiss JP, Gioannini TL. Specific High Affinity Interactions of Monomeric Endotoxin·Protein Complexes with Toll-like Receptor 4 Ectodomain. Journal of Biological Chemistry 2007;282:1010-7. [DOI: 10.1074/jbc.m609400200] [Cited by in Crossref: 70] [Cited by in F6Publishing: 41] [Article Influence: 5.0] [Reference Citation Analysis]
146 Woller SA, Choi SH, An EJ, Low H, Schneider DA, Ramachandran R, Kim J, Bae YS, Sviridov D, Corr M, Yaksh TL, Miller YI. Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States. Cell Rep 2018;23:2667-77. [PMID: 29847797 DOI: 10.1016/j.celrep.2018.04.110] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 12.0] [Reference Citation Analysis]
147 Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009;9:535-42. [PMID: 19556980 DOI: 10.1038/nri2587] [Cited by in Crossref: 461] [Cited by in F6Publishing: 412] [Article Influence: 38.4] [Reference Citation Analysis]
148 Kohara J, Tsuneyoshi N, Gauchat JF, Kimoto M, Fukudome K. Preparation and characterization of truncated human lipopolysaccharide-binding protein in Escherichia coli. Protein Expr Purif 2006;49:276-83. [PMID: 16839777 DOI: 10.1016/j.pep.2006.05.015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
149 Halder SK, Matsunaga H, Ishii KJ, Ueda H. Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina. J Neurochem 2015;135:1161-77. [PMID: 26364961 DOI: 10.1111/jnc.13356] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
150 Salim T, Sershen CL, May EE. Investigating the Role of TNF-α and IFN-γ Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages. PLoS One 2016;11:e0153289. [PMID: 27276061 DOI: 10.1371/journal.pone.0153289] [Cited by in Crossref: 70] [Cited by in F6Publishing: 54] [Article Influence: 14.0] [Reference Citation Analysis]
151 Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Kimoto M. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Int Immunol 2010;22:271-80. [PMID: 20133493 DOI: 10.1093/intimm/dxq005] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 4.6] [Reference Citation Analysis]
152 Tartor HM, Matsuura Y, El-nobi G, Nakanishi T. Lack of a contact requirement for direct antibacterial activity of lymphocyte subpopulations in ginbuna crucian carp. Fish & Shellfish Immunology 2014;39:178-84. [DOI: 10.1016/j.fsi.2014.05.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
153 Rossignol DP, Wong N, Noveck R, Lynn M. Continuous pharmacodynamic activity of eritoran tetrasodium, a TLR4 antagonist, during intermittent intravenous infusion into normal volunteers. Innate Immun 2008;14:383-94. [DOI: 10.1177/1753425908099173] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
154 Lee JJ, Kim KH, Kim EJ, Choi J, Kim S, Jeong S, Kim J, Joo M. Anti-inflammatory activity of the decoction of Forsythia suspensa (Thunb.) Vahl is related to Nrf2 and A20. Journal of Ethnopharmacology 2018;227:97-104. [DOI: 10.1016/j.jep.2018.08.027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
155 Wakelin SJ, Sabroe I, Gregory CD, Poxton IR, Forsythe JL, Garden OJ, Howie SE. "Dirty little secrets"--endotoxin contamination of recombinant proteins. Immunol Lett 2006;106:1-7. [PMID: 16765451 DOI: 10.1016/j.imlet.2006.04.007] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 3.7] [Reference Citation Analysis]
156 Basauri A, González-fernández C, Fallanza M, Bringas E, Fernandez-lopez R, Giner L, Moncalián G, de la Cruz F, Ortiz I. Biochemical interactions between LPS and LPS-binding molecules. Critical Reviews in Biotechnology 2020;40:292-305. [DOI: 10.1080/07388551.2019.1709797] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
157 Viriyakosol S, McCray PB, Ashbaugh ME, Chu J, Jia HP, Weiss J, Kirkland TN. Characterization of monoclonal antibodies to human soluble MD-2 protein. Hybridoma (Larchmt) 2006;25:349-57. [PMID: 17203997 DOI: 10.1089/hyb.2006.25.349] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
158 Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, Shibuya M, Akira S, Aburatani H, Maru Y. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10:1349-1355. [PMID: 18820689 DOI: 10.1038/ncb1794] [Cited by in Crossref: 441] [Cited by in F6Publishing: 383] [Article Influence: 33.9] [Reference Citation Analysis]
159 Matsuura Y, Yabu T, Shiba H, Moritomo T, Nakanishi T. Identification of a novel fish granzyme involved in cell-mediated immunity. Dev Comp Immunol 2014;46:499-507. [PMID: 24968079 DOI: 10.1016/j.dci.2014.06.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
