BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee JD, Kato K, Tobias PS, Kirkland TN, Ulevitch RJ. Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein. J Exp Med. 1992;175:1697-1705. [PMID: 1375269 DOI: 10.1084/jem.175.6.1697] [Cited by in Crossref: 172] [Cited by in F6Publishing: 158] [Article Influence: 5.9] [Reference Citation Analysis]
Number Citing Articles
1 Jørgensen PF, Wang JE, Almlöf M, Thiemermann C, Foster SJ, Solberg R, Aasen AO. Peptidoglycan and lipoteichoic acid modify monocyte phenotype in human whole blood. Clin Diagn Lab Immunol 2001;8:515-21. [PMID: 11329450 DOI: 10.1128/CDLI.8.3.515-521.2001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
2 Medina-Tamayo J, Ibarra-Sánchez A, Padilla-Trejo A, González-Espinosa C. IgE-dependent sensitization increases responsiveness to LPS but does not modify development of endotoxin tolerance in mast cells. Inflamm Res 2011;60:19-27. [PMID: 20625918 DOI: 10.1007/s00011-010-0230-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chakravortty D, Kato Y, Koide N, Sugiyama T, Kawai M, Fukada M, Yoshida T, Yokochi T. Production of tissue factor in CD14-expressing human umbilical vein endothelial cells by lipopolysaccharide. FEMS Microbiology Letters 1999;178:235-9. [DOI: 10.1111/j.1574-6968.1999.tb08682.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
4 Heinzelmann M, Polk HC Jr, Chernobelsky A, Stites TP, Gordon LE. Endotoxin and muramyl dipeptide modulate surface receptor expression on human mononuclear cells. Immunopharmacology 2000;48:117-28. [PMID: 10936509 DOI: 10.1016/s0162-3109(00)00195-8] [Cited by in Crossref: 36] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
5 Tapping RI, Tobias PS. Cellular Binding of Soluble CD14 Requires Lipopolysaccharide (LPS) and LPS-binding Protein. Journal of Biological Chemistry 1997;272:23157-64. [DOI: 10.1074/jbc.272.37.23157] [Cited by in Crossref: 74] [Cited by in F6Publishing: 66] [Article Influence: 3.1] [Reference Citation Analysis]
6 Hailman E, Albers JJ, Wolfbauer G, Tu A, Wright SD. Neutralization and Transfer of Lipopolysaccharide by Phospholipid Transfer Protein. Journal of Biological Chemistry 1996;271:12172-8. [DOI: 10.1074/jbc.271.21.12172] [Cited by in Crossref: 130] [Cited by in F6Publishing: 125] [Article Influence: 5.2] [Reference Citation Analysis]
7 Jungi TW, Sager H, Adler H, Brcic M, Pfister H. Serum factors, cell membrane CD14, and beta2 integrins are not required for activation of bovine macrophages by lipopolysaccharide. Infect Immun 1997;65:3577-84. [PMID: 9284122 DOI: 10.1128/iai.65.9.3577-3584.1997] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
8 Medvedev AE, Blanco JC, Qureshi N, Vogel SN. Limited role of ceramide in lipopolysaccharide-mediated mitogen-activated protein kinase activation, transcription factor induction, and cytokine release. J Biol Chem 1999;274:9342-50. [PMID: 10092612 DOI: 10.1074/jbc.274.14.9342] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 1.7] [Reference Citation Analysis]
9 Yamamoto T, Ebe Y, Hasegawa G, Kataoka M, Yamamoto S, Naito M. Expression of scavenger receptor class A and CD14 in lipopolysaccharide-induced lung injury. Pathol Int 1999;49:983-92. [PMID: 10594845 DOI: 10.1046/j.1440-1827.1999.00978.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
10 Pérez-Rodríguez MJ, Ibarra-Sánchez A, Román-Figueroa A, Pérez-Severiano F, González-Espinosa C. Mutant Huntingtin affects toll-like receptor 4 intracellular trafficking and cytokine production in mast cells. J Neuroinflammation 2020;17:95. [PMID: 32220257 DOI: 10.1186/s12974-020-01758-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Heumann D, Roger T. Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta. 2002;323:59-72. [PMID: 12135807 DOI: 10.1016/s0009-8981(02)00180-8] [Cited by in Crossref: 236] [Cited by in F6Publishing: 73] [Article Influence: 12.4] [Reference Citation Analysis]
12 Norgard MV, Arndt LL, Akins DR, Curetty LL, Harrich DA, Radolf JD. Activation of human monocytic cells by Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides proceeds via a pathway distinct from that of lipopolysaccharide but involves the transcriptional activator NF-kappa B. Infect Immun 1996;64:3845-52. [DOI: 10.1128/iai.64.9.3845-3852.1996] [Cited by in Crossref: 94] [Cited by in F6Publishing: 51] [Article Influence: 3.8] [Reference Citation Analysis]
13 Wang ZQ, Bapat AS, Rayanade RJ, Dagtas AS, Hoffmann MK. Interleukin-10 induces macrophage apoptosis and expression of CD16 (FcgammaRIII) whose engagement blocks the cell death programme and facilitates differentiation. Immunology 2001;102:331-7. [PMID: 11298832 DOI: 10.1046/j.1365-2567.2001.01171.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 1.9] [Reference Citation Analysis]
