BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med. 2003;197:823-829. [PMID: 12682107 DOI: 10.1084/jem.20021840] [Cited by in Crossref: 619] [Cited by in F6Publishing: 567] [Article Influence: 34.4] [Reference Citation Analysis]
Number Citing Articles
1 Wu L, Martin TD, Carrington M, KewalRamani VN. Raji B cells, misidentified as THP-1 cells, stimulate DC-SIGN-mediated HIV transmission. Virology 2004;318:17-23. [PMID: 14972530 DOI: 10.1016/j.virol.2003.09.028] [Cited by in Crossref: 116] [Cited by in F6Publishing: 113] [Article Influence: 6.8] [Reference Citation Analysis]
2 Pastorino B, Nougairède A, Wurtz N, Gould E, de Lamballerie X. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Antiviral Res 2010;87:281-94. [PMID: 20452379 DOI: 10.1016/j.antiviral.2010.04.014] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 5.5] [Reference Citation Analysis]
3 Stiasny K, Heinz FX. Flavivirus membrane fusion. Journal of General Virology 2006;87:2755-66. [DOI: 10.1099/vir.0.82210-0] [Cited by in Crossref: 135] [Cited by in F6Publishing: 117] [Article Influence: 9.0] [Reference Citation Analysis]
4 Jolly CL, Sattentau QJ. Attachment factors. Adv Exp Med Biol 2013;790:1-23. [PMID: 23884583 DOI: 10.1007/978-1-4614-7651-1_1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
5 Hottz ED, Monteiro AP, Bozza FA, Bozza PT. Inflammasome in platelets: allying coagulation and inflammation in infectious and sterile diseases? Mediators Inflamm 2015;2015:435783. [PMID: 25814789 DOI: 10.1155/2015/435783] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
6 Krauss IJ. Antibody recognition of HIV and dengue glycoproteins. Glycobiology 2016;26:813-9. [PMID: 26941393 DOI: 10.1093/glycob/cww031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
7 Kimura M, Egawa K, Ozawa T, Kishi H, Shimojima M, Taniguchi S, Fukushi S, Fujii H, Yamada H, Tan L, Sano K, Katano H, Suzuki T, Morikawa S, Saijo M, Tani H. Characterization of pseudotyped vesicular stomatitis virus bearing the heartland virus envelope glycoprotein. Virology 2021;556:124-32. [PMID: 33561699 DOI: 10.1016/j.virol.2020.10.006] [Reference Citation Analysis]
8 Barreiro LB, Henriques R, Mhlanga MM. High-throughput SNP genotyping: combining tag SNPs and molecular beacons. Methods Mol Biol 2009;578:255-76. [PMID: 19768600 DOI: 10.1007/978-1-60327-411-1_17] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
9 Phanthanawiboon S, A-nuegoonpipat A, Panngarm N, Limkittikul K, Ikuta K, Anantapreecha S, Kurosu T. Isolation and propagation of Dengue virus in Vero and BHK-21 cells expressing human DC-SIGN stably. Journal of Virological Methods 2014;209:55-61. [DOI: 10.1016/j.jviromet.2014.08.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
10 Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M, Geier M, Eisemann J, Turza N, Saunier B, Steinkasserer A, Becker S, Bates P, Hofmann H, Pöhlmann S. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 2004;78:12090-5. [PMID: 15479853 DOI: 10.1128/JVI.78.21.12090-12095.2004] [Cited by in Crossref: 256] [Cited by in F6Publishing: 172] [Article Influence: 15.1] [Reference Citation Analysis]
11 Hidari KI, Suzuki T. Dengue virus receptor. Trop Med Health 2011;39:37-43. [PMID: 22500135 DOI: 10.2149/tmh.2011-S03] [Cited by in Crossref: 50] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
12 Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E. Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J Immunol 2005;175:3946-54. [PMID: 16148142 DOI: 10.4049/jimmunol.175.6.3946] [Cited by in Crossref: 99] [Cited by in F6Publishing: 98] [Article Influence: 6.2] [Reference Citation Analysis]
13 Chu JJ, Ng ML. Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. J Biol Chem. 2004;279:54533-54541. [PMID: 15475343 DOI: 10.1074/jbc.m410208200] [Cited by in Crossref: 157] [Cited by in F6Publishing: 82] [Article Influence: 9.2] [Reference Citation Analysis]
14 Gujarati TP, Ambika G. Virus antibody dynamics in primary and secondary dengue infections. J Math Biol 2014;69:1773-800. [PMID: 24384697 DOI: 10.1007/s00285-013-0749-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 3.9] [Reference Citation Analysis]
15 Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, Fernandez-Sesma A. Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol 2010;84:9760-74. [PMID: 20660196 DOI: 10.1128/JVI.01051-10] [Cited by in Crossref: 103] [Cited by in F6Publishing: 72] [Article Influence: 9.4] [Reference Citation Analysis]
16 Steinman RM. Some interfaces of dendritic cell biology. APMIS. 2003;111:675-697. [PMID: 12974772 DOI: 10.1034/j.1600-0463.2003.11107802.x] [Cited by in Crossref: 209] [Cited by in F6Publishing: 185] [Article Influence: 11.6] [Reference Citation Analysis]
17 Schaeffer E, Flacher V, Papageorgiou V, Decossas M, Fauny J, Krämer M, Mueller CG. Dermal CD14 + Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4. Journal of Investigative Dermatology 2015;135:1743-51. [DOI: 10.1038/jid.2014.525] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
18 Rampey AM, Lathers DM, Woodworth BA, Schlosser RJ. Immunolocalization of Dendritic Cells and Pattern Recognition Receptors in Chronic Rhinosinusitis. American Journal of Rhinology 2007;21:117-21. [DOI: 10.2500/ajr.2007.21.2998] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
19 Richard AS, Shim BS, Kwon YC, Zhang R, Otsuka Y, Schmitt K, Berri F, Diamond MS, Choe H. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci U S A 2017;114:2024-9. [PMID: 28167751 DOI: 10.1073/pnas.1620558114] [Cited by in Crossref: 138] [Cited by in F6Publishing: 120] [Article Influence: 34.5] [Reference Citation Analysis]
20 Johnson TR, McLellan JS, Graham BS. Respiratory syncytial virus glycoprotein G interacts with DC-SIGN and L-SIGN to activate ERK1 and ERK2. J Virol 2012;86:1339-47. [PMID: 22090124 DOI: 10.1128/JVI.06096-11] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 5.8] [Reference Citation Analysis]
21 Hsu TL, Cheng SC, Yang WB, Chin SW, Chen BH, Huang MT, Hsieh SL, Wong CH. Profiling carbohydrate-receptor interaction with recombinant innate immunity receptor-Fc fusion proteins. J Biol Chem 2009;284:34479-89. [PMID: 19837675 DOI: 10.1074/jbc.M109.065961] [Cited by in Crossref: 58] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
22 Rahimi N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. Biology (Basel) 2020;10:1. [PMID: 33375175 DOI: 10.3390/biology10010001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
23 Levin TC, Greaney AJ, Wetzel L, King N. The Rosetteless gene controls development in the choanoflagellate S. rosetta. Elife 2014;3. [PMID: 25299189 DOI: 10.7554/eLife.04070] [Cited by in Crossref: 57] [Cited by in F6Publishing: 23] [Article Influence: 8.1] [Reference Citation Analysis]
24 Ren J, Ding T, Zhang W, Song J, Ma W. Does Japanese encephalitis virus share the same cellular receptor with other mosquito-borne flaviviruses on the C6/36 mosquito cells? Virol J. 2007;4:83. [PMID: 17803826 DOI: 10.1186/1743-422x-4-83] [Cited by in Crossref: 48] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
25 Kawamura T. Viral Infection. In: Kabashima K, editor. Immunology of the Skin. Tokyo: Springer Japan; 2016. pp. 295-324. [DOI: 10.1007/978-4-431-55855-2_19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
26 Velandia ML, Castellanos JE. Virus del dengue: estructura y ciclo viral. Infectio 2011;15:33-43. [DOI: 10.1016/s0123-9392(11)70074-1] [Cited by in Crossref: 11] [Article Influence: 1.1] [Reference Citation Analysis]
27 Drews E, Adam A, Htoo P, Townsley E, Mathew A. Upregulation of HLA-E by dengue and not Zika viruses. Clin Transl Immunology 2018;7:e1039. [PMID: 30263117 DOI: 10.1002/cti2.1039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
28 Chen HW, Liu SJ, Li YS, Liu HH, Tsai JP, Chiang CY, Chen MY, Hwang CS, Huang CC, Hu HM, Chung HH, Wu SH, Chong P, Leng CH, Pan CH. A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol 2013;158:1523-31. [PMID: 23456422 DOI: 10.1007/s00705-013-1639-1] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
29 Cruz-Oliveira C, Freire JM, Conceição TM, Higa LM, Castanho MA, Da Poian AT. Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol Rev 2015;39:155-70. [PMID: 25725010 DOI: 10.1093/femsre/fuu004] [Cited by in Crossref: 154] [Cited by in F6Publishing: 124] [Article Influence: 22.0] [Reference Citation Analysis]
30 Kim SY, Li B, Linhardt RJ. Pathogenesis and Inhibition of Flaviviruses from a Carbohydrate Perspective. Pharmaceuticals (Basel) 2017;10:E44. [PMID: 28471403 DOI: 10.3390/ph10020044] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
31 Tomer S, Chawla YK, Duseja A, Arora SK. Dominating expression of negative regulatory factors downmodulates major histocompatibility complex Class-II expression on dendritic cells in chronic hepatitis C infection. World J Gastroenterol 2016;22:5173-82. [PMID: 27298560 DOI: 10.3748/wjg.v22.i22.5173] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
32 Aliota MT, Jones SA, Dupuis AP 2nd, Ciota AT, Hubalek Z, Kramer LD. Characterization of Rabensburg virus, a flavivirus closely related to West Nile virus of the Japanese encephalitis antigenic group. PLoS One 2012;7:e39387. [PMID: 22724010 DOI: 10.1371/journal.pone.0039387] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
33 Yearley JH, Kanagy S, Anderson DC, Dalecki K, Pauley DR, Suwyn C, Donahoe RM, McClure HM, O'Neil SP. Tissue-specific reduction in DC-SIGN expression correlates with progression of pathogenic simian immunodeficiency virus infection. Dev Comp Immunol 2008;32:1510-21. [PMID: 18606180 DOI: 10.1016/j.dci.2008.06.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
34 Ho LJ, Hung LF, Weng CY, Wu WL, Chou P, Lin YL, Chang DM, Tai TY, Lai JH. Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J Immunol 2005;174:8163-72. [PMID: 15944325 DOI: 10.4049/jimmunol.174.12.8163] [Cited by in Crossref: 114] [Cited by in F6Publishing: 106] [Article Influence: 7.1] [Reference Citation Analysis]
35 Mary JA, Jittmittraphap A, Chattanadee S, Leaungwutiwong P, Shenbagarathai R. A synthetic peptide derived from domain III envelope glycoprotein of Dengue virus induces neutralizing antibody. Virus Genes 2018;54:25-32. [PMID: 28948470 DOI: 10.1007/s11262-017-1508-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
36 Lozach PY, Burleigh L, Staropoli I, Amara A. The C type lectins DC-SIGN and L-SIGN: receptors for viral glycoproteins. Methods Mol Biol. 2007;379:51-68. [PMID: 17502670 DOI: 10.1007/978-1-59745-393-6_4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 2.4] [Reference Citation Analysis]
37 Shrivastava N, Sripada S, Kaur J, Shah PS, Cecilia D. Insights into the internalization and retrograde trafficking of Dengue 2 virus in BHK-21 cells. PLoS One 2011;6:e25229. [PMID: 21991304 DOI: 10.1371/journal.pone.0025229] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
38 Geiss BJ, Stahla H, Hannah AM, Gari AM, Keenan SM. Focus on flaviviruses: current and future drug targets. Future Med Chem 2009;1:327-44. [PMID: 20165556 DOI: 10.4155/fmc.09.27] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.5] [Reference Citation Analysis]
39 Navarro-Sánchez E, Desprès P, Cedillo-Barrón L. Innate immune responses to dengue virus. Arch Med Res 2005;36:425-35. [PMID: 16099317 DOI: 10.1016/j.arcmed.2005.04.007] [Cited by in Crossref: 86] [Cited by in F6Publishing: 80] [Article Influence: 5.4] [Reference Citation Analysis]
40 Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R, Gaitsch HF, Parnell LA, Cao B, Mysorekar IU, Rothlin CV, Fikrig E, Diamond MS, Iwasaki A. TAM Receptors Are Not Required for Zika Virus Infection in Mice. Cell Rep 2017;19:558-68. [PMID: 28423319 DOI: 10.1016/j.celrep.2017.03.058] [Cited by in Crossref: 95] [Cited by in F6Publishing: 79] [Article Influence: 23.8] [Reference Citation Analysis]
41 García-Piñeres AJ, Hildesheim A, Trivett M, Williams M, Wu L, Kewalramani VN, Pinto LA. Role of DC-SIGN in the activation of dendritic cells by HPV-16 L1 virus-like particle vaccine. Eur J Immunol 2006;36:437-45. [PMID: 16385626 DOI: 10.1002/eji.200535068] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
42 Smith JL, Stein DA, Shum D, Fischer MA, Radu C, Bhinder B, Djaballah H, Nelson JA, Früh K, Hirsch AJ. Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling. J Virol 2014;88:5533-42. [PMID: 24599995 DOI: 10.1128/JVI.00365-14] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 4.9] [Reference Citation Analysis]
43 Nazmi A, Dutta K, Hazra B, Basu A. Role of pattern recognition receptors in flavivirus infections. Virus Res 2014;185:32-40. [PMID: 24657789 DOI: 10.1016/j.virusres.2014.03.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
44 Ho L, Shaio M, Chang D, Liao C, Lai J. Infection of Human Dendritic Cells by Dengue Virus Activates and Primes T Cells Towards Th0‐Like Phenotype Producing Both Th1 and Th2 Cytokines. Immunological Investigations 2009;33:423-37. [DOI: 10.1081/imm-200038680] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
45 Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol. 2005;79:13350-13361. [PMID: 16227257 DOI: 10.1128/jvi.79.21.13350-13361.2005] [Cited by in Crossref: 311] [Cited by in F6Publishing: 227] [Article Influence: 19.4] [Reference Citation Analysis]
46 Habarugira G, Suen WW, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H. West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020;9:E589. [PMID: 32707644 DOI: 10.3390/pathogens9070589] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
47 Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 2005;437:764-9. [PMID: 16193056 DOI: 10.1038/nature03956] [Cited by in Crossref: 282] [Cited by in F6Publishing: 255] [Article Influence: 17.6] [Reference Citation Analysis]
48 Lee PX, Ting DHR, Boey CPH, Tan ETX, Chia JZH, Idris F, Oo Y, Ong LC, Chua YL, Hapuarachchi C, Ng LC, Alonso S. Relative contribution of nonstructural protein 1 in dengue pathogenesis. J Exp Med 2020;217:e20191548. [PMID: 32584412 DOI: 10.1084/jem.20191548] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
49 Xu YF, Liu WL, Dong JQ, Liu WS, Feng QS, Chen LZ, Zeng YX, Zeng MS, Jia WH. Sequencing of DC-SIGN promoter indicates an association between promoter variation and risk of nasopharyngeal carcinoma in cantonese. BMC Med Genet 2010;11:161. [PMID: 21067616 DOI: 10.1186/1471-2350-11-161] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
50 Diebold SS. Activation of Dendritic Cells by Toll-Like Receptors and C-Type Lectins. In: Lombardi G, Riffo-vasquez Y, editors. Dendritic Cells. Berlin: Springer Berlin Heidelberg; 2009. pp. 3-30. [DOI: 10.1007/978-3-540-71029-5_1] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Reference Citation Analysis]
51 Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, Ling MP, Nordin SA, Benelli G, Kumar SS. Leptospirosis: Molecular trial path and immunopathogenesis correlated with dengue, malaria and mimetic hemorrhagic infections. Acta Trop 2017;176:206-23. [PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
52 Ngono AE, Shresta S. Immune Response to Dengue and Zika. Annu Rev Immunol 2018;36:279-308. [PMID: 29345964 DOI: 10.1146/annurev-immunol-042617-053142] [Cited by in Crossref: 102] [Cited by in F6Publishing: 88] [Article Influence: 34.0] [Reference Citation Analysis]
53 De La Guardia C, Lleonart R. Progress in the identification of dengue virus entry/fusion inhibitors. Biomed Res Int 2014;2014:825039. [PMID: 25157370 DOI: 10.1155/2014/825039] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
54 Anderson R. Manipulation of cell surface macromolecules by flaviviruses. Adv Virus Res 2003;59:229-74. [PMID: 14696331 DOI: 10.1016/s0065-3527(03)59007-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
55 Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD, Thackray LB, Young MD, Mason RJ. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA. 2004;101:15748-15753. [PMID: 15496474 DOI: 10.1073/pnas.0403812101] [Cited by in Crossref: 407] [Cited by in F6Publishing: 351] [Article Influence: 23.9] [Reference Citation Analysis]
56 Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine 2013;31:461-71. [PMID: 23153447 DOI: 10.1016/j.vaccine.2012.11.015] [Cited by in Crossref: 84] [Cited by in F6Publishing: 69] [Article Influence: 9.3] [Reference Citation Analysis]
57 Melchjorsen J. Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013;5:470-527. [PMID: 23435233 DOI: 10.3390/v5020470] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
58 Garcia-Tapia D, Loiacono CM, Kleiboeker SB. Replication of West Nile virus in equine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2006;110:229-44. [PMID: 16310859 DOI: 10.1016/j.vetimm.2005.10.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 1.9] [Reference Citation Analysis]
59 Simmons G. Filovirus entry. Adv Exp Med Biol 2013;790:83-94. [PMID: 23884587 DOI: 10.1007/978-1-4614-7651-1_5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
60 Yang ZS, Huang SW, Wang WH, Lin CY, Wang CF, Urbina AN, Thitithanyanont A, Tseng SP, Lu PL, Chen YH, Wang SF. Identification of Important N-Linked Glycosylation Sites in the Hemagglutinin Protein and Their Functional Impact on DC-SIGN Mediated Avian Influenza H5N1 Infection. Int J Mol Sci 2021;22:E743. [PMID: 33451024 DOI: 10.3390/ijms22020743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
61 Palmer DR, Fernandez S, Bisbing J, Peachman KK, Rao M, Barvir D, Gunther V, Burgess T, Kohno Y, Padmanabhan R, Sun W. Restricted replication and lysosomal trafficking of yellow fever 17D vaccine virus in human dendritic cells. J Gen Virol 2007;88:148-56. [PMID: 17170447 DOI: 10.1099/vir.0.82272-0] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 1.9] [Reference Citation Analysis]
62 Vasilakis N, Weaver SC. The history and evolution of human dengue emergence. Adv Virus Res 2008;72:1-76. [PMID: 19081488 DOI: 10.1016/S0065-3527(08)00401-6] [Cited by in Crossref: 132] [Cited by in F6Publishing: 66] [Article Influence: 11.0] [Reference Citation Analysis]
63 Prestwood TR, Prigozhin DM, Sharar KL, Zellweger RM, Shresta S. A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol 2008;82:8411-21. [PMID: 18562532 DOI: 10.1128/JVI.00611-08] [Cited by in Crossref: 89] [Cited by in F6Publishing: 65] [Article Influence: 6.8] [Reference Citation Analysis]
64 Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. Proc Natl Acad Sci U S A 2007;104:9422-7. [PMID: 17517625 DOI: 10.1073/pnas.0703498104] [Cited by in Crossref: 250] [Cited by in F6Publishing: 232] [Article Influence: 17.9] [Reference Citation Analysis]
65 Ke PY. The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions. Int J Mol Sci 2018;19:E3940. [PMID: 30544615 DOI: 10.3390/ijms19123940] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
66 Dhiman G, Abraham R, Griffin DE. Human Schwann cells are susceptible to infection with Zika and yellow fever viruses, but not dengue virus. Sci Rep 2019;9:9951. [PMID: 31289325 DOI: 10.1038/s41598-019-46389-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
67 Shi Y, Gao GF. Structural Biology of the Zika Virus. Trends in Biochemical Sciences 2017;42:443-56. [DOI: 10.1016/j.tibs.2017.02.009] [Cited by in Crossref: 65] [Cited by in F6Publishing: 56] [Article Influence: 16.3] [Reference Citation Analysis]
68 Martinez MG, Bialecki MA, Belouzard S, Cordo SM, Candurra NA, Whittaker GR. Utilization of human DC-SIGN and L-SIGN for entry and infection of host cells by the New World arenavirus, Junín virus. Biochem Biophys Res Commun 2013;441:612-7. [PMID: 24183720 DOI: 10.1016/j.bbrc.2013.10.106] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
69 Boonnak K, Slike BM, Donofrio GC, Marovich MA. Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection. J Immunol 2013;190:5659-65. [PMID: 23616574 DOI: 10.4049/jimmunol.1203052] [Cited by in Crossref: 52] [Cited by in F6Publishing: 44] [Article Influence: 6.5] [Reference Citation Analysis]
70 Barkhash AV, Perelygin AA, Babenko VN, Brinton MA, Voevoda MI. Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. Antiviral Research 2012;93:64-8. [DOI: 10.1016/j.antiviral.2011.10.017] [Cited by in Crossref: 52] [Cited by in F6Publishing: 38] [Article Influence: 5.8] [Reference Citation Analysis]
71 Mansour MK, Latz E, Levitz SM. Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J Immunol 2006;176:3053-61. [PMID: 16493064 DOI: 10.4049/jimmunol.176.5.3053] [Cited by in Crossref: 90] [Cited by in F6Publishing: 84] [Article Influence: 6.0] [Reference Citation Analysis]
72 Modis Y. Class II fusion proteins. Adv Exp Med Biol 2013;790:150-66. [PMID: 23884590 DOI: 10.1007/978-1-4614-7651-1_8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
73 Barreiro LB, Patin E, Neyrolles O, Cann HM, Gicquel B, Quintana-Murci L. The heritage of pathogen pressures and ancient demography in the human innate-immunity CD209/CD209L region. Am J Hum Genet 2005;77:869-86. [PMID: 16252244 DOI: 10.1086/497613] [Cited by in Crossref: 70] [Cited by in F6Publishing: 64] [Article Influence: 4.4] [Reference Citation Analysis]