160 Ohta S, Bahrun U, Shimazu R, Matsushita H, Fukudome K, Kimoto M. Induction of long-term lipopolysaccharide tolerance by an agonistic monoclonal antibody to the toll-like receptor 4/MD-2 complex. Clin Vaccine Immunol 2006;13:1131-6. [PMID: 17028215 DOI: 10.1128/CVI.00173-06] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
161 Teghanemt A, Zhang D, Levis EN, Weiss JP, Gioannini TL. Molecular basis of reduced potency of underacylated endotoxins. J Immunol 2005;175:4669-76. [PMID: 16177114 DOI: 10.4049/jimmunol.175.7.4669] [Cited by in Crossref: 103] [Cited by in F6Publishing: 102] [Article Influence: 6.4] [Reference Citation Analysis]
162 Gaddis DE, Michalek SM, Katz J. Requirement of TLR4 and CD14 in dendritic cell activation by Hemagglutinin B from Porphyromonas gingivalis. Mol Immunol 2009;46:2493-504. [PMID: 19540594 DOI: 10.1016/j.molimm.2009.05.022] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
163 Grahnert A, Weiss R, Schilling E, Stanslowsky N, Sack U, Hauschildt S. CD14 Counterregulates Lipopolysacharide-Induced Tumor Necrosis Factor-α Production in a Macrophage Subset. J Innate Immun 2019;11:359-74. [PMID: 30654377 DOI: 10.1159/000495528] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
164 Yoshida R. MHC class I recognition by monocyte-/macrophage-specific receptors. Adv Immunol 2014;124:207-47. [PMID: 25175777 DOI: 10.1016/B978-0-12-800147-9.00007-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
165 Fukui R, Murakami Y, Miyake K. New application of anti-TLR monoclonal antibodies: detection, inhibition and protection. Inflamm Regen 2018;38:11. [PMID: 29988708 DOI: 10.1186/s41232-018-0068-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
166 Gay NJ, Gangloff M. Structure of toll-like receptors. Handb Exp Pharmacol 2008;:181-200. [PMID: 18071660 DOI: 10.1007/978-3-540-72167-3_9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
167 Bardou I, Brothers HM, Kaercher RM, Hopp SC, Wenk GL. Differential effects of duration and age on the consequences of neuroinflammation in the hippocampus. Neurobiol Aging 2013;34:2293-301. [PMID: 23639208 DOI: 10.1016/j.neurobiolaging.2013.03.034] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
168 Furuta T, Imajo-Ohmi S, Fukuda H, Kano S, Miyake K, Watanabe N. Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur J Immunol 2008;38:1341-50. [PMID: 18398934 DOI: 10.1002/eji.200738059] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 3.1] [Reference Citation Analysis]
169 Wang Y, Yang Y, Liu X, Wang N, Cao H, Lu Y, Zhou H, Zheng J. Inhibition of clathrin/dynamin-dependent internalization interferes with LPS-mediated TRAM-TRIF-dependent signaling pathway. Cell Immunol 2012;274:121-9. [PMID: 22341560 DOI: 10.1016/j.cellimm.2011.12.007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
170 Beijar E, Mallard C, Powell T. Expression and Subcellular Localization of TLR-4 in Term and First Trimester Human Placenta. Placenta 2006;27:322-6. [DOI: 10.1016/j.placenta.2004.12.012] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 5.3] [Reference Citation Analysis]
171 Hansen FC, Kalle-brune M, van der Plas MJA, Strömdahl A, Malmsten M, Mörgelin M, Schmidtchen A. The Thrombin-Derived Host Defense Peptide GKY25 Inhibits Endotoxin-Induced Responses through Interactions with Lipopolysaccharide and Macrophages/Monocytes. J I 2015;194:5397-406. [DOI: 10.4049/jimmunol.1403009] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
172 Hellerud BC, Stenvik J, Espevik T, Lambris JD, Mollnes TE, Brandtzaeg P. Stages of meningococcal sepsis simulated in vitro, with emphasis on complement and Toll-like receptor activation. Infect Immun 2008;76:4183-9. [PMID: 18591229 DOI: 10.1128/IAI.00195-08] [Cited by in Crossref: 32] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
173 Oliveira MI, Pinto ML, Gonçalves RM, Martins MCL, Santos SG, Barbosa MA. Adsorbed Fibrinogen stimulates TLR-4 on monocytes and induces BMP-2 expression. Acta Biomater 2017;49:296-305. [PMID: 27856281 DOI: 10.1016/j.actbio.2016.11.034] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
174 Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, Kotani H, Yamaoka S, Miyake K, Aoe S, Kamei Y, Ogawa Y. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007;27:84-91. [PMID: 17082484 DOI: 10.1161/01.ATV.0000251608.09329.9a] [Cited by in Crossref: 559] [Cited by in F6Publishing: 260] [Article Influence: 37.3] [Reference Citation Analysis]