14 Kojima K, Musch MW, Ropeleski MJ, Boone DL, Ma A, Chang EB. Escherichia coli LPS induces heat shock protein 25 in intestinal epithelial cells through MAP kinase activation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G645-G652. [PMID: 14630641 DOI: 10.1152/ajpgi.00080.2003] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 2.6] [Reference Citation Analysis]
15 Xu J, Nishijima M, Kono Y, Taniai K, Kato Y, Kadono-okuda K, Yamamoto M, Shimabukuro M, Chowdhury S, Choi SK, Yamakawa M. Identification of a hemocyte membrane protein of the silkworm, Bombyx mori, which specifically binds to bacterial lipopolysaccharide. Insect Biochemistry and Molecular Biology 1995;25:921-8. [DOI: 10.1016/0965-1748(95)00031-p] [Cited by in Crossref: 16] [Article Influence: 0.6] [Reference Citation Analysis]
16 Majerle A, Kidric J, Jerala R. Expression and refolding of functional fragments of the human lipopolysaccharide receptor CD14 in Escherichia coli and Pichia pastoris. Protein Expr Purif 1999;17:96-104. [PMID: 10497074 DOI: 10.1006/prep.1999.1109] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
17 Filipp D, Alizadeh-Khiavi K, Richardson C, Palma A, Paredes N, Takeuchi O, Akira S, Julius M. Soluble CD14 enriched in colostrum and milk induces B cell growth and differentiation. Proc Natl Acad Sci U S A 2001;98:603-8. [PMID: 11209057 DOI: 10.1073/pnas.98.2.603] [Cited by in Crossref: 72] [Cited by in F6Publishing: 61] [Article Influence: 3.6] [Reference Citation Analysis]
18 Laflamme N, Rivest S. Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor kappaB alpha within specific cellular populations of the rat brain. J Neurochem 1999;73:309-21. [PMID: 10386984 DOI: 10.1046/j.1471-4159.1999.0730309.x] [Cited by in Crossref: 127] [Cited by in F6Publishing: 127] [Article Influence: 5.8] [Reference Citation Analysis]
19 Kabithe E, Hillegas J, Stokol T, Moore J, Wagner B. Monoclonal antibodies to equine CD14. Vet Immunol Immunopathol 2010;138:149-53. [PMID: 20674042 DOI: 10.1016/j.vetimm.2010.07.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
20 Mueller M, Lindner B, Kusumoto S, Fukase K, Schromm AB, Seydel U. Aggregates are the biologically active units of endotoxin. J Biol Chem 2004;279:26307-13. [PMID: 15096514 DOI: 10.1074/jbc.M401231200] [Cited by in Crossref: 161] [Cited by in F6Publishing: 45] [Article Influence: 9.5] [Reference Citation Analysis]
21 Schnittker D, Kwofie K, Ashkar A, Trigatti B, Richards CD. Oncostatin M and TLR-4 ligand synergize to induce MCP-1, IL-6, and VEGF in human aortic adventitial fibroblasts and smooth muscle cells. Mediators Inflamm 2013;2013:317503. [PMID: 24307759 DOI: 10.1155/2013/317503] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
22 Horton JW, Maass DL, White DJ, Minei JP. Bactericidal/permeability increasing protein attenuates the myocardial inflammation/dysfunction that occurs with burn complicated by subsequent infection. J Appl Physiol (1985) 2007;103:948-58. [PMID: 17585043 DOI: 10.1152/japplphysiol.00606.2006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
23 Kielian TL, Blecha F. CD14 and other recognition molecules for lipopolysaccharide: a review. Immunopharmacology. 1995;29:187-205. [PMID: 7542643 DOI: 10.1016/0162-3109(95)00003-c] [Cited by in Crossref: 112] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
24 Kitchens RL, Munford RS. Enzymatically deacylated lipopolysaccharide (LPS) can antagonize LPS at multiple sites in the LPS recognition pathway. J Biol Chem 1995;270:9904-10. [PMID: 7537270 DOI: 10.1074/jbc.270.17.9904] [Cited by in Crossref: 99] [Cited by in F6Publishing: 92] [Article Influence: 3.8] [Reference Citation Analysis]
25 Hamann L, El-Samalouti V, Ulmer AJ, Flad HD, Rietschel ET. Components of gut bacteria as immunomodulators. Int J Food Microbiol. 1998;41:141-154. [PMID: 9704863 DOI: 10.1016/s0168-1605(98)00047-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
26 Mathison J, Wolfson E, Steinemann S, Tobias P, Ulevitch R. Lipopolysaccharide (LPS) recognition in macrophages. Participation of LPS-binding protein and CD14 in LPS-induced adaptation in rabbit peritoneal exudate macrophages. J Clin Invest 1993;92:2053-9. [PMID: 7691891 DOI: 10.1172/JCI116801] [Cited by in Crossref: 57] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
27 Gupta D, Kirkland TN, Viriyakosol S, Dziarski R. CD14 Is a Cell-activating Receptor for Bacterial Peptidoglycan. Journal of Biological Chemistry 1996;271:23310-6. [DOI: 10.1074/jbc.271.38.23310] [Cited by in Crossref: 155] [Cited by in F6Publishing: 143] [Article Influence: 6.2] [Reference Citation Analysis]