74 Diamond MS, Shrestha B, Mehlhop E, Sitati E, Engle M. Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol. 2003;16:259-278. [PMID: 14583143 DOI: 10.1089/088282403322396082] [Cited by in Crossref: 147] [Cited by in F6Publishing: 133] [Article Influence: 8.6] [Reference Citation Analysis]
75 Adelman ZN, Myles KM. The C-Type Lectin Domain Gene Family in Aedes aegypti and Their Role in Arbovirus Infection. Viruses 2018;10:E367. [PMID: 30002303 DOI: 10.3390/v10070367] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
76 Lien TS, Sun DS, Hung SC, Wu WS, Chang HH. Dengue Virus Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent NETosis-Mediated Inflammation in Mice. Front Immunol 2021;12:618577. [PMID: 33815373 DOI: 10.3389/fimmu.2021.618577] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
77 Pryzdial ELG, Lin BH, Sutherland MR. Virus–Platelet Associations. In: Gresele P, Kleiman NS, Lopez JA, Page CP, editors. Platelets in Thrombotic and Non-Thrombotic Disorders. Cham: Springer International Publishing; 2017. pp. 1085-102. [DOI: 10.1007/978-3-319-47462-5_72] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
78 Chan KR, Zhang SL, Tan HC, Chan YK, Chow A, Lim AP, Vasudevan SG, Hanson BJ, Ooi EE. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc Natl Acad Sci U S A 2011;108:12479-84. [PMID: 21746897 DOI: 10.1073/pnas.1106568108] [Cited by in Crossref: 98] [Cited by in F6Publishing: 92] [Article Influence: 9.8] [Reference Citation Analysis]
79 Obermajer N, Svajger U, Jeras M, Sattin S, Bernardi A, Anderluh M. An assay for functional dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) inhibitors of human dendritic cell adhesion. Anal Biochem 2010;406:222-9. [PMID: 20667443 DOI: 10.1016/j.ab.2010.07.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
80 Khadka S, Vangeloff AD, Zhang C, Siddavatam P, Heaton NS, Wang L, Sengupta R, Sahasrabudhe S, Randall G, Gribskov M, Kuhn RJ, Perera R, LaCount DJ. A physical interaction network of dengue virus and human proteins. Mol Cell Proteomics 2011;10:M111.012187. [PMID: 21911577 DOI: 10.1074/mcp.M111.012187] [Cited by in Crossref: 108] [Cited by in F6Publishing: 59] [Article Influence: 10.8] [Reference Citation Analysis]
81 Chen Q, Khoury M, Chen J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA. 2009;106:21783-21788. [PMID: 19966223 DOI: 10.1073/pnas.0912274106] [Cited by in Crossref: 178] [Cited by in F6Publishing: 165] [Article Influence: 14.8] [Reference Citation Analysis]
82 Serrano-Gómez D, Martínez-Nuñez RT, Sierra-Filardi E, Izquierdo N, Colmenares M, Pla J, Rivas L, Martinez-Picado J, Jimenez-Barbero J, Alonso-Lebrero JL, González S, Corbí AL. AM3 modulates dendritic cell pathogen recognition capabilities by targeting DC-SIGN. Antimicrob Agents Chemother 2007;51:2313-23. [PMID: 17452477 DOI: 10.1128/AAC.01289-06] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
83 McGreal EP, Miller JL, Gordon S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr Opin Immunol 2005;17:18-24. [PMID: 15653305 DOI: 10.1016/j.coi.2004.12.001] [Cited by in Crossref: 194] [Cited by in F6Publishing: 183] [Article Influence: 12.1] [Reference Citation Analysis]
84 Mudhakir D, Harashima H. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J 2009;11:65-77. [PMID: 19194803 DOI: 10.1208/s12248-009-9080-9] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 5.9] [Reference Citation Analysis]
85 Smit JM, Moesker B, Rodenhuis-Zybert I, Wilschut J. Flavivirus cell entry and membrane fusion. Viruses 2011;3:160-71. [PMID: 22049308 DOI: 10.3390/v3020160] [Cited by in Crossref: 175] [Cited by in F6Publishing: 155] [Article Influence: 17.5] [Reference Citation Analysis]
86 Srikiatkhachorn A, Mathew A, Rothman AL. Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol 2017;39:563-74. [PMID: 28401256 DOI: 10.1007/s00281-017-0625-1] [Cited by in Crossref: 88] [Cited by in F6Publishing: 73] [Article Influence: 22.0] [Reference Citation Analysis]
87 Chee HY, AbuBakar S. Identification of a 48kDa tubulin or tubulin-like C6/36 mosquito cells protein that binds dengue virus 2 using mass spectrometry. Biochem Biophys Res Commun 2004;320:11-7. [PMID: 15207695 DOI: 10.1016/j.bbrc.2004.05.124] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 1.5] [Reference Citation Analysis]
88 Alayli F, Scholle F. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 2016;496:227-36. [PMID: 27348054 DOI: 10.1016/j.virol.2016.06.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
89 Cheong C, Matos I, Choi JH, Schauer JD, Dandamudi DB, Shrestha E, Makeyeva JA, Li X, Li P, Steinman RM, Park CG. New monoclonal anti-mouse DC-SIGN antibodies reactive with acetone-fixed cells. J Immunol Methods 2010;360:66-75. [PMID: 20558171 DOI: 10.1016/j.jim.2010.06.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
90 Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH. RIG-I-like Receptor Triggering by Dengue Virus Drives Dendritic Cell Immune Activation and TH1 Differentiation. J Immunol 2017;198:4764-71. [PMID: 28507028 DOI: 10.4049/jimmunol.1602121] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
91 Rogers KM, Heise M. Modulation of cellular tropism and innate antiviral response by viral glycans. J Innate Immun 2009;1:405-12. [PMID: 20375598 DOI: 10.1159/000226422] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
92 Canard B, Vachon H, Fontaine T, Pin JJ, Paul S, Genin C, Mueller CG. Generation of anti-DC-SIGN monoclonal antibodies capable of blocking HIV-1 gp120 binding and reactive on formalin-fixed tissue. Immunol Lett 2011;135:165-72. [PMID: 21078343 DOI: 10.1016/j.imlet.2010.11.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
93 Apostolopoulos V, Thalhammer T, Tzakos AG, Stojanovska L. Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv. 2013;2013:869718. [PMID: 24228179 DOI: 10.1155/2013/869718] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 9.9] [Reference Citation Analysis]
94 Guevara J Jr, Romo J Jr, McWhorter T, Guevara NV. Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry. J Viruses 2015;2015:646303. [PMID: 27123468 DOI: 10.1155/2015/646303] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
95 Sukupolvi-Petty S, Brien JD, Austin SK, Shrestha B, Swayne S, Kahle K, Doranz BJ, Johnson S, Pierson TC, Fremont DH, Diamond MS. Functional analysis of antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neutralization and protection. J Virol 2013;87:8826-42. [PMID: 23785205 DOI: 10.1128/JVI.01314-13] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 7.0] [Reference Citation Analysis]
96 Perera R, Khaliq M, Kuhn RJ. Closing the door on flaviviruses: entry as a target for antiviral drug design. Antiviral Res. 2008;80:11-22. [PMID: 18585795 DOI: 10.1016/j.antiviral.2008.05.004] [Cited by in Crossref: 77] [Cited by in F6Publishing: 76] [Article Influence: 5.9] [Reference Citation Analysis]
97 Agrelli A, de Moura RR, Crovella S, Brandão LAC. ZIKA virus entry mechanisms in human cells. Infection, Genetics and Evolution 2019;69:22-9. [DOI: 10.1016/j.meegid.2019.01.018] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 16.0] [Reference Citation Analysis]
98 Santos PC, Teixeira MM, Souza DG. Opportunities for the development of novel therapies based on host-microbial interactions. Pharmacol Res 2016;112:68-83. [PMID: 27107789 DOI: 10.1016/j.phrs.2016.04.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
99 Alen MM, Dallmeier K, Balzarini J, Neyts J, Schols D. Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Res 2012;96:280-7. [PMID: 23124109 DOI: 10.1016/j.antiviral.2012.10.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
100 Gratton R, Agrelli A, Tricarico PM, Brandão L, Crovella S. Autophagy in Zika Virus Infection: A Possible Therapeutic Target to Counteract Viral Replication. Int J Mol Sci 2019;20:E1048. [PMID: 30823365 DOI: 10.3390/ijms20051048] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
101 Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020;15:2391-419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
102 Bartosch B, Cosset FL. Cell entry of hepatitis C virus. Virology. 2006;348:1-12. [PMID: 16455127 DOI: 10.1016/j.virol.2005.12.027] [Cited by in Crossref: 112] [Cited by in F6Publishing: 98] [Article Influence: 7.5] [Reference Citation Analysis]
103 Buzás EI, György B, Pásztói M, Jelinek I, Falus A, Gabius HJ. Carbohydrate recognition systems in autoimmunity. Autoimmunity 2006;39:691-704. [PMID: 17178566 DOI: 10.1080/08916930601061470] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 3.8] [Reference Citation Analysis]
104 Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 2004;78:2701-10. [PMID: 14990690 DOI: 10.1128/jvi.78.6.2701-2710.2004] [Cited by in Crossref: 233] [Cited by in F6Publishing: 154] [Article Influence: 13.7] [Reference Citation Analysis]
105 Stephens HA. HLA and other gene associations with dengue disease severity. Curr Top Microbiol Immunol 2010;338:99-114. [PMID: 19802581 DOI: 10.1007/978-3-642-02215-9_8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 44] [Article Influence: 2.2] [Reference Citation Analysis]
106 Carbaugh DL, Baric RS, Lazear HM. Envelope Protein Glycosylation Mediates Zika Virus Pathogenesis. J Virol 2019;93:e00113-19. [PMID: 30944176 DOI: 10.1128/JVI.00113-19] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 22.0] [Reference Citation Analysis]
107 Xi S, Liu K, Xiao C, Hameed M, Ou A, Shao D, Li B, Wei J, Qiu Y, Miao D, Ma Z. Establishment and characterization of the pig tonsil epithelial (PT) cell line as a new model for persist infection of Japanese Encephalitis Virus. Vet Microbiol 2020;242:108587. [PMID: 32122591 DOI: 10.1016/j.vetmic.2020.108587] [Reference Citation Analysis]
108 Fang S, Wu Y, Wu N, Zhang J, An J. Recent advances in DENV receptors. ScientificWorldJournal 2013;2013:684690. [PMID: 23737723 DOI: 10.1155/2013/684690] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
109 Xavier-Carvalho C, Cardoso CC, de Souza Kehdy F, Pacheco AG, Moraes MO. Host genetics and dengue fever. Infect Genet Evol 2017;56:99-110. [PMID: 29133029 DOI: 10.1016/j.meegid.2017.11.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
110 Na-Ek P, Thewsoongnoen J, Thanunchai M, Wiboon-Ut S, Sa-Ard-Iam N, Mahanonda R, Thitithanyanont A. The activation of B cells enhances DC-SIGN expression and promotes susceptibility of B cells to HPAI H5N1 infection. Biochem Biophys Res Commun 2017;490:1301-6. [PMID: 28688767 DOI: 10.1016/j.bbrc.2017.07.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
111 Yauch LE, Shresta S. Mouse models of dengue virus infection and disease. Antiviral Res 2008;80:87-93. [PMID: 18619493 DOI: 10.1016/j.antiviral.2008.06.010] [Cited by in Crossref: 113] [Cited by in F6Publishing: 105] [Article Influence: 8.7] [Reference Citation Analysis]
112 Routhu NK, Byrareddy SN. Host-Virus Interaction of ZIKA Virus in Modulating Disease Pathogenesis. J Neuroimmune Pharmacol 2017;12:219-32. [PMID: 28349242 DOI: 10.1007/s11481-017-9736-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
113 da Silva RC, Segat L, Crovella S. Role of DC-SIGN and L-SIGN receptors in HIV-1 vertical transmission. Hum Immunol. 2011;72:305-311. [PMID: 21277928 DOI: 10.1016/j.humimm.2011.01.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
114 Dalrymple N, Mackow ER. Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol 2011;85:9478-85. [PMID: 21734047 DOI: 10.1128/JVI.05008-11] [Cited by in Crossref: 78] [Cited by in F6Publishing: 45] [Article Influence: 7.8] [Reference Citation Analysis]
115 Modis Y. Relating structure to evolution in class II viral membrane fusion proteins. Curr Opin Virol 2014;5:34-41. [PMID: 24525225 DOI: 10.1016/j.coviro.2014.01.009] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
116 Davis CW, Nguyen HY, Hanna SL, Sánchez MD, Doms RW, Pierson TC. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol. 2006;80:1290-1301. [PMID: 16415006 DOI: 10.1128/jvi.80.3.1290-1301.2006] [Cited by in Crossref: 228] [Cited by in F6Publishing: 159] [Article Influence: 15.2] [Reference Citation Analysis]
117 Svajger U, Anderluh M, Jeras M, Obermajer N. C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 2010;22:1397-405. [PMID: 20363321 DOI: 10.1016/j.cellsig.2010.03.018] [Cited by in Crossref: 149] [Cited by in F6Publishing: 140] [Article Influence: 13.5] [Reference Citation Analysis]
118 Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 2006;124:485-93. [PMID: 16469696 DOI: 10.1016/j.cell.2005.11.042] [Cited by in Crossref: 212] [Cited by in F6Publishing: 193] [Article Influence: 14.1] [Reference Citation Analysis]
119 Wang L, Chen RF, Liu JW, Lee IK, Lee CP, Kuo HC, Huang SK, Yang KD. DC-SIGN (CD209) Promoter -336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation. PLoS Negl Trop Dis 2011;5:e934. [PMID: 21245921 DOI: 10.1371/journal.pntd.0000934] [Cited by in Crossref: 70] [Cited by in F6Publishing: 60] [Article Influence: 7.0] [Reference Citation Analysis]
120 Chen RF, Yang KD, Lee IK, Liu JW, Huang CH, Lin CY, Chen YH, Chen CL, Wang L. Augmented miR-150 expression associated with depressed SOCS1 expression involved in dengue haemorrhagic fever. J Infect 2014;69:366-74. [PMID: 24907421 DOI: 10.1016/j.jinf.2014.05.013] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
121 Kuruvilla JG, Troyer RM, Devi S, Akkina R. Dengue virus infection and immune response in humanized RAG2(-/-)gamma(c)(-/-) (RAG-hu) mice. Virology 2007;369:143-52. [PMID: 17707071 DOI: 10.1016/j.virol.2007.06.005] [Cited by in Crossref: 115] [Cited by in F6Publishing: 108] [Article Influence: 8.2] [Reference Citation Analysis]
122 Tsai JJ, Chang JS, Chang K, Chen PC, Liu LT, Ho TC, Tan SS, Chien YW, Lo YC, Perng GC. Transient Monocytosis Subjugates Low Platelet Count in Adult Dengue Patients. Biomed Hub 2017;2:1-16. [PMID: 31988894 DOI: 10.1159/000457785] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
123 Lim DS, Yawata N, Selva KJ, Li N, Tsai CY, Yeong LH, Liong KH, Ooi EE, Chong MK, Ng ML, Leo YS, Yawata M, Wong SB. The combination of type I IFN, TNF-α, and cell surface receptor engagement with dendritic cells enables NK cells to overcome immune evasion by dengue virus. J Immunol 2014;193:5065-75. [PMID: 25320280 DOI: 10.4049/jimmunol.1302240] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
124 Jasso-Miranda C, Herrera-Camacho I, Flores-Mendoza LK, Dominguez F, Vallejo-Ruiz V, Sanchez-Burgos GG, Pando-Robles V, Santos-Lopez G, Reyes-Leyva J. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infect Drug Resist 2019;12:1833-52. [PMID: 31303775 DOI: 10.2147/IDR.S210890] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
125 Phumesin P, Junking M, Panya A, Yongpitakwattana P, Noisakran S, Limjindaporn T, Yenchitsomanus PT. Inhibition of dengue virus replication in monocyte-derived dendritic cells by vivo-morpholino oligomers. Virus Res 2019;260:123-8. [PMID: 30503719 DOI: 10.1016/j.virusres.2018.11.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
126 Neal JW. Flaviviruses are neurotropic, but how do they invade the CNS? J Infect 2014;69:203-15. [PMID: 24880028 DOI: 10.1016/j.jinf.2014.05.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 7.1] [Reference Citation Analysis]
127 Acosta EG, Talarico LB, Damonte EB. Cell entry of dengue virus. Future Virology 2008;3:471-9. [DOI: 10.2217/17460794.3.5.471] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
128 Morizono K, Ku A, Xie Y, Harui A, Kung SK, Roth MD, Lee B, Chen IS. Redirecting lentiviral vectors pseudotyped with Sindbis virus-derived envelope proteins to DC-SIGN by modification of N-linked glycans of envelope proteins. J Virol. 2010;84:6923-6934. [PMID: 20484510 DOI: 10.1128/jvi.00435-10] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
129 Sharma A, Vasanthapuram R, M Venkataswamy M, Desai A. Prohibitin 1/2 mediates Dengue-3 entry into human neuroblastoma (SH-SY5Y) and microglia (CHME-3) cells. J Biomed Sci 2020;27:55. [PMID: 32306962 DOI: 10.1186/s12929-020-00639-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol 2021;12:574411. [PMID: 34211454 DOI: 10.3389/fimmu.2021.574411] [Reference Citation Analysis]
131 Sung PS, Hsieh SL. C-type lectins and extracellular vesicles in virus-induced NETosis. J Biomed Sci 2021;28:46. [PMID: 34116654 DOI: 10.1186/s12929-021-00741-7] [Reference Citation Analysis]
132 Olagnier D, Amatore D, Castiello L, Ferrari M, Palermo E, Diamond MS, Palamara AT, Hiscott J. Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus. J Mol Biol 2016;428:3429-48. [PMID: 27130436 DOI: 10.1016/j.jmb.2016.04.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 5.6] [Reference Citation Analysis]
133 Kingeter LM, Lin X. C-type lectin receptor-induced NF-κB activation in innate immune and inflammatory responses. Cell Mol Immunol 2012;9:105-12. [PMID: 22246129 DOI: 10.1038/cmi.2011.58] [Cited by in Crossref: 104] [Cited by in F6Publishing: 96] [Article Influence: 11.6] [Reference Citation Analysis]
134 Begum F, Das S, Mukherjee D, Ray U. Hijacking the Host Immune Cells by Dengue Virus: Molecular Interplay of Receptors and Dengue Virus Envelope. Microorganisms 2019;7:E323. [PMID: 31489877 DOI: 10.3390/microorganisms7090323] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
135 Attatippaholkun N, Kosaisawe N, U-Pratya Y, Supraditaporn P, Lorthongpanich C, Pattanapanyasat K, Issaragrisil S. Selective Tropism of Dengue Virus for Human Glycoprotein Ib. Sci Rep 2018;8:2688. [PMID: 29426910 DOI: 10.1038/s41598-018-20914-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
136 Fibriansah G, Lok SM. The development of therapeutic antibodies against dengue virus. Antiviral Res 2016;128:7-19. [PMID: 26794397 DOI: 10.1016/j.antiviral.2016.01.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 7.4] [Reference Citation Analysis]
137 [DOI: 10.1101/059592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
138 Sung PS, Hsieh SL. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front Immunol 2019;10:2867. [PMID: 31867016 DOI: 10.3389/fimmu.2019.02867] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
139 Vasilakis N, Shell EJ, Fokam EB, Mason PW, Hanley KA, Estes DM, Weaver SC. Potential of ancestral sylvatic dengue-2 viruses to re-emerge. Virology 2007;358:402-12. [PMID: 17014880 DOI: 10.1016/j.virol.2006.08.049] [Cited by in Crossref: 64] [Cited by in F6Publishing: 61] [Article Influence: 4.3] [Reference Citation Analysis]
140 Sakuntabhai A, Turbpaiboon C, Casadémont I, Chuansumrit A, Lowhnoo T, Kajaste-Rudnitski A, Kalayanarooj SM, Tangnararatchakit K, Tangthawornchaikul N, Vasanawathana S. A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet. 2005;37:507-513. [PMID: 15838506 DOI: 10.1038/ng1550] [Cited by in Crossref: 218] [Cited by in F6Publishing: 201] [Article Influence: 13.6] [Reference Citation Analysis]
141 Kashima S, Rodrigues ES, Azevedo R, da Cruz Castelli E, Mendes-Junior CT, Yoshioka FKN, da Silva IT, Takayanagui OM, Covas DT. DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection. J Gen Virol 2009;90:927-34. [PMID: 19264667 DOI: 10.1099/vir.0.008367-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
142 Borrok MJ, Kiessling LL. Non-carbohydrate inhibitors of the lectin DC-SIGN. J Am Chem Soc 2007;129:12780-5. [PMID: 17902657 DOI: 10.1021/ja072944v] [Cited by in Crossref: 91] [Cited by in F6Publishing: 76] [Article Influence: 6.5] [Reference Citation Analysis]
143 Tsai TT, Chuang YJ, Lin YS, Wan SW, Chen CL, Lin CF. An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. J Biomed Sci 2013;20:40. [PMID: 23800014 DOI: 10.1186/1423-0127-20-40] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
144 Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM, Katz DR. Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 2005;86:187-204. [PMID: 16045541 DOI: 10.1111/j.0959-9673.2005.00440.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 2.5] [Reference Citation Analysis]
145 Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019;10:1748. [PMID: 31447831 DOI: 10.3389/fimmu.2019.01748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
146 Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C, Olson WC, Gardner JP, Dragic T. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci USA. 2004;101:14067-14072. [PMID: 15371595 DOI: 10.1073/pnas.0405695101] [Cited by in Crossref: 152] [Cited by in F6Publishing: 135] [Article Influence: 8.9] [Reference Citation Analysis]
147 Redelinghuys P, Brown GD. Inhibitory C-type lectin receptors in myeloid cells. Immunol Lett 2011;136:1-12. [PMID: 20934454 DOI: 10.1016/j.imlet.2010.10.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