175 Mueller M, Lindner B, Kusumoto S, Fukase K, Schromm AB, Seydel U. Aggregates are the biologically active units of endotoxin. J Biol Chem 2004;279:26307-13. [PMID: 15096514 DOI: 10.1074/jbc.M401231200] [Cited by in Crossref: 161] [Cited by in F6Publishing: 45] [Article Influence: 9.5] [Reference Citation Analysis]
176 Halder SK, Matsunaga H, Ishii KJ, Akira S, Miyake K, Ueda H. Retinal cell type-specific prevention of ischemia-induced damages by LPS-TLR4 signaling through microglia. J Neurochem 2013;126:243-60. [DOI: 10.1111/jnc.12262] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
177 Teghanemt A, Widstrom RL, Gioannini TL, Weiss JP. Isolation of monomeric and dimeric secreted MD-2. Endotoxin.sCD14 and Toll-like receptor 4 ectodomain selectively react with the monomeric form of secreted MD-2. J Biol Chem 2008;283:21881-9. [PMID: 18519568 DOI: 10.1074/jbc.M800672200] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
178 Li W, Deng M, Loughran PA, Yang M, Lin M, Yang C, Gao W, Jin S, Li S, Cai J, Lu B, Billiar TR, Scott MJ. LPS Induces Active HMGB1 Release From Hepatocytes Into Exosomes Through the Coordinated Activities of TLR4 and Caspase-11/GSDMD Signaling. Front Immunol 2020;11:229. [PMID: 32328059 DOI: 10.3389/fimmu.2020.00229] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 17.0] [Reference Citation Analysis]
179 Lubos E, Mahoney CE, Leopold JA, Zhang YY, Loscalzo J, Handy DE. Glutathione peroxidase-1 modulates lipopolysaccharide-induced adhesion molecule expression in endothelial cells by altering CD14 expression. FASEB J 2010;24:2525-32. [PMID: 20219985 DOI: 10.1096/fj.09-147421] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
180 Iijima J, Kobayashi S, Kitazume S, Kizuka Y, Fujinawa R, Korekane H, Shibata T, Saitoh S, Akashi-takamura S, Miyake K, Miyoshi E, Taniguchi N. Core fucose is critical for CD14-dependent Toll-like receptor 4 signaling. Glycobiology 2017;27:1006-15. [DOI: 10.1093/glycob/cwx075] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
181 Xu C, Chen G, Yang W, Xu Y, Xu Y, Huang X, Liu J, Feng Y, Xu Y, Liu B. Hyaluronan ameliorates LPS-induced acute lung injury in mice via Toll-like receptor (TLR) 4-dependent signaling pathways. Int Immunopharmacol 2015;28:1050-8. [PMID: 26321117 DOI: 10.1016/j.intimp.2015.08.021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
182 Meng J, Parroche P, Golenbock DT, Mcknight CJ. The Differential Impact of Disulfide Bonds and N-Linked Glycosylation on the Stability and Function of CD14. Journal of Biological Chemistry 2008;283:3376-84. [DOI: 10.1074/jbc.m707640200] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
183 Pili-floury S, Leulier F, Takahashi K, Saigo K, Samain E, Ueda R, Lemaitre B. In Vivo RNA Interference Analysis Reveals an Unexpected Role for GNBP1 in the Defense against Gram-positive Bacterial Infection in Drosophila Adults. Journal of Biological Chemistry 2004;279:12848-53. [DOI: 10.1074/jbc.m313324200] [Cited by in Crossref: 115] [Cited by in F6Publishing: 49] [Article Influence: 6.8] [Reference Citation Analysis]
184 O'Reilly S. Innate immunity in systemic sclerosis pathogenesis. Clin Sci (Lond) 2014;126:329-37. [PMID: 24219159 DOI: 10.1042/CS20130367] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 4.1] [Reference Citation Analysis]
185 Court N, Rose S, Bourigault ML, Front S, Martin OR, Dowling JK, Kenny EF, O'Neill L, Erard F, Quesniaux VF. Mycobacterial PIMs inhibit host inflammatory responses through CD14-dependent and CD14-independent mechanisms. PLoS One 2011;6:e24631. [PMID: 21949737 DOI: 10.1371/journal.pone.0024631] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
186 Iliev DB, Roach JC, Mackenzie S, Planas JV, Goetz FW. Endotoxin recognition: in fish or not in fish? FEBS Lett 2005;579:6519-28. [PMID: 16297386 DOI: 10.1016/j.febslet.2005.10.061] [Cited by in Crossref: 156] [Cited by in F6Publishing: 141] [Article Influence: 9.8] [Reference Citation Analysis]
187 Azuma M, Matsuo A, Fujimoto Y, Fukase K, Hazeki K, Hazeki O, Matsumoto M, Seya T. Inhibition of lipid A-mediated type I interferon induction by Bactericidal/permeability-increasing protein (BPI). Biochemical and Biophysical Research Communications 2007;354:574-8. [DOI: 10.1016/j.bbrc.2007.01.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