28 Good DW, George T, Watts BA. Toll-like receptor 2 is required for LPS-induced Toll-like receptor 4 signaling and inhibition of ion transport in renal thick ascending limb. J Biol Chem. 2012;287:20208-20220. [PMID: 22523073 DOI: 10.1074/jbc.m111.336255] [Cited by in Crossref: 45] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
29 Tsukamoto H, Takeuchi S, Kubota K, Kobayashi Y, Kozakai S, Ukai I, Shichiku A, Okubo M, Numasaki M, Kanemitsu Y, Matsumoto Y, Nochi T, Watanabe K, Aso H, Tomioka Y. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKKϵ-IRF3 axis activation. J Biol Chem 2018;293:10186-201. [PMID: 29760187 DOI: 10.1074/jbc.M117.796631] [Cited by in Crossref: 41] [Cited by in F6Publishing: 21] [Article Influence: 13.7] [Reference Citation Analysis]
30 Fang W, Yao Y, Shi Z, Yu Y, Wu Y, Lu L, (C. Y.) Sheng Z. Effect of recombinant bactericidal/permeability-increasing protein on endotoxin translocation and lipopolysaccharide-binding protein/CD14 expression in rats after thermal injury: . Critical Care Medicine 2001;29:1452-9. [DOI: 10.1097/00003246-200107000-00025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
31 Yamamoto K, Shimokawa T, Yi H, Isobe K, Kojima T, Loskutoff DJ, Saito H. Aging accelerates endotoxin-induced thrombosis : increased responses of plasminogen activator inhibitor-1 and lipopolysaccharide signaling with aging. Am J Pathol 2002;161:1805-14. [PMID: 12414527 DOI: 10.1016/s0002-9440(10)64457-4] [Cited by in Crossref: 59] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
32 White AF, Demchenko AV. Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues. Adv Carbohydr Chem Biochem 2014;71:339-89. [PMID: 25480508 DOI: 10.1016/B978-0-12-800128-8.00005-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
33 Kitchens RL, Ulevitch RJ, Munford RS. Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J Exp Med 1992;176:485-94. [PMID: 1380063 DOI: 10.1084/jem.176.2.485] [Cited by in Crossref: 174] [Cited by in F6Publishing: 179] [Article Influence: 6.0] [Reference Citation Analysis]
34 Panter G, Jerala R. The ectodomain of the Toll-like receptor 4 prevents constitutive receptor activation. J Biol Chem 2011;286:23334-44. [PMID: 21543336 DOI: 10.1074/jbc.M110.205419] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
35 Pugin J, Kravchenko VV, Lee J, Kline L, Ulevitch RJ, Tobias PS. Cell Activation Mediated by Glycosylphosphatidylinositol-Anchored or Transmembrane Forms of CD14. Infect Immun 1998;66:1174-80. [DOI: 10.1128/iai.66.3.1174-1180.1998] [Cited by in Crossref: 57] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
36 Kirkland T, Viriyakosol S, Perez-perez GI, Blaser MJ. Helicobacter pylori lipopolysaccharide can activate 70Z/3 cells via CD14. Infect Immun 1997;65:604-8. [DOI: 10.1128/iai.65.2.604-608.1997] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
37 Sundan A, Gullstein-Jahr T, Otterlei M, Ryan L, Bazil V, Wright SD, Espevik T. Soluble CD14 from urine copurifies with a potent inducer of cytokines. Eur J Immunol 1994;24:1779-84. [PMID: 7519994 DOI: 10.1002/eji.1830240809] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 0.4] [Reference Citation Analysis]
38 Nockher WA, Scherberich JE. Monocyte cell-surface CD14 expression and soluble CD14 antigen in hemodialysis: evidence for chronic exposure to LPS. Kidney Int 1995;48:1469-76. [PMID: 8544403 DOI: 10.1038/ki.1995.436] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 1.4] [Reference Citation Analysis]
39 Pugin J, Heumann ID, Tomasz A, Kravchenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ. CD14 is a pattern recognition receptor. Immunity. 1994;1:509-516. [PMID: 7534618 DOI: 10.1016/1074-7613(94)90093-0] [Cited by in Crossref: 466] [Cited by in F6Publishing: 435] [Article Influence: 17.9] [Reference Citation Analysis]
40 Martín-Ávila A, Medina-Tamayo J, Ibarra-Sánchez A, Vázquez-Victorio G, Castillo-Arellano JI, Hernández-Mondragón AC, Rivera J, Madera-Salcedo IK, Blank U, Macías-Silva M, González-Espinosa C. Protein Tyrosine Kinase Fyn Regulates TLR4-Elicited Responses on Mast Cells Controlling the Function of a PP2A-PKCα/β Signaling Node Leading to TNF Secretion. J Immunol 2016;196:5075-88. [PMID: 27183589 DOI: 10.4049/jimmunol.1501823] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
41 Tapping RI, Akashi S, Miyake K, Godowski PJ, Tobias PS. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J Immunol 2000;165:5780-7. [PMID: 11067937 DOI: 10.4049/jimmunol.165.10.5780] [Cited by in Crossref: 265] [Cited by in F6Publishing: 242] [Article Influence: 12.6] [Reference Citation Analysis]