148 Barba-Spaeth G, Longman RS, Albert ML, Rice CM. Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J Exp Med 2005;202:1179-84. [PMID: 16260489 DOI: 10.1084/jem.20051352] [Cited by in Crossref: 93] [Cited by in F6Publishing: 90] [Article Influence: 5.8] [Reference Citation Analysis]
149 Snyder GA, Colonna M, Sun PD. The structure of DC-SIGNR with a portion of its repeat domain lends insights to modeling of the receptor tetramer. J Mol Biol 2005;347:979-89. [PMID: 15784257 DOI: 10.1016/j.jmb.2005.01.063] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 1.8] [Reference Citation Analysis]
150 Seeds RE, Gordon S, Miller JL. Receptors and ligands involved in viral induction of type I interferon production by plasmacytoid dendritic cells. Immunobiology 2006;211:525-35. [PMID: 16920491 DOI: 10.1016/j.imbio.2006.05.024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
151 Balzarini J. Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy. Nat Rev Microbiol 2007;5:583-97. [PMID: 17632570 DOI: 10.1038/nrmicro1707] [Cited by in Crossref: 215] [Cited by in F6Publishing: 191] [Article Influence: 15.4] [Reference Citation Analysis]
152 Zhao D, Liu Q, Han K, Wang H, Yang J, Bi K, Liu Y, Liu N, Tian Y, Li Y. Identification of Glucose-Regulated Protein 78 (GRP78) as a Receptor in BHK-21 Cells for Duck Tembusu Virus Infection. Front Microbiol 2018;9:694. [PMID: 29692766 DOI: 10.3389/fmicb.2018.00694] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
153 Tio PH, Jong WW, Cardosa MJ. Two dimensional VOPBA reveals laminin receptor (LAMR1) interaction with dengue virus serotypes 1, 2 and 3. Virol J 2005;2:25. [PMID: 15790424 DOI: 10.1186/1743-422X-2-25] [Cited by in Crossref: 45] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
154 Zapata JC, Cox D, Salvato MS. The role of platelets in the pathogenesis of viral hemorrhagic fevers. PLoS Negl Trop Dis 2014;8:e2858. [PMID: 24921924 DOI: 10.1371/journal.pntd.0002858] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 8.3] [Reference Citation Analysis]
155 Chavez-Salinas S, Ceballos-Olvera I, Reyes-Del Valle J, Medina F, Del Angel RM. Heat shock effect upon dengue virus replication into U937 cells. Virus Res 2008;138:111-8. [PMID: 18809444 DOI: 10.1016/j.virusres.2008.08.012] [Cited by in Crossref: 34] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
156 Lu Q, Liu J, Zhao S, Gomez Castro MF, Laurent-Rolle M, Dong J, Ran X, Damani-Yokota P, Tang H, Karakousi T, Son J, Kaczmarek ME, Zhang Z, Yeung ST, McCune BT, Chen RE, Tang F, Ren X, Chen X, Hsu JCC, Teplova M, Huang B, Deng H, Long Z, Mudianto T, Jin S, Lin P, Du J, Zang R, Su TT, Herrera A, Zhou M, Yan R, Cui J, Zhu J, Zhou Q, Wang T, Ma J, Koralov SB, Zhang Z, Aifantis I, Segal LN, Diamond MS, Khanna KM, Stapleford KA, Cresswell P, Liu Y, Ding S, Xie Q, Wang J. SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity 2021;54:1304-1319.e9. [PMID: 34048708 DOI: 10.1016/j.immuni.2021.05.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
157 Nour AM, Modis Y. Endosomal vesicles as vehicles for viral genomes. Trends Cell Biol 2014;24:449-54. [PMID: 24746011 DOI: 10.1016/j.tcb.2014.03.006] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
158 Kobinger GP, Limberis MP, Somanathan S, Schumer G, Bell P, Wilson JM. Human immunodeficiency viral vector pseudotyped with the spike envelope of severe acute respiratory syndrome coronavirus transduces human airway epithelial cells and dendritic cells. Hum Gene Ther 2007;18:413-22. [PMID: 17518614 DOI: 10.1089/hum.2006.194] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
159 Aoki C, Hidari KI, Itonori S, Yamada A, Takahashi N, Kasama T, Hasebe F, Islam MA, Hatano K, Matsuoka K, Taki T, Guo C, Takahashi T, Sakano Y, Suzuki T, Miyamoto D, Sugita M, Terunuma D, Morita K, Suzuki Y. Identification and Characterization of Carbohydrate Molecules in Mammalian Cells Recognized by Dengue Virus Type 2. The Journal of Biochemistry 2006;139:607-14. [DOI: 10.1093/jb/mvj067] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 3.5] [Reference Citation Analysis]
160 Hidari KI, Suzuki T. Antiviral agents targeting glycans on dengue virus E-glycoprotein. Expert Review of Anti-infective Therapy 2014;9:983-5. [DOI: 10.1586/eri.11.115] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
161 Hsieh TH, Tsai TT, Chen CL, Shen TJ, Jhan MK, Tseng PC, Lin CF. Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. Front Cell Infect Microbiol 2020;10:375. [PMID: 32850477 DOI: 10.3389/fcimb.2020.00375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
162 Hillaire ML, Nieuwkoop NJ, Boon AC, de Mutsert G, Vogelzang-van Trierum SE, Fouchier RA, Osterhaus AD, Rimmelzwaan GF. Binding of DC-SIGN to the hemagglutinin of influenza A viruses supports virus replication in DC-SIGN expressing cells. PLoS One 2013;8:e56164. [PMID: 23424649 DOI: 10.1371/journal.pone.0056164] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
163 Cheng MS, Lau SH, Chan KP, Toh CS, Chow VT. Impedimetric cell-based biosensor for real-time monitoring of cytopathic effects induced by dengue viruses. Biosens Bioelectron 2015;70:74-80. [PMID: 25794961 DOI: 10.1016/j.bios.2015.03.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
164 Thomas SJ, Hombach J, Barrett A. Scientific consultation on cell mediated immunity (CMI) in dengue and dengue vaccine development. Vaccine 2009;27:355-68. [PMID: 19022321 DOI: 10.1016/j.vaccine.2008.10.086] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 1.5] [Reference Citation Analysis]
165 Sampath A, Padmanabhan R. Molecular targets for flavivirus drug discovery. Antiviral Res 2009;81:6-15. [PMID: 18796313 DOI: 10.1016/j.antiviral.2008.08.004] [Cited by in Crossref: 159] [Cited by in F6Publishing: 144] [Article Influence: 12.2] [Reference Citation Analysis]
166 Pierson TC, Kielian M. Flaviviruses: braking the entering. Curr Opin Virol 2013;3:3-12. [PMID: 23352692 DOI: 10.1016/j.coviro.2012.12.001] [Cited by in Crossref: 93] [Cited by in F6Publishing: 77] [Article Influence: 11.6] [Reference Citation Analysis]
167 Qu P, Zhang W, Li D, Zhang C, Liu Q, Zhang X, Wang X, Dai W, Xu Y, Leng Q, Zhong J, Jin X, Huang Z. Insect cell-produced recombinant protein subunit vaccines protect against Zika virus infection. Antiviral Res 2018;154:97-103. [PMID: 29665376 DOI: 10.1016/j.antiviral.2018.04.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
168 Carbaugh DL, Lazear HM. Flavivirus Envelope Protein Glycosylation: Impacts on Viral Infection and Pathogenesis. J Virol 2020;94:e00104-20. [PMID: 32161171 DOI: 10.1128/JVI.00104-20] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 15.0] [Reference Citation Analysis]
169 Modis Y, Ogata S, Clements D, Harrison SC. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 2005;79:1223-31. [PMID: 15613349 DOI: 10.1128/JVI.79.2.1223-1231.2005] [Cited by in Crossref: 296] [Cited by in F6Publishing: 182] [Article Influence: 18.5] [Reference Citation Analysis]
170 Pang X, Xiao X, Liu Y, Zhang R, Liu J, Liu Q, Wang P, Cheng G. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat Microbiol 2016;1:16023. [PMID: 27572642 DOI: 10.1038/nmicrobiol.2016.23] [Cited by in Crossref: 62] [Cited by in F6Publishing: 48] [Article Influence: 12.4] [Reference Citation Analysis]
171 Abd-jamil J, Cheah C, Abubakar S. Dengue virus type 2 envelope protein displayed as recombinant phage attachment protein reveals potential cell binding sites. Protein Engineering Design and Selection 2008;21:605-11. [DOI: 10.1093/protein/gzn041] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
172 Yun SI, Lee YM. Zika virus: An emerging flavivirus. J Microbiol 2017;55:204-19. [PMID: 28243937 DOI: 10.1007/s12275-017-7063-6] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 14.3] [Reference Citation Analysis]
173 Liu P, Ridilla M, Patel P, Betts L, Gallichotte E, Shahidi L, Thompson NL, Jacobson K. Beyond attachment: Roles of DC-SIGN in dengue virus infection. Traffic 2017;18:218-31. [PMID: 28128492 DOI: 10.1111/tra.12469] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
174 Neves-Souza PC, Azeredo EL, Zagne SM, Valls-de-Souza R, Reis SR, Cerqueira DI, Nogueira RM, Kubelka CF. Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection. BMC Infect Dis 2005;5:64. [PMID: 16109165 DOI: 10.1186/1471-2334-5-64] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 3.7] [Reference Citation Analysis]
175 Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021;8:619690. [PMID: 33718448 DOI: 10.3389/fcvm.2021.619690] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
176 Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020;5:796-812. [PMID: 32367055 DOI: 10.1038/s41564-020-0714-0] [Cited by in Crossref: 97] [Cited by in F6Publishing: 72] [Article Influence: 97.0] [Reference Citation Analysis]
177 Reis SRI, Valente LM, Sampaio AL, Siani AC, Gandini M, Azeredo EL, D'avila LA, Mazzei JL, Henriques MDGM, Kubelka CF. Immunomodulating and antiviral activities of Uncaria tomentosa on human monocytes infected with Dengue Virus-2. International Immunopharmacology 2008;8:468-76. [DOI: 10.1016/j.intimp.2007.11.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
178 Koppel EA, van Gisbergen KP, Geijtenbeek TB, van Kooyk Y. Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell Microbiol 2005;7:157-65. [PMID: 15659060 DOI: 10.1111/j.1462-5822.2004.00480.x] [Cited by in Crossref: 88] [Cited by in F6Publishing: 85] [Article Influence: 5.5] [Reference Citation Analysis]
179 Duangkhae P, Erdos G, Ryman KD, Watkins SC, Falo LD Jr, Marques ETA Jr, Barratt-Boyes SM. Interplay between Keratinocytes and Myeloid Cells Drives Dengue Virus Spread in Human Skin. J Invest Dermatol 2018;138:618-26. [PMID: 29106931 DOI: 10.1016/j.jid.2017.10.018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
180 Bravo MF, Lema MA, Marianski M, Braunschweig AB. Flexible Synthetic Carbohydrate Receptors as Inhibitors of Viral Attachment. Biochemistry 2021;60:999-1018. [PMID: 33094998 DOI: 10.1021/acs.biochem.0c00732] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
181 Yu HR, Tsai JH, Richard Lin CH, Wang JY, Wen YH, Wu SS, Hou Y, Lee IK, Tu HP, Lee YC. Is asthma a protective factor for dengue fever? In vitro experiment and nationwide population-based cohort analysis. Allergol Int 2019;68:486-93. [PMID: 31248809 DOI: 10.1016/j.alit.2019.06.001] [Reference Citation Analysis]
182 Zhang F, Ren S, Zuo Y. DC-SIGN, DC-SIGNR and LSECtin: C-type lectins for infection. Int Rev Immunol 2014;33:54-66. [PMID: 24156700 DOI: 10.3109/08830185.2013.834897] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
183 Sierra-filardi E, Estecha A, Samaniego R, Fernández-ruiz E, Colmenares M, Sánchez-mateos P, Steinman RM, Granelli-piperno A, Corbí AL. Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor. Molecular Immunology 2010;47:840-8. [DOI: 10.1016/j.molimm.2009.09.036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
184 Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature 2004;427:313-9. [PMID: 14737159 DOI: 10.1038/nature02165] [Cited by in Crossref: 781] [Cited by in F6Publishing: 709] [Article Influence: 45.9] [Reference Citation Analysis]
185 Koppel EA, Ludwig IS, Appelmelk BJ, van Kooyk Y, Geijtenbeek TB. Carbohydrate specificities of the murine DC-SIGN homologue mSIGNR1. Immunobiology 2005;210:195-201. [PMID: 16164026 DOI: 10.1016/j.imbio.2005.05.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
186 Wang JL, Zhang JL, Chen W, Xu XF, Gao N, Fan DY, An J. Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl Trop Dis 2010;4:e809. [PMID: 20824170 DOI: 10.1371/journal.pntd.0000809] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.5] [Reference Citation Analysis]
187 Yun SI, Song BH, Kim JK, Yun GN, Lee EY, Li L, Kuhn RJ, Rossmann MG, Morrey JD, Lee YM. A molecularly cloned, live-attenuated japanese encephalitis vaccine SA14-14-2 virus: a conserved single amino acid in the ij Hairpin of the Viral E glycoprotein determines neurovirulence in mice. PLoS Pathog 2014;10:e1004290. [PMID: 25077483 DOI: 10.1371/journal.ppat.1004290] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
188 Ansarah-Sobrinho C, Nelson S, Jost CA, Whitehead SS, Pierson TC. Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology 2008;381:67-74. [PMID: 18801552 DOI: 10.1016/j.virol.2008.08.021] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 6.4] [Reference Citation Analysis]
189 Bousarghin L, Hubert P, Franzen E, Jacobs N, Boniver J, Delvenne P. Human papillomavirus 16 virus-like particles use heparan sulfates to bind dendritic cells and colocalize with langerin in Langerhans cells. Journal of General Virology 2005;86:1297-305. [DOI: 10.1099/vir.0.80559-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
190 Turville S, Wilkinson J, Cameron P, Dable J, Cunningham AL. The role of dendritic cell C-type lectin receptors in HIV pathogenesis. J Leukoc Biol 2003;74:710-8. [PMID: 12960229 DOI: 10.1189/jlb.0503208] [Cited by in Crossref: 94] [Cited by in F6Publishing: 89] [Article Influence: 5.2] [Reference Citation Analysis]
191 Green AM, Beatty PR, Hadjilaou A, Harris E. Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 2014;426:1148-60. [PMID: 24316047 DOI: 10.1016/j.jmb.2013.11.023] [Cited by in Crossref: 132] [Cited by in F6Publishing: 116] [Article Influence: 16.5] [Reference Citation Analysis]
192 Suda Y, Fukushi S, Tani H, Murakami S, Saijo M, Horimoto T, Shimojima M. Analysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping system. Arch Virol 2016;161:1447-54. [PMID: 26935918 DOI: 10.1007/s00705-016-2803-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
193 Howe MK, Speer BL, Hughes PF, Loiselle DR, Vasudevan S, Haystead TA. An inducible heat shock protein 70 small molecule inhibitor demonstrates anti-dengue virus activity, validating Hsp70 as a host antiviral target. Antiviral Res 2016;130:81-92. [PMID: 27058774 DOI: 10.1016/j.antiviral.2016.03.017] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 6.2] [Reference Citation Analysis]
194 Gupta N, Hegde P, Lecerf M, Nain M, Kaur M, Kalia M, Vrati S, Bayry J, Lacroix-Desmazes S, Kaveri SV. Japanese encephalitis virus expands regulatory T cells by increasing the expression of PD-L1 on dendritic cells. Eur J Immunol 2014;44:1363-74. [PMID: 24643627 DOI: 10.1002/eji.201343701] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
195 Fialho LG, da Silva VP, Reis SR, Azeredo EL, Kaplan MA, Figueiredo MR, Kubelka CF. Antiviral and Immunomodulatory Effects of Norantea brasiliensis Choisy on Dengue Virus-2. Intervirology 2016;59:217-27. [PMID: 28329744 DOI: 10.1159/000455855] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
196 Boonnak K, Slike BM, Burgess TH, Mason RM, Wu SJ, Sun P, Porter K, Rudiman IF, Yuwono D, Puthavathana P, Marovich MA. Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol 2008;82:3939-51. [PMID: 18272578 DOI: 10.1128/JVI.02484-07] [Cited by in Crossref: 133] [Cited by in F6Publishing: 80] [Article Influence: 10.2] [Reference Citation Analysis]
197 Martínez-Gutierrez M, Castellanos JE, Gallego-Gómez JC. Statins reduce dengue virus production via decreased virion assembly. Intervirology 2011;54:202-16. [PMID: 21293097 DOI: 10.1159/000321892] [Cited by in Crossref: 88] [Cited by in F6Publishing: 76] [Article Influence: 8.8] [Reference Citation Analysis]
198 Tang J, Lin G, Langdon WY, Tao L, Zhang J. Regulation of C-Type Lectin Receptor-Mediated Antifungal Immunity. Front Immunol 2018;9:123. [PMID: 29449845 DOI: 10.3389/fimmu.2018.00123] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 11.7] [Reference Citation Analysis]
199 Kim SY, Zhao J, Liu X, Fraser K, Lin L, Zhang X, Zhang F, Dordick JS, Linhardt RJ. Interaction of Zika Virus Envelope Protein with Glycosaminoglycans. Biochemistry 2017;56:1151-62. [PMID: 28151637 DOI: 10.1021/acs.biochem.6b01056] [Cited by in Crossref: 72] [Cited by in F6Publishing: 53] [Article Influence: 18.0] [Reference Citation Analysis]
200 Thongtan T, Wikan N, Wintachai P, Rattanarungsan C, Srisomsap C, Cheepsunthorn P, Smith DR. Characterization of putative Japanese encephalitis virus receptor molecules on microglial cells. J Med Virol 2012;84:615-23. [PMID: 22337301 DOI: 10.1002/jmv.23248] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 6.0] [Reference Citation Analysis]
201 Cervantes-salazar M, Angel-ambrocio AH, Soto-acosta R, Bautista-carbajal P, Hurtado-monzon AM, Alcaraz-estrada SL, Ludert JE, Del Angel RM. Dengue virus NS1 protein interacts with the ribosomal protein RPL18: This interaction is required for viral translation and replication in Huh-7 cells. Virology 2015;484:113-26. [DOI: 10.1016/j.virol.2015.05.017] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 7.5] [Reference Citation Analysis]
202 Brument S, Cheneau C, Brissonnet Y, Deniaud D, Halary F, Gouin SG. Polymeric mannosides prevent DC-SIGN-mediated cell-infection by cytomegalovirus. Org Biomol Chem 2017;15:7660-71. [DOI: 10.1039/c7ob01569k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
203 Zhao ZY, Yin ZX, Xu XP, Weng SP, Rao XY, Dai ZX, Luo YW, Yang G, Li ZS, Guan HJ, Li SD, Chan SM, Yu XQ, He JG. A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-white spot syndrome virus activity. J Virol 2009;83:347-56. [PMID: 18945787 DOI: 10.1128/JVI.00707-08] [Cited by in Crossref: 153] [Cited by in F6Publishing: 20] [Article Influence: 11.8] [Reference Citation Analysis]
204 Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2014;10:263-79. [PMID: 24161909 DOI: 10.4161/hv.26902] [Cited by in Crossref: 113] [Cited by in F6Publishing: 89] [Article Influence: 14.1] [Reference Citation Analysis]
205 Züst R, Dong H, Li XF, Chang DC, Zhang B, Balakrishnan T, Toh YX, Jiang T, Li SH, Deng YQ, Ellis BR, Ellis EM, Poidinger M, Zolezzi F, Qin CF, Shi PY, Fink K. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog 2013;9:e1003521. [PMID: 23935499 DOI: 10.1371/journal.ppat.1003521] [Cited by in Crossref: 82] [Cited by in F6Publishing: 76] [Article Influence: 10.3] [Reference Citation Analysis]
206 Zhao LJ, Wang W, Ren H, Qi ZT. ERK signaling is triggered by hepatitis C virus E2 protein through DC-SIGN. Cell Stress Chaperones 2013;18:495-501. [PMID: 23378214 DOI: 10.1007/s12192-013-0405-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
207 Salazar MI, del Angel RM, Lanz-mendoza H, Ludert JE, Pando-robles V. The role of cell proteins in dengue virus infection. Journal of Proteomics 2014;111:6-15. [DOI: 10.1016/j.jprot.2014.06.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
208 Serrano-Gómez D, Sierra-Filardi E, Martínez-Nuñez RT, Caparrós E, Delgado R, Muñoz-Fernández MA, Abad MA, Jimenez-Barbero J, Leal M, Corbí AL. Structural requirements for multimerization of the pathogen receptor dendritic cell-specific ICAM3-grabbing non-integrin (CD209) on the cell surface. J Biol Chem 2008;283:3889-903. [PMID: 18073208 DOI: 10.1074/jbc.M706004200] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
209 Wu WL, Ho LJ, Chang DM, Chen CH, Lai JH. Triggering of DC migration by dengue virus stimulation of COX-2-dependent signaling cascades in vitro highlights the significance of these cascades beyond inflammation. Eur J Immunol 2009;39:3413-22. [PMID: 19862774 DOI: 10.1002/eji.200939306] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
210 Shih YP, Chen CY, Liu SJ, Chen KH, Lee YM, Chao YC, Chen YM. Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus. J Virol 2006;80:10315-24. [PMID: 17041212 DOI: 10.1128/JVI.01138-06] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
211 Srikiatkhachorn A, Kelley JF. Endothelial cells in dengue hemorrhagic fever. Antiviral Res 2014;109:160-70. [PMID: 25025934 DOI: 10.1016/j.antiviral.2014.07.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
212 Dettogni RS, Sá RT, Tovar TT, Louro ID. Polymorphic genetic variation in immune system genes: a study of two populations of Espirito Santo, Brazil. Mol Biol Rep 2013;40:4843-9. [PMID: 23666056 DOI: 10.1007/s11033-013-2582-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
213 Dejnirattisai W, Duangchinda T, Lin CL, Vasanawathana S, Jones M, Jacobs M, Malasit P, Xu XN, Screaton G, Mongkolsapaya J. A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J Immunol 2008;181:5865-74. [PMID: 18941175 DOI: 10.4049/jimmunol.181.9.5865] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 5.2] [Reference Citation Analysis]
214 Zhao LJ, Wang W, Ren H, Qi ZT. Interaction of L-SIGN with hepatitis C virus envelope protein E2 up-regulates Raf-MEK-ERK pathway. Cell Biochem Biophys 2013;66:589-97. [PMID: 23292357 DOI: 10.1007/s12013-012-9505-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
215 Jarvis CM, Zwick DB, Grim JC, Alam MM, Prost LR, Gardiner JC, Park S, Zimdars LL, Sherer NM, Kiessling LL. Antigen structure affects cellular routing through DC-SIGN. Proc Natl Acad Sci U S A 2019;116:14862-7. [PMID: 31270240 DOI: 10.1073/pnas.1820165116] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