188 Morita N, Yamazaki T, Murakami Y, Fukui R, Yamai I, Ichimonji I, Nakashima A, Nagaoka F, Takagi H, Miyake K, Akashi-takamura S. C4b-binding protein negatively regulates TLR4/MD-2 response but not TLR3 response. FEBS Lett 2017;591:1732-41. [DOI: 10.1002/1873-3468.12693] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
189 Konno K, Wakabayashi Y, Akashi-Takamura S, Ishii T, Kobayashi M, Takahashi K, Kusumoto Y, Saitoh S, Yoshizawa Y, Miyake K. A molecule that is associated with Toll-like receptor 4 and regulates its cell surface expression. Biochem Biophys Res Commun. 2006;339:1076-1082. [PMID: 16338228 DOI: 10.1016/j.bbrc.2005.11.123] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
190 Tamai R, Sugiyama A, Kiyoura Y. Alendronate regulates cytokine production induced by lipid A through nuclear factor-κB and Smad3 activation in human gingival fibroblasts: Alendronate promotes nuclear factor-κB and Smad3 activation. Journal of Periodontal Research 2011;46:13-20. [DOI: 10.1111/j.1600-0765.2010.01302.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
191 Monaci S, Aldinucci C, Rossi D, Giuntini G, Filippi I, Ulivieri C, Marotta G, Sozzani S, Carraro F, Naldini A. Hypoxia Shapes Autophagy in LPS-Activated Dendritic Cells. Front Immunol 2020;11:573646. [PMID: 33329536 DOI: 10.3389/fimmu.2020.573646] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
192 Tan Y, Zanoni I, Cullen TW, Goodman AL, Kagan JC. Mechanisms of Toll-like Receptor 4 Endocytosis Reveal a Common Immune-Evasion Strategy Used by Pathogenic and Commensal Bacteria. Immunity 2015;43:909-22. [PMID: 26546281 DOI: 10.1016/j.immuni.2015.10.008] [Cited by in Crossref: 87] [Cited by in F6Publishing: 72] [Article Influence: 14.5] [Reference Citation Analysis]
193 Dörner T, Egerer K, Feist E, Burmester GR. Rheumatoid factor revisited: . Current Opinion in Rheumatology 2004;16:246-53. [DOI: 10.1097/00002281-200405000-00013] [Cited by in Crossref: 140] [Cited by in F6Publishing: 115] [Article Influence: 8.2] [Reference Citation Analysis]
194 Toda H, Araki K, Moritomo T, Nakanishi T. Perforin-dependent cytotoxic mechanism in killing by CD8 positive T cells in ginbuna crucian carp, Carassius auratus langsdorfii. Dev Comp Immunol 2011;35:88-93. [PMID: 20813128 DOI: 10.1016/j.dci.2010.08.010] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
195 Luo L, Wall AA, Tong SJ, Hung Y, Xiao Z, Tarique AA, Sly PD, Fantino E, Marzolo MP, Stow JL. TLR Crosstalk Activates LRP1 to Recruit Rab8a and PI3Kγ for Suppression of Inflammatory Responses. Cell Rep 2018;24:3033-44. [PMID: 30208326 DOI: 10.1016/j.celrep.2018.08.028] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 17.5] [Reference Citation Analysis]
196 You N, Chu S, Cai B, Gao Y, Hui M, Zhu J, Wang M. Bioactive hyaluronic acid fragments inhibit lipopolysaccharide-induced inflammatory responses via the Toll-like receptor 4 signaling pathway. Front Med 2021;15:292-301. [PMID: 32946028 DOI: 10.1007/s11684-020-0806-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
197 DeMarco ML, Woods RJ. From agonist to antagonist: structure and dynamics of innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial endotoxins. Mol Immunol 2011;49:124-33. [PMID: 21924775 DOI: 10.1016/j.molimm.2011.08.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
198 Chowdhury P, Sacks SH, Sheerin NS. Minireview: functions of the renal tract epithelium in coordinating the innate immune response to infection. Kidney Int 2004;66:1334-44. [PMID: 15458426 DOI: 10.1111/j.1523-1755.2004.00896.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 2.8] [Reference Citation Analysis]
199 Gao Y, Song LX, Jiang MN, Ge GY, Jia YJ. Effects of traditional chinese medicine on endotoxin and its receptors in rats with non-alcoholic steatohepatitis. Inflammation. 2008;31:121-132. [PMID: 18302012 DOI: 10.1007/s10753-008-9057-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
200 Maru Y. Logical structures extracted from metastasis experiments. Cancer Science 2009;100:2006-13. [DOI: 10.1111/j.1349-7006.2009.01300.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
201 Visintin A, Halmen KA, Khan N, Monks BG, Golenbock DT, Lien E. MD-2 expression is not required for cell surface targeting of Toll-like receptor 4 (TLR4). J Leukoc Biol 2006;80:1584-92. [PMID: 16946018 DOI: 10.1189/jlb.0606388] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.1] [Reference Citation Analysis]