42 Gong JP, Dai LL, Liu CA, Wu CX, Shi YJ, Li SW, Li XH. Expression of CD14 protein and its gene in liver sinusoidal endothelial cells during endotoxemia. World J Gastroenterol 2002;8:551-4. [PMID: 12046090 DOI: 10.3748/wjg.v8.i3.551] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
43 Moran AP. Structure-Bioactivity Relationships of Bacterial Endotoxins. Journal of Toxicology: Toxin Reviews 2008;14:47-83. [DOI: 10.3109/15569549509089968] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
44 Abrahamson SL, Wu HM, Williams RE, Der K, Ottah N, Little R, Gazzano-Santoro H, Theofan G, Bauer R, Leigh S, Orme A, Horwitz AH, Carroll SF, Dedrick RL. Biochemical characterization of recombinant fusions of lipopolysaccharide binding protein and bactericidal/permeability-increasing protein. Implications in biological activity. J Biol Chem 1997;272:2149-55. [PMID: 8999916 DOI: 10.1074/jbc.272.4.2149] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 1.6] [Reference Citation Analysis]
45 Andrault JB, Gaillard I, Giorgi D, Rouquier S. Expansion of the BPI family by duplication on human chromosome 20: characterization of the RY gene cluster in 20q11.21 encoding olfactory transporters/antimicrobial-like peptides. Genomics 2003;82:172-84. [PMID: 12837268 DOI: 10.1016/s0888-7543(03)00102-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
46 Wei W, Kim JM, Medina D, Lakatta EG, Lin L. GeneOptimizer program-assisted cDNA reengineering enhances sRAGE autologous expression in Chinese hamster ovary cells. Protein Expr Purif 2014;95:143-8. [PMID: 24373844 DOI: 10.1016/j.pep.2013.12.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
47 Lee S, Elvitigala DAS, Lee S, Kim HC, Park H, Lee J. Molecular characterization of a bactericidal permeability-increasing protein/lipopolysaccharide-binding protein from black rockfish ( Sebastes schlegelii ): Deciphering its putative antibacterial role. Developmental & Comparative Immunology 2017;67:266-75. [DOI: 10.1016/j.dci.2016.09.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
48 Ulevitch RJ. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol 1993;53:267-89. [PMID: 7685560 DOI: 10.1016/s0065-2776(08)60502-7] [Cited by in Crossref: 120] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
49 Lacroix S, Feinstein D, Rivest S. The Bacterial Endotoxin Lipopolysaccharide has the Ability to Target the Brain in Upregulating Its Membrane CD14 Receptor Within Specific Cellular Populations. Brain Pathology 1998;8:625-40. [DOI: 10.1111/j.1750-3639.1998.tb00189.x] [Cited by in Crossref: 149] [Cited by in F6Publishing: 150] [Article Influence: 6.8] [Reference Citation Analysis]
50 Dziarski R, Tapping RI, Tobias PS. Binding of bacterial peptidoglycan to CD14. J Biol Chem 1998;273:8680-90. [PMID: 9535844 DOI: 10.1074/jbc.273.15.8680] [Cited by in Crossref: 188] [Cited by in F6Publishing: 178] [Article Influence: 8.2] [Reference Citation Analysis]
51 Shapira L, Takashiba S, Amar S, Van Dyke TE. Porphyromonas gingivalis lipopolysaccharide stimulation of human monocytes: dependence on serum and CD14 receptor. Oral Microbiol Immunol 1994;9:112-7. [PMID: 7516534 DOI: 10.1111/j.1399-302x.1994.tb00044.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
52 Raetz CR. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J Bacteriol 1993;175:5745-53. [PMID: 8376321 DOI: 10.1128/jb.175.18.5745-5753.1993] [Cited by in Crossref: 201] [Cited by in F6Publishing: 139] [Article Influence: 7.2] [Reference Citation Analysis]
53 Koide N, Sugiyama T, Kato Y, Chakravortty D, Mya Mya Mu, Yoshida T, Hamano T, Yokochi T. Mouse B1 cell line responds to lipopolysaccharide via membrane-bound CD14. Journal of Endotoxin Research 2001;7:39-43. [DOI: 10.1177/09680519010070010601] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
54 Thomas CJ, Kapoor M, Sharma S, Bausinger H, Zyilan U, Lipsker D, Hanau D, Surolia A. Evidence of a trimolecular complex involving LPS, LPS binding protein and soluble CD14 as an effector of LPS response. FEBS Lett 2002;531:184-8. [PMID: 12417309 DOI: 10.1016/s0014-5793(02)03499-3] [Cited by in Crossref: 59] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
55 Rietschel ET, Brade H, Holst O, Brade L, Müller-loennies S, Mamat U, Zähringer U, Beckmann F, Seydel U, Brandenburg K, Ulmer AJ, Mattern T, Heine H, Schletter J, Loppnow H, Schönbeck U, Flad H, Hauschildt S, Schade UF, Di Padova F, Kusumoto S, Schumann RR. Bacterial Endotoxin: Chemical Constitution, Biological Recognition, Host Response, and Immunological Detoxification. In: Rietschel ET, Wagner H, editors. Pathology of Septic Shock. Berlin: Springer Berlin Heidelberg; 1996. pp. 39-81. [DOI: 10.1007/978-3-642-80186-0_3] [Cited by in Crossref: 82] [Cited by in F6Publishing: 112] [Article Influence: 3.3] [Reference Citation Analysis]