216 Frischknecht F. The skin as interface in the transmission of arthropod-borne pathogens. Cell Microbiol 2007;9:1630-40. [DOI: 10.1111/j.1462-5822.2007.00955.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 2.6] [Reference Citation Analysis]
217 Kou Z, Quinn M, Chen H, Rodrigo WW, Rose RC, Schlesinger JJ, Jin X. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J Med Virol 2008;80:134-46. [PMID: 18041019 DOI: 10.1002/jmv.21051] [Cited by in Crossref: 129] [Cited by in F6Publishing: 122] [Article Influence: 9.9] [Reference Citation Analysis]
218 Gramberg T, Hofmann H, Möller P, Lalor PF, Marzi A, Geier M, Krumbiegel M, Winkler T, Kirchhoff F, Adams DH, Becker S, Münch J, Pöhlmann S. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 2005;340:224-36. [PMID: 16051304 DOI: 10.1016/j.virol.2005.06.026] [Cited by in Crossref: 143] [Cited by in F6Publishing: 130] [Article Influence: 8.9] [Reference Citation Analysis]
219 Roby JA, Setoh YX, Hall RA, Khromykh AA. Post-translational regulation and modifications of flavivirus structural proteins. J Gen Virol 2015;96:1551-69. [PMID: 25711963 DOI: 10.1099/vir.0.000097] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 9.5] [Reference Citation Analysis]
220 van Kooyk Y, Geijtenbeek TB. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol. 2003;3:697-709. [PMID: 12949494 DOI: 10.1038/nri1182] [Cited by in Crossref: 668] [Cited by in F6Publishing: 601] [Article Influence: 37.1] [Reference Citation Analysis]
221 Yun SI, Lee YM. Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens 2018;7:E68. [PMID: 30104482 DOI: 10.3390/pathogens7030068] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
222 Kobayashi K, Yuliwulandari R, Yanai H, Lien LT, Hang NTL, Hijikata M, Keicho N, Tokunaga K. Association of CD209 polymorphisms with tuberculosis in an Indonesian population. Human Immunology 2011;72:741-5. [DOI: 10.1016/j.humimm.2011.04.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
223 Klase ZA, Khakhina S, Schneider Ade B, Callahan MV, Glasspool-Malone J, Malone R. Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. PLoS Negl Trop Dis 2016;10:e0004877. [PMID: 27560129 DOI: 10.1371/journal.pntd.0004877] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 11.6] [Reference Citation Analysis]
224 Ang F, Wong AP, Ng MM, Chu JJ. Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus. Virol J 2010;7:24. [PMID: 20122152 DOI: 10.1186/1743-422X-7-24] [Cited by in Crossref: 53] [Cited by in F6Publishing: 33] [Article Influence: 4.8] [Reference Citation Analysis]
225 Rocha RF, Del Sarto JL, Marques RE, Costa VV, Teixeira MM. Host target-based approaches against arboviral diseases. Biol Chem 2018;399:203-17. [PMID: 29145171 DOI: 10.1515/hsz-2017-0236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
226 Chase AJ, Medina FA, Muñoz-Jordán JL. Impairment of CD4+ T cell polarization by dengue virus-infected dendritic cells. J Infect Dis 2011;203:1763-74. [PMID: 21606535 DOI: 10.1093/infdis/jir197] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
227 Liu K, Qian Y, Jung YS, Zhou B, Cao R, Shen T, Shao D, Wei J, Ma Z, Chen P, Zhu H, Qiu Y. mosGCTL-7, a C-Type Lectin Protein, Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol 2017;91:e01348-16. [PMID: 28250133 DOI: 10.1128/JVI.01348-16] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
228 Farias KJ, Machado PR, de Almeida Junior RF, de Aquino AA, da Fonseca BA. Chloroquine interferes with dengue-2 virus replication in U937 cells. Microbiol Immunol 2014;58:318-26. [PMID: 24773578 DOI: 10.1111/1348-0421.12154] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 8.5] [Reference Citation Analysis]
229 Moris A, Nobile C, Buseyne F, Porrot F, Abastado JP, Schwartz O. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood. 2004;103:2648-2654. [PMID: 14576049 DOI: 10.1182/blood-2003-07-2532] [Cited by in Crossref: 149] [Cited by in F6Publishing: 137] [Article Influence: 8.3] [Reference Citation Analysis]
230 Mancuso ME, Santagostino E. Platelets: much more than bricks in a breached wall. Br J Haematol 2017;178:209-19. [PMID: 28419428 DOI: 10.1111/bjh.14653] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 11.3] [Reference Citation Analysis]
231 Che P, Tang H, Li Q. The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology 2013;446:303-13. [PMID: 24074594 DOI: 10.1016/j.virol.2013.08.009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
232 Wu M, Chen S, Yang A, Lin W, Lin Y, Chen N, Tsai I, Li L, Hsieh S. CLEC5A is critical for dengue virus–induced inflammasome activation in human macrophages. Blood 2013;121:95-106. [DOI: 10.1182/blood-2012-05-430090] [Cited by in Crossref: 127] [Cited by in F6Publishing: 116] [Article Influence: 15.9] [Reference Citation Analysis]
233 Mukhopadhyay S, Plüddemann A, Gordon S. Macrophage pattern recognition receptors in immunity, homeostasis and self tolerance. Adv Exp Med Biol 2009;653:1-14. [PMID: 19799108 DOI: 10.1007/978-1-4419-0901-5_1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
234 Clyde K, Kyle JL, Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol. 2006;80:11418-11431. [PMID: 16928749 DOI: 10.1128/jvi.01257-06] [Cited by in Crossref: 242] [Cited by in F6Publishing: 123] [Article Influence: 16.1] [Reference Citation Analysis]
235 Halldorsson S, Behrens AJ, Harlos K, Huiskonen JT, Elliott RM, Crispin M, Brennan B, Bowden TA. Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc Natl Acad Sci U S A 2016;113:7154-9. [PMID: 27325770 DOI: 10.1073/pnas.1603827113] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 10.4] [Reference Citation Analysis]
236 Krishnan MN, Garcia-Blanco MA. Targeting host factors to treat West Nile and dengue viral infections. Viruses 2014;6:683-708. [PMID: 24517970 DOI: 10.3390/v6020683] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 7.4] [Reference Citation Analysis]
237 Sprokholt J, Helgers LC, Geijtenbeek TB. Innate immune receptors drive dengue virus immune activation and disease. Future Virol 2017;13:287-305. [PMID: 29937918 DOI: 10.2217/fvl-2017-0146] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
238 Spiegel M, Plegge T, Pöhlmann S. The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses 2016;8:E202. [PMID: 27455305 DOI: 10.3390/v8070202] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
239 Chan YK, Huang IC, Farzan M. IFITM proteins restrict antibody-dependent enhancement of dengue virus infection. PLoS One 2012;7:e34508. [PMID: 22479637 DOI: 10.1371/journal.pone.0034508] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
240 Cardoso N, Franco-Mahecha OL, Czepluch W, Quintana ME, Malacari DA, Trotta MV, Mansilla FC, Capozzo AV. Bovine Viral Diarrhea Virus Infects Monocyte-Derived Bovine Dendritic Cells by an E2-Glycoprotein-Mediated Mechanism and Transiently Impairs Antigen Presentation. Viral Immunol 2016;29:417-29. [PMID: 27529119 DOI: 10.1089/vim.2016.0047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
241 Alen MM, Schols D. Dengue virus entry as target for antiviral therapy. J Trop Med 2012;2012:628475. [PMID: 22529868 DOI: 10.1155/2012/628475] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
242 Kuadkitkan A, Wikan N, Fongsaran C, Smith DR. Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells. Virology 2010;406:149-61. [PMID: 20674955 DOI: 10.1016/j.virol.2010.07.015] [Cited by in Crossref: 89] [Cited by in F6Publishing: 84] [Article Influence: 8.1] [Reference Citation Analysis]
243 Dyason JC, von Itzstein M. Viral surface glycoproteins in carbohydrate recognition. Microbial Glycobiology. Elsevier; 2010. pp. 269-83. [DOI: 10.1016/b978-0-12-374546-0.00015-8] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
244 St John AL, Rathore AP, Raghavan B, Ng ML, Abraham SN. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. Elife 2013;2:e00481. [PMID: 23638300 DOI: 10.7554/eLife.00481] [Cited by in Crossref: 100] [Cited by in F6Publishing: 64] [Article Influence: 12.5] [Reference Citation Analysis]
245 Añez G, Men R, Eckels KH, Lai CJ. Passage of dengue virus type 4 vaccine candidates in fetal rhesus lung cells selects heparin-sensitive variants that result in loss of infectivity and immunogenicity in rhesus macaques. J Virol 2009;83:10384-94. [PMID: 19656873 DOI: 10.1128/JVI.01083-09] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
246 Best SM, Mitzel DN, Bloom ME. Action and reaction: the arthropod-borne flaviviruses and host interferon responses. Future Virology 2006;1:447-59. [DOI: 10.2217/17460794.1.4.447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
247 Schneider K, Wronka-Edwards L, Leggett-Embrey M, Walker E, Sun P, Ondov B, Wyman TH, Rosovitz MJ, Bohn SS, Burans J, Kochel T. Psoralen Inactivation of Viruses: A Process for the Safe Manipulation of Viral Antigen and Nucleic Acid. Viruses 2015;7:5875-88. [PMID: 26569291 DOI: 10.3390/v7112912] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
248 Arboleda Alzate JF, Rodenhuis-Zybert IA, Hernández JC, Smit JM, Urcuqui-Inchima S. Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression. PLoS Negl Trop Dis 2017;11:e0005904. [PMID: 29020083 DOI: 10.1371/journal.pntd.0005904] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
249 Campos RK, Garcia-Blanco MA, Bradrick SS. Roles of Pro-viral Host Factors in Mosquito-Borne Flavivirus Infections. Curr Top Microbiol Immunol 2018;419:43-67. [PMID: 28688087 DOI: 10.1007/82_2017_26] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
250 Li Y, Ye J, Yang X, Xu M, Chen L, Mei L, Zhu J, Liu X, Chen H, Cao S. Infection of mouse bone marrow-derived dendritic cells by live attenuated Japanese encephalitis virus induces cells maturation and triggers T cells activation. Vaccine 2011;29:855-62. [DOI: 10.1016/j.vaccine.2010.09.108] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
251 Kraivong R, Punyadee N, Liszewski MK, Atkinson JP, Avirutnan P. Dengue and the Lectin Pathway of the Complement System. Viruses 2021;13:1219. [PMID: 34202570 DOI: 10.3390/v13071219] [Reference Citation Analysis]
252 Hottz ED, Oliveira MF, Nunes PC, Nogueira RM, Valls-de-Souza R, Da Poian AT, Weyrich AS, Zimmerman GA, Bozza PT, Bozza FA. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 2013;11:951-62. [PMID: 23433144 DOI: 10.1111/jth.12178] [Cited by in Crossref: 112] [Cited by in F6Publishing: 98] [Article Influence: 16.0] [Reference Citation Analysis]
253 Zhao P, Xu LD, Zhang Y, Cao H, Chen R, Wang B, Huang YW. Expression of the human or porcine C-type lectins DC-SIGN/L-SIGN confers susceptibility to porcine epidemic diarrhea virus entry and infection in otherwise refractory cell lines. Microb Pathog 2021;157:104956. [PMID: 34022357 DOI: 10.1016/j.micpath.2021.104956] [Reference Citation Analysis]
254 Zhou Y, Simmons G. Development of novel entry inhibitors targeting emerging viruses. Expert Rev Anti Infect Ther 2012;10:1129-38. [PMID: 23199399 DOI: 10.1586/eri.12.104] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
255 Boily-Larouche G, Zijenah LS, Mbizvo M, Ward BJ, Roger M. DC-SIGN and DC-SIGNR genetic diversity among different ethnic populations: potential implications for pathogen recognition and disease susceptibility. Hum Immunol 2007;68:523-30. [PMID: 17509452 DOI: 10.1016/j.humimm.2007.02.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
256 Oishi K, Saito M, Mapua CA, Natividad FF. Dengue illness: clinical features and pathogenesis. Journal of Infection and Chemotherapy 2007;13:125-33. [DOI: 10.1007/s10156-007-0516-9] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
257 Murphy D, Reche P, Flower DR. Selection-based design of in silico dengue epitope ensemble vaccines. Chem Biol Drug Des 2019;93:21-8. [DOI: 10.1111/cbdd.13357] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
258 Monath TP, Gershman M, Erin Staples J, Barrett AD. Yellow fever vaccine. Vaccines. Elsevier; 2013. pp. 870-968. [DOI: 10.1016/b978-1-4557-0090-5.00043-4] [Cited by in Crossref: 33] [Article Influence: 4.1] [Reference Citation Analysis]
259 Reyes-Del Valle J, Chávez-Salinas S, Medina F, Del Angel RM. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 2005;79:4557-67. [PMID: 15795242 DOI: 10.1128/JVI.79.8.4557-4567.2005] [Cited by in Crossref: 251] [Cited by in F6Publishing: 114] [Article Influence: 15.7] [Reference Citation Analysis]
260 Moreira-Soto A, Soto-Garita C, Corrales-Aguilar E. Neotropical primary bat cell lines show restricted dengue virus replication. Comp Immunol Microbiol Infect Dis 2017;50:101-5. [PMID: 28131369 DOI: 10.1016/j.cimid.2016.12.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
261 Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, Lew E, Lemke G, Schwartz O, Amara A. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 2012;12:544-57. [PMID: 23084921 DOI: 10.1016/j.chom.2012.08.009] [Cited by in Crossref: 298] [Cited by in F6Publishing: 269] [Article Influence: 37.3] [Reference Citation Analysis]
262 Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, Nicholls JM, Peiris JS, Lau YL. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005;106:2366-2374. [PMID: 15860669 DOI: 10.1182/blood-2004-10-4166] [Cited by in Crossref: 263] [Cited by in F6Publishing: 267] [Article Influence: 16.4] [Reference Citation Analysis]
263 Reyes-del Valle J, Salas-benito J, Soto-acosta R, del Angel RM. Dengue Virus Cellular Receptors and Tropism. Curr Trop Med Rep 2014;1:36-43. [DOI: 10.1007/s40475-013-0002-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 1.9] [Reference Citation Analysis]
264 Bäck AT, Lundkvist A. Dengue viruses - an overview. Infect Ecol Epidemiol. 2013;3. [PMID: 24003364 DOI: 10.3402/iee.v3i0.19839] [Cited by in Crossref: 85] [Cited by in F6Publishing: 96] [Article Influence: 10.6] [Reference Citation Analysis]
265 Zhou J, Fang NN, Zheng Y, Liu KY, Mao B, Kong LN, Chen Y, Ai H. Identification and characterization of two novel C-type lectins from the larvae of housefly, Musca domestica L. Arch Insect Biochem Physiol 2018;98:e21467. [PMID: 29677385 DOI: 10.1002/arch.21467] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
266 Menon S, Rosenberg K, Graham SA, Ward EM, Taylor ME, Drickamer K, Leckband DE. Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements. Proc Natl Acad Sci U S A 2009;106:11524-9. [PMID: 19553201 DOI: 10.1073/pnas.0901783106] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
267 Song B, Yun S, Woolley M, Lee Y. Zika virus: History, epidemiology, transmission, and clinical presentation. Journal of Neuroimmunology 2017;308:50-64. [DOI: 10.1016/j.jneuroim.2017.03.001] [Cited by in Crossref: 149] [Cited by in F6Publishing: 111] [Article Influence: 37.3] [Reference Citation Analysis]
268 Chen JM, Fan YC, Lin JW, Chen YY, Hsu WL, Chiou SS. Bovine Lactoferrin Inhibits Dengue Virus Infectivity by Interacting with Heparan Sulfate, Low-Density Lipoprotein Receptor, and DC-SIGN. Int J Mol Sci 2017;18:E1957. [PMID: 28895925 DOI: 10.3390/ijms18091957] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
269 Naarding MA, Ludwig IS, Groot F, Berkhout B, Geijtenbeek TB, Pollakis G, Paxton WA. Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. J Clin Invest 2005;115:3256-64. [PMID: 16239964 DOI: 10.1172/JCI25105] [Cited by in Crossref: 133] [Cited by in F6Publishing: 57] [Article Influence: 8.3] [Reference Citation Analysis]
270 Hasan SS, Sevvana M, Kuhn RJ, Rossmann MG. Structural biology of Zika virus and other flaviviruses. Nat Struct Mol Biol 2018;25:13-20. [PMID: 29323278 DOI: 10.1038/s41594-017-0010-8] [Cited by in Crossref: 92] [Cited by in F6Publishing: 70] [Article Influence: 30.7] [Reference Citation Analysis]
271 DeLucia DC, Rinaldo CR, Rappocciolo G. Inefficient HIV-1 trans Infection of CD4+ T Cells by Macrophages from HIV-1 Nonprogressors Is Associated with Altered Membrane Cholesterol and DC-SIGN. J Virol 2018;92:e00092-18. [PMID: 29643243 DOI: 10.1128/JVI.00092-18] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
272 Moi ML, Lim CK, Chua KB, Takasaki T, Kurane I. Dengue virus infection-enhancing activity in serum samples with neutralizing activity as determined by using FcγR-expressing cells. PLoS Negl Trop Dis 2012;6:e1536. [PMID: 22389741 DOI: 10.1371/journal.pntd.0001536] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
273 Shimojima M, Takenouchi A, Shimoda H, Kimura N, Maeda K. Distinct usage of three C-type lectins by Japanese encephalitis virus: DC-SIGN, DC-SIGNR, and LSECtin. Arch Virol 2014;159:2023-31. [PMID: 24623090 DOI: 10.1007/s00705-014-2042-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
274 Bayliss RJ, Piguet V. Masters of manipulation: Viral modulation of the immunological synapse. Cell Microbiol 2018;20:e12944. [PMID: 30123959 DOI: 10.1111/cmi.12944] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
275 Phoolcharoen W, Smith DR. Internalization of the dengue virus is cell cycle modulated in HepG2, but not Vero cells. J Med Virol. 2004;74:434-441. [PMID: 15368519 DOI: 10.1002/jmv.20195] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 0.9] [Reference Citation Analysis]
276 Manh DH, Mizukami S, Dumre SP, Raekiansyah M, Senju S, Nishimura Y, Karbwang J, Huy NT, Morita K, Hirayama K. iPS cell serves as a source of dendritic cells for in vitro dengue virus infection model. J Gen Virol 2018;99:1239-47. [PMID: 30058991 DOI: 10.1099/jgv.0.001119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
277 Piguet V, Sattentau Q. Dangerous liaisons at the virological synapse. J Clin Invest 2004;114:605-10. [PMID: 15343375 DOI: 10.1172/JCI22812] [Cited by in Crossref: 164] [Cited by in F6Publishing: 102] [Article Influence: 9.6] [Reference Citation Analysis]
278 Douradinha B, McBurney SP, Soares de Melo KM, Smith AP, Krishna NK, Barratt-Boyes SM, Evans JD, Nascimento EJ, Marques ET Jr. C1q binding to dengue virus decreases levels of infection and inflammatory molecules transcription in THP-1 cells. Virus Res 2014;179:231-4. [PMID: 24246304 DOI: 10.1016/j.virusres.2013.11.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
279 Martin NC, Pardo J, Simmons M, Tjaden JA, Widjaja S, Marovich MA, Sun W, Porter KR, Burgess TH. An immunocytometric assay based on dengue infection via DC-SIGN permits rapid measurement of anti-dengue neutralizing antibodies. J Virol Methods 2006;134:74-85. [PMID: 16417930 DOI: 10.1016/j.jviromet.2005.12.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
280 Brecher M, Zhang J, Li H. The flavivirus protease as a target for drug discovery. Virol Sin 2013;28:326-36. [PMID: 24242363 DOI: 10.1007/s12250-013-3390-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
281 Ahammad F, Tengku Abd Rashid TR, Mohamed M, Tanbin S, Ahmad Fuad FA. Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms 2019;7:E296. [PMID: 31466307 DOI: 10.3390/microorganisms7090296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
282 Sun J, Han Z, Qi T, Zhao R, Liu S. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein. J Biol Chem 2017;292:20141-61. [PMID: 28978647 DOI: 10.1074/jbc.M116.772897] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
283 Chen ST, Lin YL, Huang MT, Wu MF, Cheng SC, Lei HY, Lee CK, Chiou TW, Wong CH, Hsieh SL. CLEC5A is critical for dengue-virus-induced lethal disease. Nature. 2008;453:672-676. [PMID: 18496526 DOI: 10.1038/nature07013] [Cited by in Crossref: 268] [Cited by in F6Publishing: 249] [Article Influence: 20.6] [Reference Citation Analysis]
284 Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 2008;4:e17. [PMID: 18266465 DOI: 10.1371/journal.ppat.0040017] [Cited by in Crossref: 252] [Cited by in F6Publishing: 245] [Article Influence: 19.4] [Reference Citation Analysis]
285 Ramos-soriano J, Reina JJ, Illescas BM, de la Cruz N, Rodríguez-pérez L, Lasala F, Rojo J, Delgado R, Martín N. Synthesis of Highly Efficient Multivalent Disaccharide/[60]Fullerene Nanoballs for Emergent Viruses. J Am Chem Soc 2019;141:15403-12. [DOI: 10.1021/jacs.9b08003] [Cited by in Crossref: 42] [Cited by in F6Publishing: 25] [Article Influence: 21.0] [Reference Citation Analysis]
286 Lai WK, Sun PJ, Zhang J, Jennings A, Lalor PF, Hubscher S, McKeating JA, Adams DH. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. Am J Pathol 2006;169:200-8. [PMID: 16816373 DOI: 10.2353/ajpath.2006.051191] [Cited by in Crossref: 78] [Cited by in F6Publishing: 64] [Article Influence: 5.2] [Reference Citation Analysis]
287 Pitts J, Hsia CY, Lian W, Wang J, Pfeil MP, Kwiatkowski N, Li Z, Jang J, Gray NS, Yang PL. Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Res 2019;164:147-53. [PMID: 30771406 DOI: 10.1016/j.antiviral.2019.02.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
288 Kwan WH, Navarro-Sanchez E, Dumortier H, Decossas M, Vachon H, dos Santos FB, Fridman HW, Rey FA, Harris E, Despres P, Mueller CG. Dermal-type macrophages expressing CD209/DC-SIGN show inherent resistance to dengue virus growth. PLoS Negl Trop Dis 2008;2:e311. [PMID: 18827881 DOI: 10.1371/journal.pntd.0000311] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 3.0] [Reference Citation Analysis]