202 Giacometti A, Cirioni O, Ghiselli R, Orlando F, Kamysz W, Rocchi M, D'Amato G, Mocchegiani F, Silvestri C, Łukasiak J, Saba V, Scalise G. Effects of pexiganan alone and combined with betalactams in experimental endotoxic shock. Peptides 2005;26:207-16. [PMID: 15629532 DOI: 10.1016/j.peptides.2004.09.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
203 Tukhvatulin AI, Logunov DY, Shcherbinin DN, Shmarov MM, Naroditsky BS, Gudkov AV, Gintsburg AL. Toll-like receptors and their adapter molecules. Biochemistry (Mosc) 2010;75:1098-114. [PMID: 21077829 DOI: 10.1134/s0006297910090038] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
204 Schaub B, Bellou A, Gibbons FK, Velasco G, Campo M, He H, Liang Y, Gillman MW, Gold D, Weiss ST, Perkins DL, Finn PW. TLR2 and TLR4 stimulation differentially induce cytokine secretion in human neonatal, adult, and murine mononuclear cells. J Interferon Cytokine Res 2004;24:543-52. [PMID: 15450130 DOI: 10.1089/jir.2004.24.543] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 1.8] [Reference Citation Analysis]
205 Shoma S, Tsuchiya K, Kawamura I, Nomura T, Hara H, Uchiyama R, Daim S, Mitsuyama M. Critical involvement of pneumolysin in production of interleukin-1alpha and caspase-1-dependent cytokines in infection with Streptococcus pneumoniae in vitro: a novel function of pneumolysin in caspase-1 activation. Infect Immun 2008;76:1547-57. [PMID: 18195026 DOI: 10.1128/IAI.01269-07] [Cited by in Crossref: 60] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
206 Kyd JM, Cripps AW. Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine 2008;26:6221-4. [DOI: 10.1016/j.vaccine.2008.09.061] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 4.0] [Reference Citation Analysis]
207 Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, Takatsu K, Kincade PW. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006;24:801-812. [PMID: 16782035 DOI: 10.1016/j.immuni.2006.04.008] [Cited by in Crossref: 548] [Cited by in F6Publishing: 517] [Article Influence: 36.5] [Reference Citation Analysis]
208 Biedroń R, Peruń A, Józefowski S. CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide. PLoS One 2016;11:e0153558. [PMID: 27073833 DOI: 10.1371/journal.pone.0153558] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
209 Nakata T, Yasuda M, Fujita M, Kataoka H, Kiura K, Sano H, Shibata K. CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex. Cell Microbiol 2006;8:1899-909. [PMID: 16848791 DOI: 10.1111/j.1462-5822.2006.00756.x] [Cited by in Crossref: 96] [Cited by in F6Publishing: 87] [Article Influence: 6.4] [Reference Citation Analysis]
210 Takashima K, Matsunaga N, Yoshimatsu M, Hazeki K, Kaisho T, Uekata M, Hazeki O, Akira S, Iizawa Y, Ii M. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol 2009;157:1250-62. [PMID: 19563534 DOI: 10.1111/j.1476-5381.2009.00297.x] [Cited by in Crossref: 134] [Cited by in F6Publishing: 128] [Article Influence: 11.2] [Reference Citation Analysis]
211 Shibasaki Y, Toda H, kobayashi I, Moritomo T, Nakanishi T. Kinetics of CD4+ and CD8α+ T-cell subsets in graft-versus-host reaction (GVHR) in ginbuna crucian carp Carassius auratus langsdorfii. Developmental & Comparative Immunology 2010;34:1075-81. [DOI: 10.1016/j.dci.2010.05.009] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
212 Tatematsu M, Yoshida R, Morioka Y, Ishii N, Funami K, Watanabe A, Saeki K, Seya T, Matsumoto M. Raftlin Controls Lipopolysaccharide-Induced TLR4 Internalization and TICAM-1 Signaling in a Cell Type-Specific Manner. J Immunol 2016;196:3865-76. [PMID: 27022195 DOI: 10.4049/jimmunol.1501734] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
213 Scheel O, Papavlassopoulos M, Blunck R, Gebert A, Hartung T, Zähringer U, Seydel U, Schromm AB. Cell activation by ligands of the toll-like receptor and interleukin-1 receptor family depends on the function of the large-conductance potassium channel MaxiK in human macrophages. Infect Immun. 2006;74:4354-4356. [PMID: 16790810 DOI: 10.1128/IAI.01783-05] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
214 Nagala M, McKenzie E, Richards H, Sharma R, Thomson S, Mastroeni P, Crocker PR. Expression of Siglec-E Alters the Proteome of Lipopolysaccharide (LPS)-Activated Macrophages but Does Not Affect LPS-Driven Cytokine Production or Toll-Like Receptor 4 Endocytosis. Front Immunol 2017;8:1926. [PMID: 29379501 DOI: 10.3389/fimmu.2017.01926] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