56 Alexander C, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res. 2001;7:167-202. [PMID: 11581570 DOI: 10.1177/09680519010070030101] [Cited by in Crossref: 98] [Cited by in F6Publishing: 36] [Article Influence: 5.2] [Reference Citation Analysis]
57 Wu T, Liu T, Zhang L, Xing LJ, Zheng PY, Ji G. Chinese medicinal formula, Qinggan Huoxue Recipe protects rats from alcoholic liver disease via the lipopolysaccharide-Kupffer cell signal conduction pathway. Exp Ther Med. 2014;8:363-370. [PMID: 25009584 DOI: 10.3892/etm.2014.1740] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
58 Landmann R, Müller B, Zimmerli W. CD14, new aspects of ligand and signal diversity. Microbes Infect 2000;2:295-304. [PMID: 10758406 DOI: 10.1016/s1286-4579(00)00298-7] [Cited by in Crossref: 111] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
59 Rokita E, Menzel EJ. Characteristics of CD14 shedding from human monocytes: Evidence for the competition of soluble CD14 (sCD14) with CD14 receptors for lipopolysaccharide (LPS) binding. APMIS 1997;105:510-8. [DOI: 10.1111/j.1699-0463.1997.tb05048.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.5] [Reference Citation Analysis]
60 Juan TS, Hailman E, Kelley MJ, Wright SD, Lichenstein HS. Identification of a Domain in Soluble CD14 Essential for Lipopolysaccharide (LPS) Signaling but Not LPS Binding. Journal of Biological Chemistry 1995;270:17237-42. [DOI: 10.1074/jbc.270.29.17237] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 1.7] [Reference Citation Analysis]
61 Martin TR, Mathison JC, Tobias PS, Letúrcq DJ, Moriarty AM, Maunder RJ, Ulevitch RJ. Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. Implications for cytokine production in normal and injured lungs. J Clin Invest 1992;90:2209-19. [PMID: 1281827 DOI: 10.1172/JCI116106] [Cited by in Crossref: 155] [Cited by in F6Publishing: 43] [Article Influence: 5.5] [Reference Citation Analysis]
62 Ching L, Joseph WR, Zhuang L, Baguley BC. Interaction between endotoxin and the antitumour agent 5,6-dimethylxanthenone-4-acetic acid in the induction of tumour necrosis factor and haemorrhagic necrosis of colon 38 tumours. Cancer Chemother Pharmacol 1994;35:153-60. [DOI: 10.1007/bf00686639] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
63 Stuhlmeier KM, Bröll J, Iliev B. NF-kappaB independent activation of a series of proinflammatory genes by hydrogen sulfide. Exp Biol Med (Maywood) 2009;234:1327-38. [PMID: 19855074 DOI: 10.3181/0904-RM-137] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
64 Bosshart H, Heinzelmann M. THP-1 cells as a model for human monocytes. Ann Transl Med 2016;4:438. [PMID: 27942529 DOI: 10.21037/atm.2016.08.53] [Cited by in Crossref: 112] [Cited by in F6Publishing: 85] [Article Influence: 22.4] [Reference Citation Analysis]
65 Song PI, Neparidze N, Armstrong CA, Ansel JC, Park Y, Abraham T, Harten B, Zivony A. Human Keratinocytes Express Functional CD14 and Toll-Like Receptor 4. Journal of Investigative Dermatology 2002;119:424-32. [DOI: 10.1046/j.1523-1747.2002.01847.x] [Cited by in Crossref: 139] [Cited by in F6Publishing: 114] [Article Influence: 7.3] [Reference Citation Analysis]
66 Philpott M, Joseph WR, Crosier KE, Baguley BC, Ching LM. Production of tumour necrosis factor-alpha by cultured human peripheral blood leucocytes in response to the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Br J Cancer 1997;76:1586-91. [PMID: 9413946 DOI: 10.1038/bjc.1997.601] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 1.1] [Reference Citation Analysis]
67 Viriyakosol S, Kirkland TN. The N-terminal half of membrane CD14 is a functional cellular lipopolysaccharide receptor. Infect Immun 1996;64:653-6. [PMID: 8550221 DOI: 10.1128/iai.64.2.653-656.1996] [Cited by in Crossref: 33] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
68 Garrett TA, Rosser MF, Raetz CR. Signal transduction triggered by lipid A-like molecules in 70Z/3 pre-B lymphocyte tumor cells. Biochim Biophys Acta. 1999;1437:246-256. [PMID: 10064907 DOI: 10.1016/s1388-1981(99)00014-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
69 Golenbock D, Liu Y, Millham F, Freeman M, Zoeller R. Surface expression of human CD14 in Chinese hamster ovary fibroblasts imparts macrophage-like responsiveness to bacterial endotoxin. Journal of Biological Chemistry 1993;268:22055-9. [DOI: 10.1016/s0021-9258(20)80647-4] [Cited by in Crossref: 70] [Article Influence: 2.5] [Reference Citation Analysis]