289 Geijtenbeek TB, den Dunnen J, Gringhuis SI. Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol. 2009;4:879-890. [PMID: 19722841 DOI: 10.2217/fmb.09.51] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 5.3] [Reference Citation Analysis]
290 Gordts SC, Renders M, Férir G, Huskens D, Van Damme EJ, Peumans W, Balzarini J, Schols D. NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J Antimicrob Chemother 2015;70:1674-85. [PMID: 25700718 DOI: 10.1093/jac/dkv034] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
291 Ramirez L, Betanzos A, Raya-Sandino A, González-Mariscal L, Del Angel RM. Dengue virus enters and exits epithelial cells through both apical and basolateral surfaces and perturbs the apical junctional complex. Virus Res 2018;258:39-49. [PMID: 30278191 DOI: 10.1016/j.virusres.2018.09.016] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
292 Cheung R, Shen F, Phillips JH, McGeachy MJ, Cua DJ, Heyworth PG, Pierce RH. Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice. J Clin Invest 2011;121:4446-61. [PMID: 22005300 DOI: 10.1172/JCI57682] [Cited by in Crossref: 44] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
293 Pierson TC, Diamond MS. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev Mol Med 2008;10:e12. [PMID: 18471342 DOI: 10.1017/S1462399408000665] [Cited by in Crossref: 120] [Cited by in F6Publishing: 77] [Article Influence: 9.2] [Reference Citation Analysis]
294 Bottermann M, James LC. Intracellular Antiviral Immunity. Adv Virus Res 2018;100:309-54. [PMID: 29551141 DOI: 10.1016/bs.aivir.2018.01.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
295 Bernard Q, Jaulhac B, Boulanger N. Smuggling across the Border: How Arthropod-Borne Pathogens Evade and Exploit the Host Defense System of the Skin. Journal of Investigative Dermatology 2014;134:1211-9. [DOI: 10.1038/jid.2014.36] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
296 Schmid MA, Diamond MS, Harris E. Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Front Immunol 2014;5:647. [PMID: 25566258 DOI: 10.3389/fimmu.2014.00647] [Cited by in Crossref: 74] [Cited by in F6Publishing: 61] [Article Influence: 10.6] [Reference Citation Analysis]
297 Hottz ED, Bozza FA, Bozza PT. Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front Med (Lausanne) 2018;5:121. [PMID: 29761104 DOI: 10.3389/fmed.2018.00121] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 20.0] [Reference Citation Analysis]
298 Perera-Lecoin M, Meertens L, Carnec X, Amara A. Flavivirus entry receptors: an update. Viruses 2013;6:69-88. [PMID: 24381034 DOI: 10.3390/v6010069] [Cited by in Crossref: 183] [Cited by in F6Publishing: 163] [Article Influence: 22.9] [Reference Citation Analysis]
299 Niiya H, Azuma T, Jin L, Uchida N, Inoue A, Hasegawa H, Fujita S, Tohyama M, Hashimoto K, Yasukawa M. Transcriptional downregulation of DC-SIGN in human herpesvirus 6-infected dendritic cells. J Gen Virol 2004;85:2639-42. [PMID: 15302957 DOI: 10.1099/vir.0.80095-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 0.6] [Reference Citation Analysis]
300 Tay FP, Huang M, Wang L, Yamada Y, Liu DX. Characterization of cellular furin content as a potential factor determining the susceptibility of cultured human and animal cells to coronavirus infectious bronchitis virus infection. Virology 2012;433:421-30. [PMID: 22995191 DOI: 10.1016/j.virol.2012.08.037] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
301 Hanna SL, Pierson TC, Sanchez MD, Ahmed AA, Murtadha MM, Doms RW. N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity. J Virol 2005;79:13262-74. [PMID: 16227249 DOI: 10.1128/JVI.79.21.13262-13274.2005] [Cited by in Crossref: 172] [Cited by in F6Publishing: 102] [Article Influence: 10.8] [Reference Citation Analysis]
302 Carocci M, Kuhn JH, Yang PL. Flaviviruses: Introduction to Dengue Viruses. In: Shapshak P, Sinnott JT, Somboonwit C, Kuhn JH, editors. Global Virology I - Identifying and Investigating Viral Diseases. New York: Springer; 2015. pp. 403-24. [DOI: 10.1007/978-1-4939-2410-3_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
303 Chabert A, Hamzeh-Cognasse H, Pozzetto B, Cognasse F, Schattner M, Gomez RM, Garraud O. Human platelets and their capacity of binding viruses: meaning and challenges? BMC Immunol 2015;16:26. [PMID: 25913718 DOI: 10.1186/s12865-015-0092-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
304 Saadeldin MK, Abdel-Aziz AK, Abdellatif A. Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis. Med Hypotheses 2021;146:110365. [PMID: 33221134 DOI: 10.1016/j.mehy.2020.110365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
305 St John AL, Abraham SN, Gubler DJ. Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat Rev Microbiol 2013;11:420-6. [PMID: 23652323 DOI: 10.1038/nrmicro3030] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 5.6] [Reference Citation Analysis]
306 Monsalve-Escudero LM, Loaiza-Cano V, Zapata-Cardona MI, Quintero-Gil DC, Hernández-Mira E, Pájaro-González Y, Oliveros-Díaz AF, Diaz-Castillo F, Quiñones W, Robledo S, Martinez-Gutierrez M. The Antiviral and Virucidal Activities of Voacangine and Structural Analogs Extracted from Tabernaemontana cymosa Depend on the Dengue Virus Strain. Plants (Basel) 2021;10:1280. [PMID: 34201900 DOI: 10.3390/plants10071280] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
307 Dejarnac O, Hafirassou ML, Chazal M, Versapuech M, Gaillard J, Perera-lecoin M, Umana-diaz C, Bonnet-madin L, Carnec X, Tinevez J, Delaugerre C, Schwartz O, Roingeard P, Jouvenet N, Berlioz-torrent C, Meertens L, Amara A. TIM-1 Ubiquitination Mediates Dengue Virus Entry. Cell Reports 2018;23:1779-93. [DOI: 10.1016/j.celrep.2018.04.013] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 11.3] [Reference Citation Analysis]
308 Villanueva RA, Rouillé Y, Dubuisson J. Interactions between virus proteins and host cell membranes during the viral life cycle. Int Rev Cytol 2005;245:171-244. [PMID: 16125548 DOI: 10.1016/S0074-7696(05)45006-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
309 Avirutnan P, Hauhart RE, Marovich MA, Garred P, Atkinson JP, Diamond MS. Complement-mediated neutralization of dengue virus requires mannose-binding lectin. mBio 2011;2:e00276-11. [PMID: 22167226 DOI: 10.1128/mBio.00276-11] [Cited by in Crossref: 51] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
310 Colpitts TM, Conway MJ, Montgomery RR, Fikrig E. West Nile Virus: biology, transmission, and human infection. Clin Microbiol Rev 2012;25:635-48. [PMID: 23034323 DOI: 10.1128/CMR.00045-12] [Cited by in Crossref: 160] [Cited by in F6Publishing: 89] [Article Influence: 20.0] [Reference Citation Analysis]
311 Gerold G, Bruening J, Weigel B, Pietschmann T. Protein Interactions during the Flavivirus and Hepacivirus Life Cycle. Mol Cell Proteomics 2017;16:S75-91. [PMID: 28077444 DOI: 10.1074/mcp.R116.065649] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
312 Chong HY, Leow CY, Abdul Majeed AB, Leow CH. Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Research 2019;274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 14.5] [Reference Citation Analysis]
313 Hertel L. Human cytomegalovirus tropism for mucosal myeloid dendritic cells. Rev Med Virol. 2014;24:379-395. [PMID: 24888709 DOI: 10.1002/rmv.1797] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
314 Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 2014;4:145. [PMID: 25353009 DOI: 10.3389/fcimb.2014.00145] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 8.3] [Reference Citation Analysis]
315 Chan KY, Xu MS, Ching JC, So TM, Lai ST, Chu CM, Yam LY, Wong AT, Chung PH, Chan VS, Lin CL, Sham PC, Leung GM, Peiris JS, Khoo US. CD209 (DC-SIGN) -336A>G promoter polymorphism and severe acute respiratory syndrome in Hong Kong Chinese. Hum Immunol 2010;71:702-7. [PMID: 20359516 DOI: 10.1016/j.humimm.2010.03.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
316 Solignat M, Gay B, Higgs S, Briant L, Devaux C. Replication cycle of chikungunya: a re-emerging arbovirus. Virology. 2009;393:183-197. [PMID: 19732931 DOI: 10.1016/j.virol.2009.07.024] [Cited by in Crossref: 197] [Cited by in F6Publishing: 168] [Article Influence: 16.4] [Reference Citation Analysis]
317 Jatuyosporn T, Supungul P, Tassanakajon A, Krusong K. The essential role of clathrin-mediated endocytosis in yellow head virus propagation in the black tiger shrimp Penaeus monodon. Dev Comp Immunol 2014;44:100-10. [PMID: 24333440 DOI: 10.1016/j.dci.2013.11.017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
318 Wang Q, Shi P. Flavivirus Entry Inhibitors. ACS Infect Dis 2015;1:428-34. [DOI: 10.1021/acsinfecdis.5b00066] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
319 Srikiatkhachorn A, Spiropoulou CF. Vascular events in viral hemorrhagic fevers: a comparative study of dengue and hantaviruses. Cell Tissue Res 2014;355:621-33. [PMID: 24623445 DOI: 10.1007/s00441-014-1841-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
320 Ichiyama K, Gopala Reddy SB, Zhang LF, Chin WX, Muschin T, Heinig L, Suzuki Y, Nanjundappa H, Yoshinaka Y, Ryo A, Nomura N, Ooi EE, Vasudevan SG, Yoshida T, Yamamoto N. Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: a possible candidate for clinical application. PLoS Negl Trop Dis 2013;7:e2188. [PMID: 23658845 DOI: 10.1371/journal.pntd.0002188] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 6.0] [Reference Citation Analysis]
321 Sun P, Bauza K, Pal S, Liang Z, Wu S, Beckett C, Burgess T, Porter K. Infection and activation of human peripheral blood monocytes by dengue viruses through the mechanism of antibody-dependent enhancement. Virology 2011;421:245-52. [DOI: 10.1016/j.virol.2011.08.026] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
322 Meng F, Badierah RA, Almehdar HA, Redwan EM, Kurgan L, Uversky VN. Unstructural biology of the dengue virus proteins. FEBS J 2015;282:3368-94. [DOI: 10.1111/febs.13349] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
323 Messaoudi I, Basler CF. Immunological features underlying viral hemorrhagic fevers. Curr Opin Immunol 2015;36:38-46. [PMID: 26163194 DOI: 10.1016/j.coi.2015.06.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
324 Morozov V, Borkowski J, Hanisch FG. The Double Face of Mucin-Type O-Glycans in Lectin-Mediated Infection and Immunity. Molecules 2018;23:E1151. [PMID: 29751628 DOI: 10.3390/molecules23051151] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
325 Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020;11:1100. [PMID: 32582186 DOI: 10.3389/fimmu.2020.01100] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 25.0] [Reference Citation Analysis]
326 Castilla V, Piccini LE, Damonte EB. Dengue virus entry and trafficking: perspectives as antiviral target for prevention and therapy. Future Virology 2015;10:625-45. [DOI: 10.2217/fvl.15.35] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
327 Chung NP, Breun SK, Bashirova A, Baumann JG, Martin TD, Karamchandani JM, Rausch JW, Le Grice SF, Wu L, Carrington M, Kewalramani VN. HIV-1 transmission by dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is regulated by determinants in the carbohydrate recognition domain that are absent in liver/lymph node-SIGN (L-SIGN). J Biol Chem 2010;285:2100-12. [PMID: 19833723 DOI: 10.1074/jbc.M109.030619] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
328 Lanoue A, Clatworthy MR, Smith P, Green S, Townsend MJ, Jolin HE, Smith KG, Fallon PG, McKenzie AN. SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 2004;200:1383-93. [PMID: 15583012 DOI: 10.1084/jem.20040795] [Cited by in Crossref: 113] [Cited by in F6Publishing: 103] [Article Influence: 7.1] [Reference Citation Analysis]
329 Vargas-Castillo AB, Ruiz-Tovar K, Vivanco-Cid H, Quiroz-Cruz S, Escobar-Gutiérrez A, Cerna-Cortes JF, Vaughan G, Fonseca-Coronado S. Association of Single-Nucleotide Polymorphisms in Immune-Related Genes with Development of Dengue Hemorrhagic Fever in a Mexican Population. Viral Immunol 2018;31:249-55. [PMID: 29130827 DOI: 10.1089/vim.2017.0069] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
330 Palanichamy K, Joshi A, Mehmetoglu-Gurbuz T, Bravo MF, Shlain MA, Schiro F, Naeem Y, Garg H, Braunschweig AB. Anti-Zika Activity of a Library of Synthetic Carbohydrate Receptors. J Med Chem 2019;62:4110-9. [PMID: 30925051 DOI: 10.1021/acs.jmedchem.9b00142] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
331 Acosta EG, Kumar A, Bartenschlager R. Revisiting dengue virus-host cell interaction: new insights into molecular and cellular virology. Adv Virus Res 2014;88:1-109. [PMID: 24373310 DOI: 10.1016/B978-0-12-800098-4.00001-5] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 8.6] [Reference Citation Analysis]
332 Monteiro JT, Lepenies B. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses 2017;9:E59. [PMID: 28327518 DOI: 10.3390/v9030059] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 9.8] [Reference Citation Analysis]
333 Yasamut U, Tongmuang N, Yenchitsomanus PT, Junking M, Noisakran S, Puttikhunt C, Chu JJ, Limjindaporn T. Adaptor Protein 1A Facilitates Dengue Virus Replication. PLoS One 2015;10:e0130065. [PMID: 26090672 DOI: 10.1371/journal.pone.0130065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
334 Rajamanonmani R, Nkenfou C, Clancy P, Yau YH, Shochat SG, Sukupolvi-Petty S, Schul W, Diamond MS, Vasudevan SG, Lescar J. On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. J Gen Virol 2009;90:799-809. [PMID: 19264660 DOI: 10.1099/vir.0.006874-0] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 5.3] [Reference Citation Analysis]
335 Lien TS, Sun DS, Wu CY, Chang HH. Exposure to Dengue Envelope Protein Domain III Induces Nlrp3 Inflammasome-Dependent Endothelial Dysfunction and Hemorrhage in Mice. Front Immunol 2021;12:617251. [PMID: 33717109 DOI: 10.3389/fimmu.2021.617251] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
336 Daffis S, Samuel MA, Suthar MS, Keller BC, Gale M, Diamond MS. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol. 2008;82:8465-8475. [PMID: 18562536 DOI: 10.1128/jvi.00918-08] [Cited by in Crossref: 117] [Cited by in F6Publishing: 97] [Article Influence: 9.0] [Reference Citation Analysis]
337 Obara CJ, Dowd KA, Ledgerwood JE, Pierson TC. Impact of viral attachment factor expression on antibody-mediated neutralization of flaviviruses. Virology 2013;437:20-7. [PMID: 23312596 DOI: 10.1016/j.virol.2012.11.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
338 Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, Williams KL, Johnson S, Rico-Hesse R, Harris E, Pierson TC, Fremont DH, Diamond MS. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 2010;84:9227-39. [PMID: 20592088 DOI: 10.1128/JVI.01087-10] [Cited by in Crossref: 161] [Cited by in F6Publishing: 99] [Article Influence: 14.6] [Reference Citation Analysis]
339 Bermejo-Jambrina M, Eder J, Helgers LC, Hertoghs N, Nijmeijer BM, Stunnenberg M, Geijtenbeek TBH. C-Type Lectin Receptors in Antiviral Immunity and Viral Escape. Front Immunol 2018;9:590. [PMID: 29632536 DOI: 10.3389/fimmu.2018.00590] [Cited by in Crossref: 44] [Cited by in F6Publishing: 29] [Article Influence: 14.7] [Reference Citation Analysis]
340 Choo JJY, Vet LJ, McMillan CLD, Harrison JJ, Scott CAP, Depelsenaire ACI, Fernando GJP, Watterson D, Hall RA, Young PR, Hobson-Peters J, Muller DA. A chimeric dengue virus vaccine candidate delivered by high density microarray patches protects against infection in mice. NPJ Vaccines 2021;6:66. [PMID: 33963191 DOI: 10.1038/s41541-021-00328-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
341 Cheng G, Cox J, Wang P, Krishnan MN, Dai J, Qian F, Anderson JF, Fikrig E. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell 2010;142:714-25. [PMID: 20797779 DOI: 10.1016/j.cell.2010.07.038] [Cited by in Crossref: 111] [Cited by in F6Publishing: 99] [Article Influence: 10.1] [Reference Citation Analysis]
342 Okamoto K, Kinoshita H, Parquet MDC, Raekiansyah M, Kimura D, Yui K, Islam MA, Hasebe F, Morita K. Dengue virus strain DEN2 16681 utilizes a specific glycochain of syndecan-2 proteoglycan as a receptor. J Gen Virol 2012;93:761-70. [PMID: 22170634 DOI: 10.1099/vir.0.037853-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
343 Wong KL, Chen W, Balakrishnan T, Toh YX, Fink K, Wong SC. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection. PLoS One 2012;7:e36435. [PMID: 22574162 DOI: 10.1371/journal.pone.0036435] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
344 Ernst B, Magnani JL. From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov 2009;8:661-77. [PMID: 19629075 DOI: 10.1038/nrd2852] [Cited by in Crossref: 530] [Cited by in F6Publishing: 421] [Article Influence: 44.2] [Reference Citation Analysis]
345 Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, Park GS, Boer E, Wolfinbarger JB, Bloom ME. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 2005;79:12828-39. [PMID: 16188985 DOI: 10.1128/JVI.79.20.12828-12839.2005] [Cited by in Crossref: 227] [Cited by in F6Publishing: 134] [Article Influence: 14.2] [Reference Citation Analysis]
346 Bhatia B, Feldmann H, Marzi A. Kyasanur Forest Disease and Alkhurma Hemorrhagic Fever Virus-Two Neglected Zoonotic Pathogens. Microorganisms 2020;8:E1406. [PMID: 32932653 DOI: 10.3390/microorganisms8091406] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
347 Davis CW, Mattei LM, Nguyen HY, Ansarah-Sobrinho C, Doms RW, Pierson TC. The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 2006;281:37183-94. [PMID: 17001080 DOI: 10.1074/jbc.M605429200] [Cited by in Crossref: 78] [Cited by in F6Publishing: 49] [Article Influence: 5.2] [Reference Citation Analysis]
348 Wang SF, Huang JC, Lee YM, Liu SJ, Chan YJ, Chau YP, Chong P, Chen YM. DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans. Biochem Biophys Res Commun 2008;373:561-6. [PMID: 18593570 DOI: 10.1016/j.bbrc.2008.06.078] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 4.5] [Reference Citation Analysis]
349 Upanan S, Kuadkitkan A, Smith DR. Identification of dengue virus binding proteins using affinity chromatography. J Virol Methods 2008;151:325-8. [PMID: 18562018 DOI: 10.1016/j.jviromet.2008.05.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.2] [Reference Citation Analysis]
350 Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005;3:13-22. [PMID: 15608696 DOI: 10.1038/nrmicro1067] [Cited by in Crossref: 762] [Cited by in F6Publishing: 679] [Article Influence: 47.6] [Reference Citation Analysis]
351 Ganesh L, Leung K, Loré K, Levin R, Panet A, Schwartz O, Koup RA, Nabel GJ. Infection of specific dendritic cells by CCR5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J Virol 2004;78:11980-7. [PMID: 15479838 DOI: 10.1128/JVI.78.21.11980-11987.2004] [Cited by in Crossref: 100] [Cited by in F6Publishing: 74] [Article Influence: 5.9] [Reference Citation Analysis]
352 Bryant JE, Calvert AE, Mesesan K, Crabtree MB, Volpe KE, Silengo S, Kinney RM, Huang CY, Miller BR, Roehrig JT. Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology 2007;366:415-23. [PMID: 17543367 DOI: 10.1016/j.virol.2007.05.007] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 3.3] [Reference Citation Analysis]
353 Khoo US, Chan KY, Chan VS, Lin CL. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med (Berl) 2008;86:861-74. [PMID: 18458800 DOI: 10.1007/s00109-008-0350-2] [Cited by in Crossref: 93] [Cited by in F6Publishing: 78] [Article Influence: 7.2] [Reference Citation Analysis]
354 Simon AY, Sutherland MR, Pryzdial EL. Dengue virus binding and replication by platelets. Blood 2015;126:378-85. [PMID: 25943787 DOI: 10.1182/blood-2014-09-598029] [Cited by in Crossref: 86] [Cited by in F6Publishing: 77] [Article Influence: 14.3] [Reference Citation Analysis]
355 van Gisbergen KP, Sanchez-Hernandez M, Geijtenbeek TB, van Kooyk Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J Exp Med 2005;201:1281-92. [PMID: 15837813 DOI: 10.1084/jem.20041276] [Cited by in Crossref: 279] [Cited by in F6Publishing: 249] [Article Influence: 17.4] [Reference Citation Analysis]
356 Goh KC, Tang CK, Norton DC, Gan ES, Tan HC, Sun B, Syenina A, Yousuf A, Ong XM, Kamaraj US, Cheung YB, Gubler DJ, Davidson A, St John AL, Sessions OM, Ooi EE. Molecular determinants of plaque size as an indicator of dengue virus attenuation. Sci Rep 2016;6:26100. [PMID: 27185466 DOI: 10.1038/srep26100] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
357 Liu P, Wang X, Itano MS, Neumann AK, de Silva AM, Jacobson K, Thompson NL. Low copy numbers of DC-SIGN in cell membrane microdomains: implications for structure and function. Traffic 2014;15:179-96. [PMID: 24313910 DOI: 10.1111/tra.12138] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