215 Liu Z, Zhou C, Qin Y, Wang Z, Wang L, Wei X, Zhou Y, Li Q, Zhou H, Wang W, Fu YX, Zhu M, Liang W. Coordinating antigen cytosolic delivery and danger signaling to program potent cross-priming by micelle-based nanovaccine. Cell Discov 2017;3:17007. [PMID: 28417012 DOI: 10.1038/celldisc.2017.7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
216 Stephens DS. Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 2009;27 Suppl 2:B71-7. [PMID: 19477055 DOI: 10.1016/j.vaccine.2009.04.070] [Cited by in Crossref: 119] [Cited by in F6Publishing: 96] [Article Influence: 9.9] [Reference Citation Analysis]
217 Chen KT, Malo MS, Moss AK, Zeller S, Johnson P, Ebrahimi F, Mostafa G, Alam SN, Ramasamy S, Warren HS. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol. 2010;299:G467-G475. [PMID: 20489044 DOI: 10.1152/ajpgi.00364.2009] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 5.5] [Reference Citation Analysis]
218 Mitsuzawa H, Nishitani C, Hyakushima N, Shimizu T, Sano H, Matsushima N, Fukase K, Kuroki Y. Recombinant soluble forms of extracellular TLR4 domain and MD-2 inhibit lipopolysaccharide binding on cell surface and dampen lipopolysaccharide-induced pulmonary inflammation in mice. J Immunol 2006;177:8133-9. [PMID: 17114488 DOI: 10.4049/jimmunol.177.11.8133] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
219 Arase N, Takeuchi A, Unno M, Hirano S, Yokosuka T, Arase H, Saito T. Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Int Immunol 2005;17:1227-37. [PMID: 16091383 DOI: 10.1093/intimm/dxh299] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 3.4] [Reference Citation Analysis]
220 Jang J, Jung Y, Kim Y, Jho EH, Yoon Y. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974. Sci Rep 2017;7:41612. [PMID: 28128299 DOI: 10.1038/srep41612] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 11.0] [Reference Citation Analysis]
221 Peng Q, O'Loughlin JL, Humphrey MB. DOK3 negatively regulates LPS responses and endotoxin tolerance. PLoS One. 2012;7:e39967. [PMID: 22761938 DOI: 10.1371/journal.pone.0039967] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
222 Schappe MS, Szteyn K, Stremska ME, Mendu SK, Downs TK, Seegren PV, Mahoney MA, Dixit S, Krupa JK, Stipes EJ, Rogers JS, Adamson SE, Leitinger N, Desai BN. Chanzyme TRPM7 Mediates the Ca2+ Influx Essential for Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage Activation. Immunity 2018;48:59-74.e5. [PMID: 29343440 DOI: 10.1016/j.immuni.2017.11.026] [Cited by in Crossref: 82] [Cited by in F6Publishing: 70] [Article Influence: 27.3] [Reference Citation Analysis]
223 Kim KH, Kim EJ, Kwun MJ, Lee JY, Bach TT, Eum SM, Choi JY, Cho S, Kim S, Jeong S, Joo M. Suppression of lung inflammation by the methanol extract of Spilanthes acmella Murray is related to differential regulation of NF-κB and Nrf2. Journal of Ethnopharmacology 2018;217:89-97. [DOI: 10.1016/j.jep.2018.02.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
224 Visintin A, Iliev DB, Monks BG, Halmen KA, Golenbock DT. MD-2. Immunobiology 2006;211:437-47. [PMID: 16920483 DOI: 10.1016/j.imbio.2006.05.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 3.0] [Reference Citation Analysis]
225 Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol. 2004;42:485-498. [PMID: 15682636 DOI: 10.1080/13693780400011112] [Cited by in Crossref: 151] [Cited by in F6Publishing: 125] [Article Influence: 9.4] [Reference Citation Analysis]
226 Kim D, Kim JY. Anti-CD14 antibody reduces LPS responsiveness via TLR4 internalization in human monocytes. Mol Immunol 2014;57:210-5. [PMID: 24172224 DOI: 10.1016/j.molimm.2013.09.009] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
227 Morello G, Cavallaro S. Transcriptional analysis reveals distinct subtypes in amyotrophic lateral sclerosis: implications for personalized therapy. Future Med Chem 2015;7:1335-59. [PMID: 26144267 DOI: 10.4155/fmc.15.60] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
228 Akashi-takamura S, Furuta T, Takahashi K, Tanimura N, Kusumoto Y, Kobayashi T, Saitoh S, Adachi Y, Doi T, Miyake K. Agonistic Antibody to TLR4/MD-2 Protects Mice from Acute Lethal Hepatitis Induced by TNF-α. J Immunol 2006;176:4244-51. [DOI: 10.4049/jimmunol.176.7.4244] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