70 Perera PY, Qureshi N, Christ WJ, Stütz P, Vogel SN. Lipopolysaccharide and its analog antagonists display differential serum factor dependencies for induction of cytokine genes in murine macrophages. Infect Immun 1998;66:2562-9. [PMID: 9596717 DOI: 10.1128/IAI.66.6.2562-2569.1998] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
71 Baik J, Hong S, Choi S, Jeon J, Park O, Cho K, Seo D, Kum K, Yun C, Han S. Alpha-amylase is a human salivary protein with affinity to lipopolysaccharide of Aggregatibacter actinomycetemcomitans. Mol oral Microbiol 2013;28:142-53. [DOI: 10.1111/omi.12011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
72 Tobias PS, Ulevitch RJ. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology 1993;187:227-32. [PMID: 7687234 DOI: 10.1016/S0171-2985(11)80341-4] [Cited by in Crossref: 126] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
73 Orr SL, Tobias P. LPS and LAM activation of the U373 astrocytoma cell line: Differential requirement for CD14. Journal of Endotoxin Research 2000;6:215-22. [DOI: 10.1177/09680519000060030201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
74 Shams H, Wizel B, Lakey DL, Samten B, Vankayalapati R, Valdivia RH, Kitchens RL, Griffith DE, Barnes PF. The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol Med Microbiol 2003;36:63-9. [PMID: 12727367 DOI: 10.1016/S0928-8244(03)00039-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
75 Delude R, Fenton M, Savedra R, Perera P, Vogel S, Thieringer R, Golenbock D. CD14-mediated translocation of nuclear factor-kappa B induced by lipopolysaccharide does not require tyrosine kinase activity. Journal of Biological Chemistry 1994;269:22253-60. [DOI: 10.1016/s0021-9258(17)31784-2] [Cited by in Crossref: 75] [Article Influence: 2.8] [Reference Citation Analysis]
76 Cooper A, Tal G, Lider O, Shaul Y. Cytokine Induction by the Hepatitis B Virus Capsid in Macrophages Is Facilitated by Membrane Heparan Sulfate and Involves TLR2. J Immunol 2005;175:3165-76. [DOI: 10.4049/jimmunol.175.5.3165] [Cited by in Crossref: 98] [Cited by in F6Publishing: 90] [Article Influence: 6.1] [Reference Citation Analysis]
77 Jersmann HP. Time to abandon dogma: CD14 is expressed by non‐myeloid lineage cells. Immunol Cell Biol 2005;83:462-7. [DOI: 10.1111/j.1440-1711.2005.01370.x] [Cited by in Crossref: 81] [Cited by in F6Publishing: 73] [Article Influence: 5.1] [Reference Citation Analysis]
78 Jahr TG, Sundan A, Lichenstein HS, Espevik T. Influence of CD 14, LBP and BPI in the Monocyte Response to LPS of Different Polysaccharide Chain Length. Scand J Immunol 1995;42:119-27. [DOI: 10.1111/j.1365-3083.1995.tb03634.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 0.9] [Reference Citation Analysis]
79 Lee WY, Do JT, Park C, Kim JH, Chung HJ, Kim KW, Gil CH, Kim NH, Song H. Identification of Putative Biomarkers for the Early Stage of Porcine Spermatogonial Stem Cells Using Next-Generation Sequencing. PLoS One 2016;11:e0147298. [PMID: 26800048 DOI: 10.1371/journal.pone.0147298] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
80 Lazaron V, Leslie DB, Wasiluk KR, Dunn DL. Accelerated internalization and detoxification of endotoxin by anti-lipopolysaccharide antibody is an Fc receptor–mediated process. Surgery 2001;130:192-7. [DOI: 10.1067/msy.2001.115825] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
81 Carrillo EH, Gordon L, Goode E, Davis E, Polk HC. Early Elevation of Soluble CD14 May Help Identify Trauma Patients at High Risk for Infection: . The Journal of Trauma: Injury, Infection, and Critical Care 2001;50:810-6. [DOI: 10.1097/00005373-200105000-00006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.2] [Reference Citation Analysis]
82 Klein RD, Su GL, Schmidt C, Aminlari A, Steinstraesser L, Alarcon WH, Zhang HY, Wang SC. Lipopolysaccharide-Binding Protein Accelerates and Augments Escherichia coli Phagocytosis by Alveolar Macrophages. Journal of Surgical Research 2000;94:159-66. [DOI: 10.1006/jsre.2000.5975] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
83 Funda DP, Tucková L, Farré MA, Iwase T, Moro I, Tlaskalová-Hogenová H. CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect Immun. 2001;69:3772-3781. [PMID: 11349042 DOI: 10.1128/iai.69.6.3772-3781.2001] [Cited by in Crossref: 70] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
84 Cuschieri J, Maier RV. Oxidative stress, lipid rafts, and macrophage reprogramming. Antioxid Redox Signal 2007;9:1485-97. [PMID: 17638545 DOI: 10.1089/ars.2007.1670] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 3.1] [Reference Citation Analysis]
85 Ulevitch RJ, Tobias PS. Recognition of endotoxin by cells leading to transmembrane signaling. Current Opinion in Immunology 1994;6:125-30. [DOI: 10.1016/0952-7915(94)90043-4] [Cited by in Crossref: 169] [Cited by in F6Publishing: 153] [Article Influence: 6.3] [Reference Citation Analysis]