358 Chevolot Y, Vidal S, Laurenceau E, Morvan F, Vasseur J, Souteyrand E. Carbohydrates as Recognition Receptors in Biosensing Applications. In: Zourob M, editor. Recognition Receptors in Biosensors. New York: Springer; 2010. pp. 275-341. [DOI: 10.1007/978-1-4419-0919-0_7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
359 Mattia K, Puffer BA, Williams KL, Gonzalez R, Murray M, Sluzas E, Pagano D, Ajith S, Bower M, Berdougo E, Harris E, Doranz BJ. Dengue reporter virus particles for measuring neutralizing antibodies against each of the four dengue serotypes. PLoS One 2011;6:e27252. [PMID: 22096543 DOI: 10.1371/journal.pone.0027252] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 5.5] [Reference Citation Analysis]
360 Diamond MS. Development of effective therapies against West Nile virus infection. Expert Rev Anti Infect Ther 2005;3:931-44. [PMID: 16307506 DOI: 10.1586/14787210.3.6.931] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
361 Tomo S, Mohan S, Ramachandrappa VS, Samadanam DM, Suresh S, Pillai AB, Tamilarasu K, Ramachandran R, Rajendiran S. Dynamic modulation of DC-SIGN and FcΥR2A receptors expression on platelets in dengue. PLoS One 2018;13:e0206346. [PMID: 30412591 DOI: 10.1371/journal.pone.0206346] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
362 Dissanayake HA, Seneviratne SL. Liver involvement in dengue viral infections. Rev Med Virol 2018;28:e1971. [DOI: 10.1002/rmv.1971] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
363 Iyer GR, Samajder S, Zubeda S, S DSN, Mali V, Pv SK, Sharma A, Abbas NZ, Bora NS, Narravula A, Hasan Q. Infectivity and Progression of COVID-19 Based on Selected Host Candidate Gene Variants. Front Genet 2020;11:861. [PMID: 33101356 DOI: 10.3389/fgene.2020.00861] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
364 Wu S, Wu Z, Wu Y, Wang T, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Heparin sulfate is the attachment factor of duck Tembus virus on both BHK21 and DEF cells. Virol J 2019;16:134. [PMID: 31718685 DOI: 10.1186/s12985-019-1246-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
365 Muñoz Mde L, Limón-Camacho G, Tovar R, Diaz-Badillo A, Mendoza-Hernández G, Black WC 4th. Proteomic identification of dengue virus binding proteins in Aedes aegypti mosquitoes and Aedes albopictus cells. Biomed Res Int 2013;2013:875958. [PMID: 24324976 DOI: 10.1155/2013/875958] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
366 Rey FA. Dengue virus envelope glycoprotein structure: new insight into its interactions during viral entry. Proc Natl Acad Sci U S A 2003;100:6899-901. [PMID: 12782795 DOI: 10.1073/pnas.1332695100] [Cited by in Crossref: 64] [Cited by in F6Publishing: 55] [Article Influence: 3.6] [Reference Citation Analysis]
367 Ader DB, Celluzzi C, Bisbing J, Gilmore L, Gunther V, Peachman KK, Rao M, Barvir D, Sun W, Palmer DR. Modulation of dengue virus infection of dendritic cells by Aedes aegypti saliva. Viral Immunol 2004;17:252-65. [PMID: 15279703 DOI: 10.1089/0882824041310496] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 2.3] [Reference Citation Analysis]
368 Alen MM, De Burghgraeve T, Kaptein SJ, Balzarini J, Neyts J, Schols D. Broad antiviral activity of carbohydrate-binding agents against the four serotypes of dengue virus in monocyte-derived dendritic cells. PLoS One 2011;6:e21658. [PMID: 21738755 DOI: 10.1371/journal.pone.0021658] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 4.6] [Reference Citation Analysis]
369 Carnec X, Meertens L, Dejarnac O, Perera-Lecoin M, Hafirassou ML, Kitaura J, Ramdasi R, Schwartz O, Amara A. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection. J Virol 2016;90:92-102. [PMID: 26468529 DOI: 10.1128/JVI.01849-15] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 8.7] [Reference Citation Analysis]
370 Marques RE, Guabiraba R, Del Sarto JL, Rocha RF, Queiroz AL, Cisalpino D, Marques PE, Pacca CC, Fagundes CT, Menezes GB, Nogueira ML, Souza DG, Teixeira MM. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development. Immunology 2015;145:583-96. [PMID: 25939314 DOI: 10.1111/imm.12476] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 5.5] [Reference Citation Analysis]
371 Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, Xiang Y, Wang P, Cheng G. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog 2014;10:e1003931. [PMID: 24550728 DOI: 10.1371/journal.ppat.1003931] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 8.7] [Reference Citation Analysis]
372 Wichit S, Gumpangseth N, Hamel R, Yainoy S, Arikit S, Punsawad C, Missé D. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors. Pathogens 2021;10:448. [PMID: 33918691 DOI: 10.3390/pathogens10040448] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
373 Backovic M, Rey FA. Virus entry: old viruses, new receptors. Curr Opin Virol 2012;2:4-13. [PMID: 22440960 DOI: 10.1016/j.coviro.2011.12.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
374 Hacker K, White L, de Silva AM. N-linked glycans on dengue viruses grown in mammalian and insect cells. J Gen Virol 2009;90:2097-106. [PMID: 19494052 DOI: 10.1099/vir.0.012120-0] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 4.7] [Reference Citation Analysis]
375 Lisova O, Hardy F, Petit V, Bedouelle H. Mapping to completeness and transplantation of a group-specific, discontinuous, neutralizing epitope in the envelope protein of dengue virus. Journal of General Virology 2007;88:2387-97. [DOI: 10.1099/vir.0.83028-0] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 3.6] [Reference Citation Analysis]
376 Idris F, Muharram SH, Diah S. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. Arch Virol 2016;161:1751-60. [PMID: 27068162 DOI: 10.1007/s00705-016-2855-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
377 Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA. The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev 2009;232:42-58. [PMID: 19909355 DOI: 10.1111/j.1600-065X.2009.00841.x] [Cited by in Crossref: 79] [Cited by in F6Publishing: 53] [Article Influence: 7.2] [Reference Citation Analysis]
378 van der Schaar HM, Rust MJ, Waarts BL, van der Ende-Metselaar H, Kuhn RJ, Wilschut J, Zhuang X, Smit JM. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 2007;81:12019-28. [PMID: 17728239 DOI: 10.1128/JVI.00300-07] [Cited by in Crossref: 192] [Cited by in F6Publishing: 106] [Article Influence: 13.7] [Reference Citation Analysis]
379 Haslwanter D, Blaas D, Heinz FX, Stiasny K. A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathog 2017;13:e1006643. [PMID: 28915259 DOI: 10.1371/journal.ppat.1006643] [Cited by in F6Publishing: 26] [Reference Citation Analysis]
380 Goncalves AR, Moraz ML, Pasquato A, Helenius A, Lozach PY, Kunz S. Role of DC-SIGN in Lassa virus entry into human dendritic cells. J Virol 2013;87:11504-15. [PMID: 23966408 DOI: 10.1128/JVI.01893-13] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
381 Srikiatkhachorn A. Plasma leakage in dengue haemorrhagic fever. Thromb Haemost 2009;102:1042-9. [PMID: 19967133 DOI: 10.1160/TH09-03-0208] [Cited by in Crossref: 72] [Cited by in F6Publishing: 43] [Article Influence: 6.5] [Reference Citation Analysis]
382 Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, Scarselli E, Cortese R, Nicosia A, Cosset FL. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 2003;278:41624-30. [PMID: 12913001 DOI: 10.1074/jbc.M305289200] [Cited by in Crossref: 434] [Cited by in F6Publishing: 227] [Article Influence: 24.1] [Reference Citation Analysis]
383 Liu Y, Liu J, Pang X, Liu T, Ning Z, Cheng G. The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesis. Molecules 2015;20:2272-95. [PMID: 25642837 DOI: 10.3390/molecules20022272] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
384 Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev 2018;118:4448-82. [PMID: 29652486 DOI: 10.1021/acs.chemrev.7b00719] [Cited by in Crossref: 104] [Cited by in F6Publishing: 75] [Article Influence: 34.7] [Reference Citation Analysis]
385 Boonnak K, Dambach KM, Donofrio GC, Tassaneetrithep B, Marovich MA. Cell type specificity and host genetic polymorphisms influence antibody-dependent enhancement of dengue virus infection. J Virol 2011;85:1671-83. [PMID: 21123382 DOI: 10.1128/JVI.00220-10] [Cited by in Crossref: 88] [Cited by in F6Publishing: 55] [Article Influence: 8.0] [Reference Citation Analysis]
386 VanBlargan LA, Goo L, Pierson TC. Deconstructing the Antiviral Neutralizing-Antibody Response: Implications for Vaccine Development and Immunity. Microbiol Mol Biol Rev 2016;80:989-1010. [PMID: 27784796 DOI: 10.1128/MMBR.00024-15] [Cited by in Crossref: 48] [Cited by in F6Publishing: 23] [Article Influence: 9.6] [Reference Citation Analysis]
387 Shi P, Yin Z, Nilar S, Keller TH. Dengue Drug Discovery. In: Elliott R, editor. Third World Diseases. Berlin: Springer Berlin Heidelberg; 2011. pp. 243-75. [DOI: 10.1007/7355_2011_16] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
388 Raftery MJ, Wieland D, Gronewald S, Kraus AA, Giese T, Schönrich G. Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. J Immunol 2004;173:3383-91. [PMID: 15322202 DOI: 10.4049/jimmunol.173.5.3383] [Cited by in Crossref: 96] [Cited by in F6Publishing: 98] [Article Influence: 5.6] [Reference Citation Analysis]
389 Zhang SL, Tan HC, Hanson BJ, Ooi EE. A simple method for Alexa Fluor dye labelling of dengue virus. J Virol Methods 2010;167:172-7. [PMID: 20399231 DOI: 10.1016/j.jviromet.2010.04.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
390 Cao XT, Pan XY, Sun M, Liu Y, Lan JF. Hepatopancreas-Specific Lectin Participates in the Antibacterial Immune Response by Regulating the Expression of Antibacterial Proteins. Front Immunol 2021;12:679767. [PMID: 34177924 DOI: 10.3389/fimmu.2021.679767] [Reference Citation Analysis]
391 Frenz T, Grabski E, Durán V, Hozsa C, Stępczyńska A, Furch M, Gieseler RK, Kalinke U. Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers. Eur J Pharm Biopharm 2015;95:13-7. [PMID: 25701806 DOI: 10.1016/j.ejpb.2015.02.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
392 Pabalan N, Chaisri S, Tabunhan S, Phumyen A, Jarjanazi H, Steiner TS. Associations of DC-SIGN (CD209) promoter -336G/A polymorphism (rs4804803) with dengue infection: A systematic review and meta-analysis. Acta Trop 2018;177:186-93. [PMID: 29054571 DOI: 10.1016/j.actatropica.2017.10.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
393 Su SV, Hong P, Baik S, Negrete OA, Gurney KB, Lee B. DC-SIGN binds to HIV-1 glycoprotein 120 in a distinct but overlapping fashion compared with ICAM-2 and ICAM-3. J Biol Chem 2004;279:19122-32. [PMID: 14970226 DOI: 10.1074/jbc.M400184200] [Cited by in Crossref: 47] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
394 El Fiky A, Perreault R, Mcginnis GJ, Rabin RL. Attenuated expression of interferon-β and interferon-λ1 by human alternatively activated macrophages. Human Immunology 2013;74:1524-30. [DOI: 10.1016/j.humimm.2013.08.267] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
395 Parkinson T, Pryde DC. Small molecule drug discovery for Dengue and West Nile viruses: applying experience from hepatitis C virus. Future Medicinal Chemistry 2010;2:1181-203. [DOI: 10.4155/fmc.10.195] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
396 Zellweger RM, Prestwood TR, Shresta S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 2010;7:128-39. [PMID: 20153282 DOI: 10.1016/j.chom.2010.01.004] [Cited by in Crossref: 248] [Cited by in F6Publishing: 224] [Article Influence: 22.5] [Reference Citation Analysis]
397 Cerny D, Haniffa M, Shin A, Bigliardi P, Tan BK, Lee B, Poidinger M, Tan EY, Ginhoux F, Fink K. Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection. PLoS Pathog 2014;10:e1004548. [PMID: 25474532 DOI: 10.1371/journal.ppat.1004548] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 8.3] [Reference Citation Analysis]
398 Chambers TJ, Diamond MS. Pathogenesis of flavivirus encephalitis. Adv Virus Res 2003;60:273-342. [PMID: 14689697 DOI: 10.1016/s0065-3527(03)60008-4] [Cited by in Crossref: 70] [Cited by in F6Publishing: 38] [Article Influence: 4.1] [Reference Citation Analysis]
399 Mercado-Curiel RF, Black WC 4th, Muñoz Mde L. A dengue receptor as possible genetic marker of vector competence in Aedes aegypti. BMC Microbiol 2008;8:118. [PMID: 18625079 DOI: 10.1186/1471-2180-8-118] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 3.2] [Reference Citation Analysis]
400 Oliphant T, Diamond MS. The molecular basis of antibody-mediated neutralization of West Nile virus. Expert Opin Biol Ther 2007;7:885-92. [PMID: 17555373 DOI: 10.1517/14712598.7.6.885] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
401 Maeda A, Maeda J. Review of diagnostic plaque reduction neutralization tests for flavivirus infection. The Veterinary Journal 2013;195:33-40. [DOI: 10.1016/j.tvjl.2012.08.019] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 7.1] [Reference Citation Analysis]
402 Zhang W, Gao SJ. Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi's Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus. Pathogens 2012;1:102-27. [PMID: 23420076 DOI: 10.3390/pathogens1020102] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
403 Hu T, Wu Z, Wu S, Chen S, Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J 2021;18:136. [PMID: 34217298 DOI: 10.1186/s12985-021-01611-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
404 Whitbeck JC, Thomas A, Kadash-Edmondson K, Grinyo-Escuer A, Stafford LJ, Cheng C, Liao GC, Holtsberg FW, Aman MJ, Simmons G, Davidson E, Doranz BJ. Antigenicity, stability, and reproducibility of Zika reporter virus particles for long-term applications. PLoS Negl Trop Dis 2020;14:e0008730. [PMID: 33206639 DOI: 10.1371/journal.pntd.0008730] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
405 Tao D, Barba-Spaeth G, Rai U, Nussenzweig V, Rice CM, Nussenzweig RS. Yellow fever 17D as a vaccine vector for microbial CTL epitopes: protection in a rodent malaria model. J Exp Med 2005;201:201-9. [PMID: 15657290 DOI: 10.1084/jem.20041526] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 3.1] [Reference Citation Analysis]
406 Herrero LJ, Zakhary A, Gahan ME, Nelson MA, Herring BL, Hapel AJ, Keller PA, Obeysekera M, Chen W, Sheng K, Taylor A, Wolf S, Bettadapura J, Broor S, Dar L, Mahalingam S. Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacology & Therapeutics 2013;137:266-82. [DOI: 10.1016/j.pharmthera.2012.10.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
407 Coffey LL, Mertens E, Brehin A, Fernandez-garcia MD, Amara A, Després P, Sakuntabhai A. Human genetic determinants of dengue virus susceptibility. Microbes and Infection 2009;11:143-56. [DOI: 10.1016/j.micinf.2008.12.006] [Cited by in Crossref: 87] [Cited by in F6Publishing: 76] [Article Influence: 7.3] [Reference Citation Analysis]
408 Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021;12:631274. [PMID: 33613502 DOI: 10.3389/fmicb.2021.631274] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
409 Chareonsirisuthigul T, Kalayanarooj S, Ubol S. Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol 2007;88:365-75. [PMID: 17251552 DOI: 10.1099/vir.0.82537-0] [Cited by in Crossref: 135] [Cited by in F6Publishing: 129] [Article Influence: 9.6] [Reference Citation Analysis]
410 Wichit S, Jittmittraphap A, Hidari KI, Thaisomboonsuk B, Petmitr S, Ubol S, Aoki C, Itonori S, Morita K, Suzuki T, Suzuki Y, Jampangern W. Dengue virus type 2 recognizes the carbohydrate moiety of neutral glycosphingolipids in mammalian and mosquito cells: Carbohydrates recognized by Dengue virus. Microbiology and Immunology 2011;55:135-40. [DOI: 10.1111/j.1348-0421.2010.00293.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
411 Smith DR. An update on mosquito cell expressed dengue virus receptor proteins: Mosquito receptor proteins. Insect Molecular Biology 2012;21:1-7. [DOI: 10.1111/j.1365-2583.2011.01098.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
412 Mahnke K, Knop J, Enk AH. Induction of tolerogenic DCs: ‘you are what you eat’. Trends Immunol. 2003;24:646-651. [PMID: 14644138 DOI: 10.1016/j.it.2003.09.012] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 3.9] [Reference Citation Analysis]
413 Yamauchi Y, Helenius A. Virus entry at a glance. Journal of Cell Science 2013. [DOI: 10.1242/jcs.119685] [Cited by in Crossref: 141] [Cited by in F6Publishing: 119] [Article Influence: 17.6] [Reference Citation Analysis]
414 Yabe R, Tateno H, Hirabayashi J. Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. FEBS J 2010;277:4010-26. [PMID: 20840590 DOI: 10.1111/j.1742-4658.2010.07792.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
415 Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019;1863:1480-97. [PMID: 31121217 DOI: 10.1016/j.bbagen.2019.05.012] [Cited by in Crossref: 176] [Cited by in F6Publishing: 122] [Article Influence: 88.0] [Reference Citation Analysis]
416 Cabrera-Hernandez A, Thepparit C, Suksanpaisan L, Smith DR. Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 2007;79:386-92. [PMID: 17311328 DOI: 10.1002/jmv.20786] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 3.6] [Reference Citation Analysis]
417 Gomila RC, Martin GW, Gehrke L. NF90 binds the dengue virus RNA 3' terminus and is a positive regulator of dengue virus replication. PLoS One 2011;6:e16687. [PMID: 21386893 DOI: 10.1371/journal.pone.0016687] [Cited by in Crossref: 69] [Cited by in F6Publishing: 66] [Article Influence: 6.9] [Reference Citation Analysis]
418 Kumar S, Kumar S, Singh RV, Chauhan A, Kumar A, Bharati J, Singh SV. Association of genetic variability in CD209 gene with bovine paratuberculosis disease: a case-control study in the Indian cattle population. Anim Biotechnol 2020;:1-8. [PMID: 32985930 DOI: 10.1080/10495398.2020.1823400] [Reference Citation Analysis]
419 Sun P, Fernandez S, Marovich MA, Palmer DR, Celluzzi CM, Boonnak K, Liang Z, Subramanian H, Porter KR, Sun W, Burgess TH. Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology 2009;383:207-15. [PMID: 19013627 DOI: 10.1016/j.virol.2008.10.022] [Cited by in Crossref: 69] [Cited by in F6Publishing: 63] [Article Influence: 5.3] [Reference Citation Analysis]
420 Santos Souza HF, da Silva Almeida B, Boscardin SB. Early dengue virus interactions: the role of dendritic cells during infection. Virus Res 2016;223:88-98. [PMID: 27381061 DOI: 10.1016/j.virusres.2016.07.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
421 Seema, Jain SK. Molecular mechanism of pathogenesis of dengue virus: Entry and fusion with target cell. Indian J Clin Biochem 2005;20:92-103. [PMID: 23105540 DOI: 10.1007/BF02867407] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
422 Jemielity S, Wang JJ, Chan YK, Ahmed AA, Li W, Monahan S, Bu X, Farzan M, Freeman GJ, Umetsu DT, Dekruyff RH, Choe H. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog 2013;9:e1003232. [PMID: 23555248 DOI: 10.1371/journal.ppat.1003232] [Cited by in Crossref: 206] [Cited by in F6Publishing: 177] [Article Influence: 25.8] [Reference Citation Analysis]
423 Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H, McElreavey K, Helden PD, Hoal EG, Gicquel B, Quintana-Murci L. Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med 2006;3:e20. [PMID: 16379498 DOI: 10.1371/journal.pmed.0030020] [Cited by in Crossref: 145] [Cited by in F6Publishing: 132] [Article Influence: 9.7] [Reference Citation Analysis]
424 Londrigan SL, Tate MD, Brooks AG, Reading PC. Cell-surface receptors on macrophages and dendritic cells for attachment and entry of influenza virus. J Leukoc Biol 2012;92:97-106. [PMID: 22124137 DOI: 10.1189/jlb.1011492] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
425 Vannberg FO, Chapman SJ, Khor CC, Tosh K, Floyd S, Jackson-Sillah D, Crampin A, Sichali L, Bah B, Gustafson P, Aaby P, McAdam KP, Bah-Sow O, Lienhardt C, Sirugo G, Fine P, Hill AV. CD209 genetic polymorphism and tuberculosis disease. PLoS One 2008;3:e1388. [PMID: 18167547 DOI: 10.1371/journal.pone.0001388] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 6.2] [Reference Citation Analysis]
426 Tung Y, Chang C, Lin Y, Hsieh S, Wang G. Development of double-generation gold nanoparticle chip-based dengue virus detection system combining fluorescence turn-on probes. Biosensors and Bioelectronics 2016;77:90-8. [DOI: 10.1016/j.bios.2015.09.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
427 Parameswaran P, Wang C, Trivedi SB, Eswarappa M, Montoya M, Balmaseda A, Harris E. Intrahost Selection Pressures Drive Rapid Dengue Virus Microevolution in Acute Human Infections. Cell Host Microbe 2017;22:400-410.e5. [PMID: 28910637 DOI: 10.1016/j.chom.2017.08.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 9.7] [Reference Citation Analysis]
428 Ceballos-olvera I, Chávez-salinas S, Medina F, Ludert JE, del Angel RM. JNK phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. Virology 2010;396:30-6. [DOI: 10.1016/j.virol.2009.10.019] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 4.9] [Reference Citation Analysis]