229 Zuliani-Alvarez L, Marzeda AM, Deligne C, Schwenzer A, McCann FE, Marsden BD, Piccinini AM, Midwood KS. Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat Commun. 2017;8:1595. [PMID: 29150600 DOI: 10.1038/s41467-017-01718-7] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 11.8] [Reference Citation Analysis]
230 Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 2014;4:145. [PMID: 25353009 DOI: 10.3389/fcimb.2014.00145] [Cited by in Crossref: 58] [Cited by in F6Publishing: 45] [Article Influence: 8.3] [Reference Citation Analysis]
231 Ohto U, Fukase K, Miyake K, Satow Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 2007;316:1632-4. [PMID: 17569869 DOI: 10.1126/science.1139111] [Cited by in Crossref: 354] [Cited by in F6Publishing: 312] [Article Influence: 25.3] [Reference Citation Analysis]
232 Chen LW, Chang WJ, Chen PH, Liu WC, Hsu CM. TLR ligand decreases mesenteric ischemia and reperfusion injury-induced gut damage through TNF-alpha signaling. Shock. 2008;30:563-570. [PMID: 18317407 DOI: 10.1097/shk.0b013e31816a3458] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
233 Schröfelbauer B, Raffetseder J, Hauner M, Wolkerstorfer A, Ernst W, Szolar OH. Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signalling. Biochem J 2009;421:473-82. [PMID: 19442240 DOI: 10.1042/BJ20082416] [Cited by in Crossref: 72] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
234 Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci U S A 2004;101:4186-91. [PMID: 15010525 DOI: 10.1073/pnas.0306906101] [Cited by in Crossref: 272] [Cited by in F6Publishing: 248] [Article Influence: 16.0] [Reference Citation Analysis]
235 Miyazawa R, Matsuura Y, Shibasaki Y, Imamura S, Nakanishi T. Cross-reactivity of monoclonal antibodies against CD4-1 and CD8α of ginbuna crucian carp with lymphocytes of zebrafish and other cyprinid species. Dev Comp Immunol 2018;80:15-23. [PMID: 27965016 DOI: 10.1016/j.dci.2016.12.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
236 Kiyokawa T, Akashi-Takamura S, Shibata T, Matsumoto F, Nishitani C, Kuroki Y, Seto Y, Miyake K. A single base mutation in the PRAT4A gene reveals differential interaction of PRAT4A with Toll-like receptors. Int Immunol 2008;20:1407-15. [PMID: 18780723 DOI: 10.1093/intimm/dxn098] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 1.7] [Reference Citation Analysis]
237 Tsujita T, Ishii A, Tsukada H, Matsumoto M, Che F, Seya T. Fish soluble Toll-like receptor (TLR)5 amplifies human TLR5 response via physical binding to flagellin. Vaccine 2006;24:2193-9. [DOI: 10.1016/j.vaccine.2005.11.003] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 2.9] [Reference Citation Analysis]
238 Teng O, Ang CKE, Guan XL. Macrophage-Bacteria Interactions-A Lipid-Centric Relationship. Front Immunol 2017;8:1836. [PMID: 29326713 DOI: 10.3389/fimmu.2017.01836] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
239 Zhang H, Guo Q, Liang Z, Wang M, Wang B, Sun-waterhouse D, Waterhouse GI, Wang J, Ma C, Kang W. Anti-inflammatory and antioxidant effects of Chaetoglobosin Vb in LPS-induced RAW264.7 cells: Achieved via the MAPK and NF-κB signaling pathways. Food and Chemical Toxicology 2021;147:111915. [DOI: 10.1016/j.fct.2020.111915] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
240 Peng Y, Gong JP, Liu CA, Li XH, Gan L, Li SB. Expression of toll-like receptor 4 and MD-2 gene and protein in Kupffer cells after ischemia-reperfu-sion in rat liver graft. World J Gastroenterol. 2004;10:2890-2893. [PMID: 15334694 DOI: 10.3748/wjg.v10.i19.2890] [Cited by in CrossRef: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
241 Vasselon T, Detmers PA, Charron D, Haziot A. TLR2 recognizes a bacterial lipopeptide through direct binding. J Immunol 2004;173:7401-5. [PMID: 15585865 DOI: 10.4049/jimmunol.173.12.7401] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 2.7] [Reference Citation Analysis]
242 Nicholas DA, Zhang K, Hung C, Glasgow S, Aruni AW, Unternaehrer J, Payne KJ, Langridge WHR, De Leon M. Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One 2017;12:e0176793. [PMID: 28463985 DOI: 10.1371/journal.pone.0176793] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