86 Wang JH, Doyle M, Manning BJ, Di Wu Q, Blankson S, Redmond HP. Induction of bacterial lipoprotein tolerance is associated with suppression of toll-like receptor 2 expression. J Biol Chem 2002;277:36068-75. [PMID: 12133836 DOI: 10.1074/jbc.M205584200] [Cited by in Crossref: 80] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
87 Dziarski R, Ulmer AJ, Gupta D. Interactions of Bacterial Lipopolysaccharide and Peptidoglycan with Mammalian CD14. In: Doyle RJ, editor. Glycomicrobiology. Boston: Kluwer Academic Publishers; 2002. pp. 145-86. [DOI: 10.1007/0-306-46821-2_6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
88 Austenaa L, Barozzi I, Chronowska A, Termanini A, Ostuni R, Prosperini E, Stewart AF, Testa G, Natoli G. The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis. Immunity 2012;36:572-85. [PMID: 22483804 DOI: 10.1016/j.immuni.2012.02.016] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 6.7] [Reference Citation Analysis]
89 Eckmann L, Jung HC, Schürer-Maly C, Panja A, Morzycka-Wroblewska E, Kagnoff MF. Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology 1993;105:1689-97. [PMID: 8253345 DOI: 10.1016/0016-5085(93)91064-o] [Cited by in Crossref: 370] [Cited by in F6Publishing: 137] [Article Influence: 13.7] [Reference Citation Analysis]
90 Iatsenko I, Kondo S, Mengin-Lecreulx D, Lemaitre B. PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway. Immunity 2016;45:1013-23. [PMID: 27851910 DOI: 10.1016/j.immuni.2016.10.029] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 11.8] [Reference Citation Analysis]
91 Legrand CB, Thieringer R. CD14-dependent induction of protein tyrosine phosphorylation by lipopolysaccharide in murine B-lymphoma cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1994;1223:36-46. [DOI: 10.1016/0167-4889(94)90071-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
92 Han J, Lee JD, Tobias PS, Ulevitch RJ. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. Journal of Biological Chemistry 1993;268:25009-14. [DOI: 10.1016/s0021-9258(19)74564-5] [Cited by in Crossref: 160] [Article Influence: 5.7] [Reference Citation Analysis]
93 Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol. 2000;164:966-972. [PMID: 10623846 DOI: 10.4049/jimmunol.164.2.966] [Cited by in Crossref: 539] [Cited by in F6Publishing: 500] [Article Influence: 25.7] [Reference Citation Analysis]
94 Ingalls RR, Heine H, Lien E, Yoshimura A, Golenbock D. Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 1999;13:341-53, vii. [PMID: 10340170 DOI: 10.1016/s0891-5520(05)70078-7] [Cited by in Crossref: 107] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
95 Wu Chaoqun, Wanleng Deng, Ohmori Y, Hamilton TA. Differential mechanisms of LPS-induced NFκB activation in macrophages and fibroblasts. Journal of Endotoxin Research 1996;3:9-18. [DOI: 10.1177/096805199600300102] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
96 Schey R, Danzer C, Mattner J. Perturbations of mucosal homeostasis through interactions of intestinal microbes with myeloid cells. Immunobiology 2015;220:227-35. [PMID: 25466587 DOI: 10.1016/j.imbio.2014.11.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
97 Delude RL, Savedra R Jr, Zhao H, Thieringer R, Yamamoto S, Fenton MJ, Golenbock DT. CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc Natl Acad Sci U S A 1995;92:9288-92. [PMID: 7568119 DOI: 10.1073/pnas.92.20.9288] [Cited by in Crossref: 117] [Cited by in F6Publishing: 110] [Article Influence: 4.5] [Reference Citation Analysis]
98 Lawrence O, Rachie N, Qureshi N, Bomsztyk K, Sibley CH. Diphosphoryl lipid A from Rhodobacter sphaeroides transiently activates NF-kappa B but inhibits lipopolysaccharide induction of kappa light chain and Oct-2 in the B-cell lymphoma line 70Z/3. Infect Immun 1995;63:1040-6. [DOI: 10.1128/iai.63.3.1040-1046.1995] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
99 Charon D, Mondange M, Pons J, Le Blay K, Chaby R. Synthesis and In vitro activities of a spacer-containing glycophospholipid ligand of a lipopolysaccharide receptor involved in endotoxin tolerance. Bioorganic & Medicinal Chemistry 1998;6:755-65. [DOI: 10.1016/s0968-0896(98)00027-3] [Cited by in Crossref: 10] [Article Influence: 0.4] [Reference Citation Analysis]
100 Ching LM, Young HA, Eberly K, Yu CR. Induction of STAT and NFkappaB activation by the antitumor agents 5,6-dimethylxanthenone-4-acetic acid and flavone acetic acid in a murine macrophage cell line. Biochem Pharmacol 1999;58:1173-81. [PMID: 10484075 DOI: 10.1016/s0006-2952(99)00194-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