429 Yap SSL, Nguyen-Khuong T, Rudd PM, Alonso S. Dengue Virus Glycosylation: What Do We Know? Front Microbiol 2017;8:1415. [PMID: 28791003 DOI: 10.3389/fmicb.2017.01415] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
430 Cramer J, Aliu B, Jiang X, Sharpe T, Pang L, Hadorn A, Rabbani S, Ernst B. Poly-l-lysine Glycoconjugates Inhibit DC-SIGN-mediated Attachment of Pandemic Viruses. ChemMedChem 2021;16:2345-53. [PMID: 34061468 DOI: 10.1002/cmdc.202100348] [Reference Citation Analysis]
431 Chu JJ, Leong PW, Ng ML. Characterization of plasma membrane-associated proteins from Aedes albopictus mosquito (C6/36) cells that mediate West Nile virus binding and infection. Virology 2005;339:249-60. [PMID: 15992848 DOI: 10.1016/j.virol.2005.05.026] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
432 Bordi L, Avsic-Zupanc T, Lalle E, Vairo F, Capobianchi MR, da Costa Vasconcelos PF. Emerging Zika Virus Infection: A Rapidly Evolving Situation. Adv Exp Med Biol 2017;972:61-86. [PMID: 28032327 DOI: 10.1007/5584_2016_187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
433 van Montfoort N, van der Aa E, Woltman AM. Understanding MHC class I presentation of viral antigens by human dendritic cells as a basis for rational design of therapeutic vaccines. Front Immunol 2014;5:182. [PMID: 24795724 DOI: 10.3389/fimmu.2014.00182] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
434 Fuchs A, Lin TY, Beasley DW, Stover CM, Schwaeble WJ, Pierson TC, Diamond MS. Direct complement restriction of flavivirus infection requires glycan recognition by mannose-binding lectin. Cell Host Microbe 2010;8:186-95. [PMID: 20709295 DOI: 10.1016/j.chom.2010.07.007] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 5.5] [Reference Citation Analysis]
435 Ebner S, Ehammer Z, Holzmann S, Schwingshackl P, Forstner M, Stoitzner P, Huemer GM, Fritsch P, Romani N. Expression of C‐type lectin receptors by subsets of dendritic cells in human skin. International Immunology 2004;16:877-87. [DOI: 10.1093/intimm/dxh088] [Cited by in Crossref: 82] [Cited by in F6Publishing: 76] [Article Influence: 4.8] [Reference Citation Analysis]
436 Valenga F, Petri DF, Lucyszyn N, Jó TA, Sierakowski MR. Galactomannan thin films as supports for the immobilization of Concanavalin A and/or dengue viruses. Int J Biol Macromol 2012;50:88-94. [PMID: 22020153 DOI: 10.1016/j.ijbiomac.2011.10.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
437 Tsai TT, Chuang YJ, Lin YS, Chang CP, Wan SW, Lin SH, Chen CL, Lin CF. Antibody-dependent enhancement infection facilitates dengue virus-regulated signaling of IL-10 production in monocytes. PLoS Negl Trop Dis 2014;8:e3320. [PMID: 25412261 DOI: 10.1371/journal.pntd.0003320] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 5.7] [Reference Citation Analysis]
438 Lin B, Qing X, Liao J, Zhuo K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells 2020;9:E1022. [PMID: 32326128 DOI: 10.3390/cells9041022] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 22.0] [Reference Citation Analysis]
439 Farias KJ, Machado PR, Muniz JA, Imbeloni AA, da Fonseca BA. Antiviral activity of chloroquine against dengue virus type 2 replication in Aotus monkeys. Viral Immunol 2015;28:161-9. [PMID: 25664975 DOI: 10.1089/vim.2014.0090] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 7.2] [Reference Citation Analysis]
440 Syenina A, Saron WAA, Jagaraj CJ, Bibi S, Arock M, Gubler DJ, Rathore APS, Abraham SN, St John AL. Th1-Polarized, Dengue Virus-Activated Human Mast Cells Induce Endothelial Transcriptional Activation and Permeability. Viruses 2020;12:E1379. [PMID: 33276578 DOI: 10.3390/v12121379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
441 Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, Subbarao K, Nabel GJ. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 2004;78:5642-50. [PMID: 15140961 DOI: 10.1128/JVI.78.11.5642-5650.2004] [Cited by in Crossref: 338] [Cited by in F6Publishing: 256] [Article Influence: 19.9] [Reference Citation Analysis]
442 Obermajer N, Sattin S, Colombo C, Bruno M, Svajger U, Anderluh M, Bernardi A. Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists. Mol Divers 2011;15:347-60. [PMID: 21076980 DOI: 10.1007/s11030-010-9285-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
443 Reyes-del Valle J, del Angel RM. Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods 2004;116:95-102. [PMID: 14715312 DOI: 10.1016/j.jviromet.2003.10.014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 1.6] [Reference Citation Analysis]
444 Fink J, Gu F, Vasudevan SG. Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Rev Med Virol 2006;16:263-75. [PMID: 16791836 DOI: 10.1002/rmv.507] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 5.2] [Reference Citation Analysis]
445 Kim JM, Yun SI, Song BH, Hahn YS, Lee CH, Oh HW, Lee YM. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol 2008;82:7846-62. [PMID: 18524814 DOI: 10.1128/JVI.00789-08] [Cited by in Crossref: 65] [Cited by in F6Publishing: 39] [Article Influence: 5.0] [Reference Citation Analysis]
446 Avila-Bonilla RG, Yocupicio-Monroy M, Marchat LA, De Nova-Ocampo MA, Del Ángel RM, Salas-Benito JS. Analysis of the miRNA profile in C6/36 cells persistently infected with dengue virus type 2. Virus Res 2017;232:139-51. [PMID: 28267608 DOI: 10.1016/j.virusres.2017.03.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
447 Dalrymple NA, Mackow ER. Virus interactions with endothelial cell receptors: implications for viral pathogenesis. Curr Opin Virol 2014;7:134-40. [PMID: 25063986 DOI: 10.1016/j.coviro.2014.06.006] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.9] [Reference Citation Analysis]
448 Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence 2013;4:525-36. [PMID: 23841977 DOI: 10.4161/viru.25569] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
449 Nagaoka K, Takahara K, Tanaka K, Yoshida H, Steinman RM, Saitoh S, Akashi-Takamura S, Miyake K, Kang YS, Park CG, Inaba K. Association of SIGNR1 with TLR4-MD-2 enhances signal transduction by recognition of LPS in gram-negative bacteria. Int Immunol 2005;17:827-36. [PMID: 15908446 DOI: 10.1093/intimm/dxh264] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 4.0] [Reference Citation Analysis]
450 Wen D, Li S, Dong F, Zhang Y, Lin Y, Wang J, Zou Z, Zheng A. N-glycosylation of Viral E Protein Is the Determinant for Vector Midgut Invasion by Flaviviruses. mBio 2018;9:e00046-18. [PMID: 29463651 DOI: 10.1128/mBio.00046-18] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
451 Hassandarvish P, Rothan HA, Rezaei S, Yusof R, Abubakar S, Zandi K. In silico study on baicalein and baicalin as inhibitors of dengue virus replication. RSC Adv 2016;6:31235-47. [DOI: 10.1039/c6ra00817h] [Cited by in Crossref: 19] [Article Influence: 3.8] [Reference Citation Analysis]
452 Halstead SB, Heinz FX, Barrett AD, Roehrig JT. Dengue virus: molecular basis of cell entry and pathogenesis, 25-27 June 2003, Vienna, Austria. Vaccine 2005;23:849-56. [PMID: 15603884 DOI: 10.1016/j.vaccine.2004.03.069] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 3.1] [Reference Citation Analysis]
453 Lozach P, Amara A, Bartosch B, Virelizier J, Arenzana-seisdedos F, Cosset F, Altmeyer R. C-type Lectins L-SIGN and DC-SIGN Capture and Transmit Infectious Hepatitis C Virus Pseudotype Particles. Journal of Biological Chemistry 2004;279:32035-45. [DOI: 10.1074/jbc.m402296200] [Cited by in Crossref: 136] [Cited by in F6Publishing: 62] [Article Influence: 8.0] [Reference Citation Analysis]
454 Rodrigues R, Danskog K, Överby AK, Arnberg N. Characterizing the cellular attachment receptor for Langat virus. PLoS One 2019;14:e0217359. [PMID: 31163044 DOI: 10.1371/journal.pone.0217359] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
455 Urcuqui-Inchima S, Patiño C, Torres S, Haenni AL, Díaz FJ. Recent developments in understanding dengue virus replication. Adv Virus Res 2010;77:1-39. [PMID: 20951868 DOI: 10.1016/B978-0-12-385034-8.00001-6] [Cited by in Crossref: 31] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
456 Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020;9:E470. [PMID: 32549226 DOI: 10.3390/pathogens9060470] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
457 Alhoot MA, Wang SM, Sekaran SD. Inhibition of dengue virus entry and multiplication into monocytes using RNA interference. PLoS Negl Trop Dis 2011;5:e1410. [PMID: 22140591 DOI: 10.1371/journal.pntd.0001410] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
458 Sabatté J, Maggini J, Nahmod K, Amaral MM, Martínez D, Salamone G, Ceballos A, Giordano M, Vermeulen M, Geffner J. Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 2007;18:5-17. [PMID: 17321783 DOI: 10.1016/j.cytogfr.2007.01.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 2.9] [Reference Citation Analysis]
459 Londrigan SL, Turville SG, Tate MD, Deng YM, Brooks AG, Reading PC. N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN. J Virol 2011;85:2990-3000. [PMID: 21191006 DOI: 10.1128/JVI.01705-10] [Cited by in Crossref: 85] [Cited by in F6Publishing: 61] [Article Influence: 7.7] [Reference Citation Analysis]
460 Vliet SJ, García‐vallejo JJ, Kooyk Y. Dendritic cells and C‐type lectin receptors: coupling innate to adaptive immune responses. Immunol Cell Biol 2008;86:580-7. [DOI: 10.1038/icb.2008.55] [Cited by in Crossref: 114] [Cited by in F6Publishing: 103] [Article Influence: 8.8] [Reference Citation Analysis]
461 de Bakker BI, de Lange F, Cambi A, Korterik JP, van Dijk EMHP, van Hulst NF, Figdor CG, Garcia-parajo MF. Nanoscale Organization of the Pathogen Receptor DC-SIGN Mapped by Single-Molecule High-Resolution Fluorescence Microscopy. ChemPhysChem 2007;8:1473-80. [DOI: 10.1002/cphc.200700169] [Cited by in Crossref: 74] [Cited by in F6Publishing: 58] [Article Influence: 5.3] [Reference Citation Analysis]
462 Kwan WH, Helt AM, Marañón C, Barbaroux JB, Hosmalin A, Harris E, Fridman WH, Mueller CG. Dendritic cell precursors are permissive to dengue virus and human immunodeficiency virus infection. J Virol 2005;79:7291-9. [PMID: 15919883 DOI: 10.1128/JVI.79.12.7291-7299.2005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
463 Urcuqui-inchima S, Cabrera J, Haenni A. Interplay between dengue virus and Toll-like receptors, RIG-I/MDA5 and microRNAs: Implications for pathogenesis. Antiviral Research 2017;147:47-57. [DOI: 10.1016/j.antiviral.2017.09.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
464 Wu WL, Ho LJ, Chen PC, Tsai YT, Hsu ST, Chang DM, Lai JH. Immunosuppressive effects and mechanisms of leflunomide in dengue virus infection of human dendritic cells. J Clin Immunol 2011;31:1065-78. [PMID: 21845515 DOI: 10.1007/s10875-011-9578-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
465 Begum F, Das S, Mukherjee D, Mal S, Ray U. Insight into the Tropism of Dengue Virus in Humans. Viruses 2019;11:E1136. [PMID: 31835302 DOI: 10.3390/v11121136] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
466 Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9:465-479. [PMID: 19521399 DOI: 10.1038/nri2569] [Cited by in Crossref: 787] [Cited by in F6Publishing: 720] [Article Influence: 65.6] [Reference Citation Analysis]
467 Engering A, van Vliet SJ, Hebeda K, Jackson DG, Prevo R, Singh SK, Geijtenbeek TB, van Krieken H, van Kooyk Y. Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am J Pathol. 2004;164:1587-1595. [PMID: 15111305 DOI: 10.1016/s0002-9440(10)63717-0] [Cited by in Crossref: 70] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
468 Noble JA, Duru KC, Guindo A, Yi L, Imumorin IG, Diallo DA, Thomas BN. Interethnic diversity of the CD209 (rs4804803) gene promoter polymorphism in African but not American sickle cell disease. PeerJ 2015;3:e799. [PMID: 25755928 DOI: 10.7717/peerj.799] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
469 Marzi A, Möller P, Hanna SL, Harrer T, Eisemann J, Steinkasserer A, Becker S, Baribaud F, Pöhlmann S. Analysis of the interaction of Ebola virus glycoprotein with DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) and its homologue DC-SIGNR. J Infect Dis 2007;196 Suppl 2:S237-46. [PMID: 17940955 DOI: 10.1086/520607] [Cited by in Crossref: 58] [Cited by in F6Publishing: 56] [Article Influence: 4.5] [Reference Citation Analysis]
470 Rogers DM, Kent MS, Rempe SB. Molecular basis of endosomal-membrane association for the dengue virus envelope protein. Biochimica et Biophysica Acta (BBA) - Biomembranes 2015;1848:1041-52. [DOI: 10.1016/j.bbamem.2014.12.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
471 Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F. Biology of Zika Virus Infection in Human Skin Cells. J Virol. 2015;89:8880-8896. [PMID: 26085147 DOI: 10.1128/jvi.00354-15] [Cited by in Crossref: 729] [Cited by in F6Publishing: 474] [Article Influence: 121.5] [Reference Citation Analysis]
472 Medigeshi GR. Mosquito-borne flaviviruses: overview of viral life-cycle and host–virus interactions. Future Virology 2011;6:1075-89. [DOI: 10.2217/fvl.11.85] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
473 Rappocciolo G, Jenkins FJ, Hensler HR, Piazza P, Jais M, Borowski L, Watkins SC, Rinaldo CR Jr. DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J Immunol 2006;176:1741-9. [PMID: 16424204 DOI: 10.4049/jimmunol.176.3.1741] [Cited by in Crossref: 145] [Cited by in F6Publishing: 128] [Article Influence: 9.7] [Reference Citation Analysis]
474 Lang SM, Bynoe MO, Karki R, Tartell MA, Means RE. Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins down regulate both DC-SIGN and DC-SIGNR. PLoS One 2013;8:e58056. [PMID: 23460925 DOI: 10.1371/journal.pone.0058056] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
475 Rodpothong P, Auewarakul P. Positive selection sites in the surface genes of dengue virus: phylogenetic analysis of the interserotypic branches of the four serotypes. Virus Genes 2012;44:408-14. [PMID: 22222691 DOI: 10.1007/s11262-011-0709-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
476 Li PC, Jang J, Hsia CY, Groomes PV, Lian W, de Wispelaere M, Pitts JD, Wang J, Kwiatkowski N, Gray NS, Yang PL. Small Molecules Targeting the Flavivirus E Protein with Broad-Spectrum Activity and Antiviral Efficacy in Vivo. ACS Infect Dis 2019;5:460-72. [PMID: 30608640 DOI: 10.1021/acsinfecdis.8b00322] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
477 Falkowska E, Durso RJ, Gardner JP, Cormier EG, Arrigale RA, Ogawa RN, Donovan GP, Maddon PJ, Olson WC, Dragic T. L-SIGN (CD209L) isoforms differently mediate trans-infection of hepatoma cells by hepatitis C virus pseudoparticles. J Gen Virol 2006;87:2571-6. [PMID: 16894195 DOI: 10.1099/vir.0.82034-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
478 Glover KKM, Gao A, Zahedi-Amiri A, Coombs KM. Vero Cell Proteomic Changes Induced by Zika Virus Infection. Proteomics 2019;19:e1800309. [PMID: 30578658 DOI: 10.1002/pmic.201800309] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
479 Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL, Mathew A. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice. PLoS One 2009;4:e7251. [PMID: 19802382 DOI: 10.1371/journal.pone.0007251] [Cited by in Crossref: 102] [Cited by in F6Publishing: 98] [Article Influence: 8.5] [Reference Citation Analysis]
480 Racanelli V, Manigold T. Presentation of HCV antigens to naive CD8+T cells: why the where, when, what and how are important for virus control and infection outcome. Clin Immunol 2007;124:5-12. [PMID: 17540619 DOI: 10.1016/j.clim.2007.04.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
481 Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y. Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol. 2006;80:11000-11008. [PMID: 16943291 DOI: 10.1128/jvi.01735-06] [Cited by in Crossref: 169] [Cited by in F6Publishing: 108] [Article Influence: 11.3] [Reference Citation Analysis]
482 Sun P, Kochel TJ. The battle between infection and host immune responses of dengue virus and its implication in dengue disease pathogenesis. ScientificWorldJournal 2013;2013:843469. [PMID: 23476150 DOI: 10.1155/2013/843469] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
483 Pachiadakis I, Pollara G, Chain BM, Naoumov NV. Is hepatitis C virus infection of dendritic cells a mechanism facilitating viral persistence? Lancet Infect Dis 2005;5:296-304. [PMID: 15854885 DOI: 10.1016/S1473-3099(05)70114-6] [Cited by in Crossref: 65] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
484 Kaufmann B, Rossmann MG. Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect 2011;13:1-9. [PMID: 20869460 DOI: 10.1016/j.micinf.2010.09.005] [Cited by in Crossref: 83] [Cited by in F6Publishing: 68] [Article Influence: 7.5] [Reference Citation Analysis]
485 Kozlovskaya L, Osolodkin D, Shevtsova A, Romanova L, Rogova Y, Dzhivanian T, Lyapustin V, Pivanova G, Gmyl A, Palyulin V, Karganova G. GAG-binding variants of tick-borne encephalitis virus. Virology 2010;398:262-72. [DOI: 10.1016/j.virol.2009.12.012] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 3.4] [Reference Citation Analysis]
486 Kuno G, Chang GJ. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 2005;18:608-37. [PMID: 16223950 DOI: 10.1128/CMR.18.4.608-637.2005] [Cited by in Crossref: 173] [Cited by in F6Publishing: 97] [Article Influence: 10.8] [Reference Citation Analysis]
487 Tyagi A, Ahmed T, Shi J, Bhushan S. A complex between the Zika virion and the Fab of a broadly cross-reactive neutralizing monoclonal antibody revealed by cryo-EM and single particle analysis at 4.1 Å resolution. J Struct Biol X 2020;4:100028. [PMID: 32647830 DOI: 10.1016/j.yjsbx.2020.100028] [Reference Citation Analysis]
488 Chan KR, Ong EZ, Ooi EE. Therapeutic antibodies as a treatment option for dengue fever. Expert Rev Anti Infect Ther 2013;11:1147-57. [PMID: 24093625 DOI: 10.1586/14787210.2013.839941] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
489 Dey D, Poudyal S, Rehman A, Hasan SS. Structural and biochemical insights into flavivirus proteins. Virus Res 2021;296:198343. [PMID: 33607183 DOI: 10.1016/j.virusres.2021.198343] [Reference Citation Analysis]
490 Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD. DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J Virol 2003;77:12022-32. [PMID: 14581539 DOI: 10.1128/jvi.77.22.12022-12032.2003] [Cited by in Crossref: 156] [Cited by in F6Publishing: 101] [Article Influence: 8.7] [Reference Citation Analysis]
491 Jin X. Cellular and molecular basis of antibody-dependent enhancement in human dengue pathogenesis. Future Virology 2008;3:343-61. [DOI: 10.2217/17460794.3.4.343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
492 Tung Y, Wu M, Wang G, Hsieh S. Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the CLEC5A receptor. Nanomedicine: Nanotechnology, Biology and Medicine 2014;10:1335-41. [DOI: 10.1016/j.nano.2014.03.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
493 Perera R, Kuhn RJ. Structural proteomics of dengue virus. Curr Opin Microbiol. 2008;11:369-377. [PMID: 18644250 DOI: 10.1016/j.mib.2008.06.004] [Cited by in Crossref: 209] [Cited by in F6Publishing: 185] [Article Influence: 16.1] [Reference Citation Analysis]
494 Hosseini S, Muñoz-soto RB, Oliva-ramírez J, Vázquez-villegas P, Aghamohammadi N, Rodriguez-garcia A, Martinez-chapa SO. Latest Updates in Dengue Fever Therapeutics: Natural, Marine and Synthetic Drugs. CMC 2020;27:719-44. [DOI: 10.2174/0929867325666180629124709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
495 Shrestha B, Brien JD, Sukupolvi-Petty S, Austin SK, Edeling MA, Kim T, O'Brien KM, Nelson CA, Johnson S, Fremont DH, Diamond MS. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 2010;6:e1000823. [PMID: 20369024 DOI: 10.1371/journal.ppat.1000823] [Cited by in Crossref: 164] [Cited by in F6Publishing: 158] [Article Influence: 14.9] [Reference Citation Analysis]
496 Thompson BS, Moesker B, Smit JM, Wilschut J, Diamond MS, Fremont DH. A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes. PLoS Pathog. 2009;5:e1000453. [PMID: 19478866 DOI: 10.1371/journal.ppat.1000453] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 5.9] [Reference Citation Analysis]
497 Xavier-carvalho C, Gibson G, Brasil P, Ferreira RX, de Souza Santos R, Gonçalves Cruz O, de Oliveira SA, de Sá Carvalho M, Pacheco AG, Kubelka CF, Moraes MO. Single nucleotide polymorphisms in candidate genes and dengue severity in children: A case–control, functional and meta-analysis study. Infection, Genetics and Evolution 2013;20:197-205. [DOI: 10.1016/j.meegid.2013.08.017] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 4.1] [Reference Citation Analysis]
498 Dehuyser L, Schaeffer E, Chaloin O, Mueller CG, Baati R, Wagner A. Synthesis of Novel Mannoside Glycolipid Conjugates for Inhibition of HIV-1 Trans -Infection. Bioconjugate Chem 2012;23:1731-9. [DOI: 10.1021/bc200644d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