243 Ghiselli R, Silvestri C, Cirioni O, Kamysz W, Orlando F, Calcinari A, Kamysz E, Casteletti S, Rimini M, Tocchini M, Giacometti A, Guerrieri M. Protective Effect of Citropin 1.1 and Tazobactam-Piperacillin Against Oxidative Damage and Lethality in Mice Models of Gram-Negative Sepsis. Journal of Surgical Research 2011;171:726-33. [DOI: 10.1016/j.jss.2010.03.055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
244 Kawasaki K, Ernst RK, Miller SI. 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J Biol Chem 2004;279:20044-8. [PMID: 15014080 DOI: 10.1074/jbc.M401275200] [Cited by in Crossref: 126] [Cited by in F6Publishing: 64] [Article Influence: 7.4] [Reference Citation Analysis]
245 Takeda K. The lipid A receptor. Adv Exp Med Biol 2010;667:53-8. [PMID: 20665199 DOI: 10.1007/978-1-4419-1603-7_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
246 Godowski PJ. A smooth operator for LPS responses. Nat Immunol 2005;6:544-6. [DOI: 10.1038/ni0605-544] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 2.3] [Reference Citation Analysis]
247 Son M, Kim SJ, Diamond B. SLE-associated risk factors affect DC function. Immunol Rev 2016;269:100-17. [PMID: 26683148 DOI: 10.1111/imr.12348] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
248 Gioannini T, Teghanemt A, Zhang D, Levis E, Weiss J. Monomeric endotoxin:protein complexes are essential for TLR4-dependent cell activation. Journal of Endotoxin Research 2005;11:117-23. [DOI: 10.1177/09680519050110020801] [Cited by in Crossref: 64] [Cited by in F6Publishing: 31] [Article Influence: 12.8] [Reference Citation Analysis]
249 Klimaszewska-Łata J, Gul-Hinc S, Bielarczyk H, Ronowska A, Zyśk M, Grużewska K, Pawełczyk T, Szutowicz A. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells. J Neurochem 2015;133:284-97. [PMID: 25345568 DOI: 10.1111/jnc.12979] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
250 Zhang H, Li J, Barrington RA, Liang G, Qin G, Liu DX. An anti-endotoxin peptide that generates from the amino-terminal domain of complement regulatory protein C1 inhibitor. Biochem Biophys Res Commun 2007;359:285-91. [PMID: 17543887 DOI: 10.1016/j.bbrc.2007.05.078] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
251 Park SH, Kim ND, Jung JK, Lee CK, Han SB, Kim Y. Myeloid differentiation 2 as a therapeutic target of inflammatory disorders. Pharmacol Ther 2012;133:291-8. [PMID: 22119168 DOI: 10.1016/j.pharmthera.2011.11.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
252 Nayak SK, Nakanishi T. Direct antibacterial activity of CD8+/CD4+ T-cells in ginbuna crucian carp, Carassius auratus langsdorfii. Fish & Shellfish Immunology 2013;34:136-41. [DOI: 10.1016/j.fsi.2012.10.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
253 Song Y, Dou H, Gong W, Liu X, Yu Z, Li E, Tan R, Hou Y. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol. 2013;705:49-60. [PMID: 23438875 DOI: 10.1016/j.ejphar.2013.02.008] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
254 Lasunskaia EB, Campos MNN, de Andrade MRM, Damatta RA, Kipnis TL, Einicker-lamas M, Da Silva WD. Mycobacteria directly induce cytoskeletal rearrangements for macrophage spreading and polarization through TLR2-dependent PI3K signaling. Journal of Leukocyte Biology 2006;80:1480-90. [DOI: 10.1189/jlb.0106066] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
255 Gruber A, Mancek M, Wagner H, Kirschning CJ, Jerala R. Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J Biol Chem 2004;279:28475-82. [PMID: 15111623 DOI: 10.1074/jbc.M400993200] [Cited by in Crossref: 97] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
256 Riquelme SA, Bueno SM, Kalergis AM. Carbon monoxide down-modulates Toll-like receptor 4/MD2 expression on innate immune cells and reduces endotoxic shock susceptibility. Immunology 2015;144:321-32. [PMID: 25179131 DOI: 10.1111/imm.12375] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
257 Ghiselli R, Cirioni O, Giacometti A, Mocchegiani F, Orlando F, Silvestri C, Licci A, Della Vittoria A, Scalise G, Saba V. THE CATHELICIDIN-DERIVED TRITRPTICIN ENHANCES THE EFFICACY OF ERTAPENEM IN EXPERIMENTAL RAT MODELS OF SEPTIC SHOCK. Shock 2006;26:195-200. [DOI: 10.1097/01.shk.0000225407.24479.3f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
258 Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Seminars in Immunology 2007;19:3-10. [DOI: 10.1016/j.smim.2006.12.002] [Cited by in Crossref: 358] [Cited by in F6Publishing: 339] [Article Influence: 25.6] [Reference Citation Analysis]