499 Hidari KI, Abe T, Suzuki T. Carbohydrate-related inhibitors of dengue virus entry. Viruses 2013;5:605-18. [PMID: 23389466 DOI: 10.3390/v5020605] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
500 Hung JJ, Hsieh MT, Young MJ, Kao CL, King CC, Chang W. An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol 2004;78:378-88. [PMID: 14671119 DOI: 10.1128/jvi.78.1.378-388.2004] [Cited by in Crossref: 161] [Cited by in F6Publishing: 72] [Article Influence: 9.5] [Reference Citation Analysis]
501 Fernandez-Garcia MD, Mazzon M, Jacobs M, Amara A. Pathogenesis of flavivirus infections: using and abusing the host cell. Cell Host Microbe 2009;5:318-28. [PMID: 19380111 DOI: 10.1016/j.chom.2009.04.001] [Cited by in Crossref: 187] [Cited by in F6Publishing: 177] [Article Influence: 15.6] [Reference Citation Analysis]
502 Rico-Hesse R. Dengue virus evolution and virulence models. Clin Infect Dis 2007;44:1462-6. [PMID: 17479944 DOI: 10.1086/517587] [Cited by in Crossref: 64] [Cited by in F6Publishing: 63] [Article Influence: 4.6] [Reference Citation Analysis]
503 Li K, Underhill DM. C-Type Lectin Receptors in Phagocytosis. Curr Top Microbiol Immunol 2020;429:1-18. [PMID: 32060644 DOI: 10.1007/82_2020_198] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
504 Erb SM, Butrapet S, Moss KJ, Luy BE, Childers T, Calvert AE, Silengo SJ, Roehrig JT, Huang CY, Blair CD. Domain-III FG loop of the dengue virus type 2 envelope protein is important for infection of mammalian cells and Aedes aegypti mosquitoes. Virology 2010;406:328-35. [DOI: 10.1016/j.virol.2010.07.024] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 3.4] [Reference Citation Analysis]
505 Jiang S, Sun L. Tongue Sole CD209: A Pattern-Recognition Receptor that Binds a Broad Range of Microbes and Promotes Phagocytosis. Int J Mol Sci 2017;18:E1848. [PMID: 28869534 DOI: 10.3390/ijms18091848] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
506 Takhampunya R, Palmer DR, McClain S, Barvir DA, Lynch J, Jarman RG, Thomas S, Gibbons RV, Burgess TH, Sun P, Kamau E, Putnak R, Zhang C. Phenotypic analysis of dengue virus isolates associated with dengue fever and dengue hemorrhagic fever for cellular attachment, replication and interferon signaling ability. Virus Res 2009;145:31-8. [PMID: 19540887 DOI: 10.1016/j.virusres.2009.05.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
507 Pohl C, Shishkova J, Schneider-Schaulies S. Viruses and dendritic cells: enemy mine. Cell Microbiol 2007;9:279-89. [PMID: 17284171 DOI: 10.1111/j.1462-5822.2006.00863.x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
508 Moberg CL. The discovery of dendritic cells. J Exp Med 2021;218:e20210830. [PMID: 34037675 DOI: 10.1084/jem.20210830] [Reference Citation Analysis]
509 Vega-almeida TO, Salas-benito M, De Nova-ocampo MA, del Angel RM, Salas-benito JS. Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Arch Virol 2013;158:1189-207. [DOI: 10.1007/s00705-012-1596-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
510 Yuan F, Zheng A. Entry of severe fever with thrombocytopenia syndrome virus. Virol Sin 2017;32:44-50. [PMID: 27995422 DOI: 10.1007/s12250-016-3858-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
511 François KO, Balzarini J. Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Med Res Rev 2012;32:349-87. [PMID: 20577974 DOI: 10.1002/med.20216] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 4.6] [Reference Citation Analysis]
512 Sevvana M, Long F, Miller AS, Klose T, Buda G, Sun L, Kuhn RJ, Rossmann MG. Refinement and Analysis of the Mature Zika Virus Cryo-EM Structure at 3.1 Å Resolution. Structure 2018;26:1169-1177.e3. [PMID: 29958768 DOI: 10.1016/j.str.2018.05.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
513 Na W, Yeom M, Choi IK, Yook H, Song D. Animal models for dengue vaccine development and testing. Clin Exp Vaccine Res 2017;6:104-10. [PMID: 28775974 DOI: 10.7774/cevr.2017.6.2.104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
514 Dejnirattisai W, Webb AI, Chan V, Jumnainsong A, Davidson A, Mongkolsapaya J, Screaton G. Lectin switching during dengue virus infection. J Infect Dis 2011;203:1775-83. [PMID: 21606536 DOI: 10.1093/infdis/jir173] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 5.0] [Reference Citation Analysis]
515 Chao LH, Jang J, Johnson A, Nguyen A, Gray NS, Yang PL, Harrison SC. How small-molecule inhibitors of dengue-virus infection interfere with viral membrane fusion. Elife 2018;7:e36461. [PMID: 29999491 DOI: 10.7554/eLife.36461] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
516 Chen KY, Hsu TC, Huang PY, Kang ST, Lo CF, Huang WP, Chen LL. Penaeus monodon chitin-binding protein (PmCBP) is involved in white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 2009;27:460-5. [PMID: 19576286 DOI: 10.1016/j.fsi.2009.06.018] [Cited by in Crossref: 58] [Cited by in F6Publishing: 42] [Article Influence: 4.8] [Reference Citation Analysis]
517 Kwissa M, Nakaya HI, Onlamoon N, Wrammert J, Villinger F, Perng GC, Yoksan S, Pattanapanyasat K, Chokephaibulkit K, Ahmed R, Pulendran B. Dengue virus infection induces expansion of a CD14(+)CD16(+) monocyte population that stimulates plasmablast differentiation. Cell Host Microbe 2014;16:115-27. [PMID: 24981333 DOI: 10.1016/j.chom.2014.06.001] [Cited by in Crossref: 142] [Cited by in F6Publishing: 119] [Article Influence: 20.3] [Reference Citation Analysis]
518 Sakoonwatanyoo P, Boonsanay V, Smith DR. Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. Intervirology 2006;49:161-72. [PMID: 16428892 DOI: 10.1159/000089377] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 3.5] [Reference Citation Analysis]
519 Kooyk YV, Engering A, Lekkerkerker AN, Ludwig IS, Geijtenbeek TB. Pathogens use carbohydrates to escape immunity induced by dendritic cells. Current Opinion in Immunology 2004;16:488-93. [DOI: 10.1016/j.coi.2004.05.010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 3.9] [Reference Citation Analysis]
520 Alen MM, Kaptein SJ, De Burghgraeve T, Balzarini J, Neyts J, Schols D. Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology 2009;387:67-75. [PMID: 19264337 DOI: 10.1016/j.virol.2009.01.043] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 4.3] [Reference Citation Analysis]
521 Gong D, Zhang TH, Zhao D, Du Y, Chapa TJ, Shi Y, Wang L, Contreras D, Zeng G, Shi PY, Wu TT, Arumugaswami V, Sun R. High-Throughput Fitness Profiling of Zika Virus E Protein Reveals Different Roles for Glycosylation during Infection of Mammalian and Mosquito Cells. iScience 2018;1:97-111. [PMID: 30227960 DOI: 10.1016/j.isci.2018.02.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 7.3] [Reference Citation Analysis]
522 Lo YL, Liou GG, Lyu JH, Hsiao M, Hsu TL, Wong CH. Dengue Virus Infection Is through a Cooperative Interaction between a Mannose Receptor and CLEC5A on Macrophage as a Multivalent Hetero-Complex. PLoS One 2016;11:e0166474. [PMID: 27832191 DOI: 10.1371/journal.pone.0166474] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
523 Serrano-Gómez D, Domínguez-Soto A, Ancochea J, Jimenez-Heffernan JA, Leal JA, Corbí AL. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol 2004;173:5635-43. [PMID: 15494514 DOI: 10.4049/jimmunol.173.9.5635] [Cited by in Crossref: 160] [Cited by in F6Publishing: 140] [Article Influence: 9.4] [Reference Citation Analysis]
524 Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 2010;67:2773-86. [PMID: 20372965 DOI: 10.1007/s00018-010-0357-z] [Cited by in Crossref: 237] [Cited by in F6Publishing: 194] [Article Influence: 21.5] [Reference Citation Analysis]
525 Shah M, Wadood A, Rahman Z, Husnain T. Interaction and inhibition of dengue envelope glycoprotein with mammalian receptor DC-sign, an in-silico approach. PLoS One 2013;8:e59211. [PMID: 23527139 DOI: 10.1371/journal.pone.0059211] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
526 Richter MK, da Silva Voorham JM, Torres Pedraza S, Hoornweg TE, van de Pol DP, Rodenhuis-Zybert IA, Wilschut J, Smit JM. Immature dengue virus is infectious in human immature dendritic cells via interaction with the receptor molecule DC-SIGN. PLoS One 2014;9:e98785. [PMID: 24886790 DOI: 10.1371/journal.pone.0098785] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
527 Varga N, Sutkeviciute I, Ribeiro-Viana R, Berzi A, Ramdasi R, Daghetti A, Vettoretti G, Amara A, Clerici M, Rojo J. A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and Dengue virus. Biomaterials. 2014;35:4175-4184. [PMID: 24508075 DOI: 10.1016/j.biomaterials.2014.01.014] [Cited by in Crossref: 79] [Cited by in F6Publishing: 65] [Article Influence: 11.3] [Reference Citation Analysis]
528 Durbin AP, Vargas MJ, Wanionek K, Hammond SN, Gordon A, Rocha C, Balmaseda A, Harris E. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology. 2008;376:429-435. [PMID: 18452966 DOI: 10.1016/j.virol.2008.03.028] [Cited by in Crossref: 137] [Cited by in F6Publishing: 121] [Article Influence: 10.5] [Reference Citation Analysis]
529 Clifford HD, Richmond P, Khoo S, Zhang G, Yerkovich ST, Le Souëf PN, Hayden CM. SLAM and DC-SIGN measles receptor polymorphisms and their impact on antibody and cytokine responses to measles vaccine. Vaccine 2011;29:5407-13. [DOI: 10.1016/j.vaccine.2011.05.068] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
530 Noble CG, Chen Y, Dong H, Gu F, Lim SP, Schul W, Wang Q, Shi P. Strategies for development of dengue virus inhibitors. Antiviral Research 2010;85:450-62. [DOI: 10.1016/j.antiviral.2009.12.011] [Cited by in Crossref: 186] [Cited by in F6Publishing: 171] [Article Influence: 16.9] [Reference Citation Analysis]
531 Martina BE, Koraka P, van den Doel P, Rimmelzwaan GF, Haagmans BL, Osterhaus AD. DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-alpha and TNF-alpha. Virus Res. 2008;135:64-71. [PMID: 18405996 DOI: 10.1016/j.virusres.2008.02.008] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 3.8] [Reference Citation Analysis]
532 Rinaldo CR, Piazza P. Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol. 2004;12:337-345. [PMID: 15223061 DOI: 10.1016/j.tim.2004.05.003] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 3.1] [Reference Citation Analysis]
533 Turner BC, Hemmila EM, Beauchemin N, Holmes KV. Receptor-dependent coronavirus infection of dendritic cells. J Virol 2004;78:5486-90. [PMID: 15113927 DOI: 10.1128/jvi.78.10.5486-5490.2004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
534 Mercado-Curiel RF, Esquinca-Avilés HA, Tovar R, Díaz-Badillo A, Camacho-Nuez M, Muñoz Mde L. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells. BMC Microbiol 2006;6:85. [PMID: 17014723 DOI: 10.1186/1471-2180-6-85] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 2.6] [Reference Citation Analysis]
535 Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH. RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production. PLoS Pathog 2017;13:e1006738. [PMID: 29186193 DOI: 10.1371/journal.ppat.1006738] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
536 Ramakrishnan L, Pillai MR, Nair RR. Dengue vaccine development: strategies and challenges. Viral Immunol 2015;28:76-84. [PMID: 25494228 DOI: 10.1089/vim.2014.0093] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
537 Martínez-Betancur V, Marín-Villa M, Martínez-Gutierrez M. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains. J Med Virol 2014;86:1448-58. [PMID: 24374781 DOI: 10.1002/jmv.23857] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
538 Huerta V, Chinea G, Fleitas N, Sarría M, Sánchez J, Toledo P, Padrón G. Characterization of the interaction of domain III of the envelope protein of dengue virus with putative receptors from CHO cells. Virus Res 2008;137:225-34. [PMID: 18723056 DOI: 10.1016/j.virusres.2008.07.022] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.2] [Reference Citation Analysis]
539 Cambi A, de Lange F, van Maarseveen NM, Nijhuis M, Joosten B, van Dijk EM, de Bakker BI, Fransen JA, Bovee-Geurts PH, van Leeuwen FN, Van Hulst NF, Figdor CG. Microdomains of the C-type lectin DC-SIGN are portals for virus entry into dendritic cells. J Cell Biol 2004;164:145-55. [PMID: 14709546 DOI: 10.1083/jcb.200306112] [Cited by in Crossref: 177] [Cited by in F6Publishing: 161] [Article Influence: 10.4] [Reference Citation Analysis]
540 Pattnaik P, Babu JP, Verma SK, Tak V, Rao PV. Bacterially expressed and refolded envelope protein (domain III) of dengue virus type-4 binds heparan sulfate. J Chromatogr B Analyt Technol Biomed Life Sci 2007;846:184-94. [PMID: 17011249 DOI: 10.1016/j.jchromb.2006.08.051] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
541 Chew MF, Poh KS, Poh CL. Peptides as Therapeutic Agents for Dengue Virus. Int J Med Sci 2017;14:1342-59. [PMID: 29200948 DOI: 10.7150/ijms.21875] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
542 Chen T, Tang P, Yang C, Kao L, Lo Y, Chuang C, Shih Y, Chen W. Antioxidant defense is one of the mechanisms by which mosquito cells survive dengue 2 viral infection. Virology 2011;410:410-7. [DOI: 10.1016/j.virol.2010.12.013] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 4.5] [Reference Citation Analysis]
543 Ross TM. Dengue virus. Clin Lab Med 2010;30:149-60. [PMID: 20513545 DOI: 10.1016/j.cll.2009.10.007] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 4.0] [Reference Citation Analysis]
544 Bilsborough J, Viney JL. Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease. Gastroenterology 2004;127:300-9. [PMID: 15236195 DOI: 10.1053/j.gastro.2004.01.028] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 4.6] [Reference Citation Analysis]
545 Larsson M, Beignon AS, Bhardwaj N. DC-virus interplay: a double edged sword. Semin Immunol 2004;16:147-61. [PMID: 15130499 DOI: 10.1016/j.smim.2004.02.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 2.2] [Reference Citation Analysis]
546 Mondotte JA, Lozach PY, Amara A, Gamarnik AV. Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol. 2007;81:7136-7148. [PMID: 17459925 DOI: 10.1128/jvi.00116-07] [Cited by in Crossref: 134] [Cited by in F6Publishing: 84] [Article Influence: 9.6] [Reference Citation Analysis]
547 Sung PS, Chang WC, Hsieh SL. CLEC5A: A Promiscuous Pattern Recognition Receptor to Microbes and Beyond. Adv Exp Med Biol 2020;1204:57-73. [PMID: 32152943 DOI: 10.1007/978-981-15-1580-4_3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
548 Charlier N, Davidson A, Dallmeier K, Molenkamp R, De Clercq E, Neyts J. Replication of not-known-vector flaviviruses in mosquito cells is restricted by intracellular host factors rather than by the viral envelope proteins. J Gen Virol 2010;91:1693-7. [PMID: 20219898 DOI: 10.1099/vir.0.019851-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
549 Peyrefitte CN, Pastorino B, Grau GE, Lou J, Tolou H, Couissinier-paris P. Dengue virus infection of human microvascular endothelial cells from different vascular beds promotes both common and specific functional changes. J Med Virol 2006;78:229-42. [DOI: 10.1002/jmv.20532] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 1.8] [Reference Citation Analysis]
550 Wang TT, Ravetch JV. Functional diversification of IgGs through Fc glycosylation. J Clin Invest 2019;129:3492-8. [PMID: 31478910 DOI: 10.1172/JCI130029] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 35.0] [Reference Citation Analysis]
551 Gerold G, Moeller R, Pietschmann T. Hepatitis C Virus Entry: Protein Interactions and Fusion Determinants Governing Productive Hepatocyte Invasion. Cold Spring Harb Perspect Med. 2020;10. [PMID: 31427285 DOI: 10.1101/cshperspect.a036830] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
552 Lozach P, Burleigh L, Staropoli I, Navarro-sanchez E, Harriague J, Virelizier J, Rey FA, Desprès P, Arenzana-seisdedos F, Amara A. Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN)-mediated Enhancement of Dengue Virus Infection Is Independent of DC-SIGN Internalization Signals. Journal of Biological Chemistry 2005;280:23698-708. [DOI: 10.1074/jbc.m504337200] [Cited by in Crossref: 183] [Cited by in F6Publishing: 106] [Article Influence: 11.4] [Reference Citation Analysis]
553 Oliveira M, Saraiva DP, Cavadas B, Fernandes V, Pedro N, Casademont I, Koeth F, Alshamali F, Harich N, Cherni L, Sierra B, Guzman MG, Sakuntabhai A, Pereira L. Population genetics-informed meta-analysis in seven genes associated with risk to dengue fever disease. Infect Genet Evol 2018;62:60-72. [PMID: 29673983 DOI: 10.1016/j.meegid.2018.04.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
554 Yu Q, Chow EM, McCaw SE, Hu N, Byrd D, Amet T, Hu S, Ostrowski MA, Gray-Owen SD. Association of Neisseria gonorrhoeae Opa(CEA) with dendritic cells suppresses their ability to elicit an HIV-1-specific T cell memory response. PLoS One 2013;8:e56705. [PMID: 23424672 DOI: 10.1371/journal.pone.0056705] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
555 Liang JJ, Chou MW, Lin YL. DC-SIGN Binding Contributed by an Extra N-Linked Glycosylation on Japanese Encephalitis Virus Envelope Protein Reduces the Ability of Viral Brain Invasion. Front Cell Infect Microbiol 2018;8:239. [PMID: 30042931 DOI: 10.3389/fcimb.2018.00239] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
556 Chen ST, Lin YL, Huang MT, Wu MF, Hsieh SL. Targeting C-type lectin for the treatment of flavivirus infections. Adv Exp Med Biol 2011;705:769-76. [PMID: 21618140 DOI: 10.1007/978-1-4419-7877-6_40] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
557 Noisakran S, Onlamoon N, Songprakhon P, Hsiao HM, Chokephaibulkit K, Perng GC. Cells in dengue virus infection in vivo. Adv Virol 2010;2010:164878. [PMID: 22331984 DOI: 10.1155/2010/164878] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
558 Chu JJ, Leong PW, Ng ML. Analysis of the endocytic pathway mediating the infectious entry of mosquito-borne flavivirus West Nile into Aedes albopictus mosquito (C6/36) cells. Virology. 2006;349:463-475. [PMID: 16490225 DOI: 10.1016/j.virol.2006.01.022] [Cited by in Crossref: 67] [Cited by in F6Publishing: 63] [Article Influence: 4.5] [Reference Citation Analysis]
559 Luplertlop N, Missé D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, Yssel H, Veas F. Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep 2006;7:1176-81. [PMID: 17028575 DOI: 10.1038/sj.embor.7400814] [Cited by in Crossref: 102] [Cited by in F6Publishing: 95] [Article Influence: 6.8] [Reference Citation Analysis]
560 Moriishi K, Matsuura Y. Mechanisms of hepatitis C virus infection. Antivir Chem Chemother 2003;14:285-97. [PMID: 14968935 DOI: 10.1177/095632020301400601] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 1.9] [Reference Citation Analysis]
561 Sirohi D, Kuhn RJ. Zika Virus Structure, Maturation, and Receptors. J Infect Dis 2017;216:S935-44. [PMID: 29267925 DOI: 10.1093/infdis/jix515] [Cited by in Crossref: 83] [Cited by in F6Publishing: 67] [Article Influence: 41.5] [Reference Citation Analysis]
562 Watterson D, Kobe B, Young PR. Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. J Gen Virol 2012;93:72-82. [PMID: 21957126 DOI: 10.1099/vir.0.037317-0] [Cited by in Crossref: 69] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
563 Van Liempt E, Imberty A, Bank CM, Van Vliet SJ, Van Kooyk Y, Geijtenbeek TB, Van Die I. Molecular basis of the differences in binding properties of the highly related C-type lectins DC-SIGN and L-SIGN to Lewis X trisaccharide and Schistosoma mansoni egg antigens. J Biol Chem 2004;279:33161-7. [PMID: 15184372 DOI: 10.1074/jbc.M404988200] [Cited by in Crossref: 81] [Cited by in F6Publishing: 37] [Article Influence: 4.8] [Reference Citation Analysis]
564 Nain M, Abdin MZ, Kalia M, Vrati S. Japanese encephalitis virus invasion of cell: allies and alleys. Rev Med Virol 2016;26:129-41. [PMID: 26695690 DOI: 10.1002/rmv.1868] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
565 Nybakken GE, Nelson CA, Chen BR, Diamond MS, Fremont DH. Crystal structure of the West Nile virus envelope glycoprotein. J Virol. 2006;80:11467-11474. [PMID: 16987985 DOI: 10.1128/jvi.01125-06] [Cited by in Crossref: 185] [Cited by in F6Publishing: 123] [Article Influence: 12.3] [Reference Citation Analysis]
566 Kleinert RDV, Montoya-Diaz E, Khera T, Welsch K, Tegtmeyer B, Hoehl S, Ciesek S, Brown RJP. Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus. Viruses 2019;11:E960. [PMID: 31627415 DOI: 10.3390/v11100960] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
567 Sun P, Celluzzi CM, Marovich M, Subramanian H, Eller M, Widjaja S, Palmer D, Porter K, Sun W, Burgess T. CD40 ligand enhances dengue viral infection of dendritic cells: a possible mechanism for T cell-mediated immunopathology. J Immunol 2006;177:6497-503. [PMID: 17056582 DOI: 10.4049/jimmunol.177.9.6497] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]