101 Schumann RR, Rietschel ET, Loppnow H. The role of CD14 and lipopolysaccharide-binding protein (LBP) in the activation of different cell types by endotoxin. Med Microbiol Immunol 1994;183:279-97. [PMID: 7541105 DOI: 10.1007/BF00196679] [Cited by in Crossref: 62] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
102 Steinemann S, Ulevitch RJ, Mackman N. Role of the lipopolysaccharide (LPS)-binding protein/CD14 pathway in LPS induction of tissue factor expression in monocytic cells. Arterioscler Thromb 1994;14:1202-9. [DOI: 10.1161/01.atv.14.7.1202] [Cited by in Crossref: 34] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
103 Fisette PL, Denlinger LC, Proctor RA, Bertics PJ. Modulation of macrophage function by P2Y-purinergic receptors. Drug Dev Res 1996;39:377-87. [DOI: 10.1002/(sici)1098-2299(199611/12)39:3/4<377::aid-ddr19>3.0.co;2-z] [Cited by in Crossref: 11] [Article Influence: 0.4] [Reference Citation Analysis]
104 Labeta MO, Durieux JJ, Fernandez N, Herrmann R, Ferrara P. Release from a human monocyte-like cell line of two different soluble forms of the lipopolysaccharide receptor, CD14. Eur J Immunol 1993;23:2144-51. [PMID: 7690322 DOI: 10.1002/eji.1830230915] [Cited by in Crossref: 76] [Cited by in F6Publishing: 74] [Article Influence: 2.7] [Reference Citation Analysis]
105 Recinella L, Chiavaroli A, Masciulli F, Fraschetti C, Filippi A, Cesa S, Cairone F, Gorica E, De Leo M, Braca A, Martelli A, Calderone V, Orlando G, Ferrante C, Menghini L, Di Simone SC, Veschi S, Cama A, Brunetti L, Leone S. Protective Effects Induced by a Hydroalcoholic Allium sativum Extract in Isolated Mouse Heart. Nutrients 2021;13:2332. [PMID: 34371842 DOI: 10.3390/nu13072332] [Reference Citation Analysis]
106 Sundan A, Ryan L, Brinch L, Espevik T, Waage A. The involvement of CD14 in stimulation of TNF production from peripheral mononuclear cells isolated from PNH patients. Scand J Immunol 1995;41:603-8. [PMID: 7539547 DOI: 10.1111/j.1365-3083.1995.tb03613.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.2] [Reference Citation Analysis]
107 Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995;270:7420-7426. [PMID: 7535770 DOI: 10.1074/jbc.270.13.7420] [Cited by in Crossref: 1639] [Cited by in F6Publishing: 1603] [Article Influence: 63.0] [Reference Citation Analysis]
108 Moreno-Navarrete JM, Fernández-Real JM. Antimicrobial-sensing proteins in obesity and type 2 diabetes: the buffering efficiency hypothesis. Diabetes Care 2011;34 Suppl 2:S335-41. [PMID: 21525479 DOI: 10.2337/dc11-s238] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
109 Mamat U, Seydel U, Grimmecke D, Holst O, Rietschel ET. Lipopolysaccharides. Comprehensive Natural Products Chemistry. Elsevier; 1999. pp. 179-239. [DOI: 10.1016/b978-0-08-091283-7.00078-3] [Cited by in Crossref: 14] [Article Influence: 0.6] [Reference Citation Analysis]
110 Gangloff SC, Zähringer U, Blondin C, Guenounou M, Silver J, Goyert SM. Influence of CD14 on ligand interactions between lipopolysaccharide and its receptor complex. J Immunol 2005;175:3940-5. [PMID: 16148141 DOI: 10.4049/jimmunol.175.6.3940] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 2.9] [Reference Citation Analysis]
111 Nomura S, Inamori K, Muta T, Yamazaki S, Sunakawa Y, Iwanaga S, Takeshige K. Purification and characterization of human soluble CD14 expressed in Pichia pastoris. Protein Expr Purif 2003;28:310-20. [PMID: 12699696 DOI: 10.1016/s1046-5928(02)00705-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
112 Vasselon T, Hailman E, Thieringer R, Detmers PA. Internalization of monomeric lipopolysaccharide occurs after transfer out of cell surface CD14. J Exp Med 1999;190:509-21. [PMID: 10449522 DOI: 10.1084/jem.190.4.509] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 2.8] [Reference Citation Analysis]
113 Chen YC, Wang SY, King CC. Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol 1999;73:2650-7. [PMID: 10074110 DOI: 10.1128/JVI.73.4.2650-2657.1999] [Cited by in Crossref: 103] [Cited by in F6Publishing: 56] [Article Influence: 4.7] [Reference Citation Analysis]
114 Wiese A, Brandenburg K, Ulmer AJ, Seydel U, Müller-loennies S. The Dual Role of Lipopolysaccharide as Effector and Target Molecule. Biological Chemistry 1999;380. [DOI: 10.1515/bc.1999.097] [Cited by in Crossref: 35] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
115 Lynn WA, Liu Y, Golenbock DT. Neither CD14 nor serum is absolutely necessary for activation of mononuclear phagocytes by bacterial lipopolysaccharide. Infect Immun 1993;61:4452-61. [PMID: 7691750 DOI: 10.1128/iai.61.10.4452-4461.1993] [Cited by in Crossref: 83] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
116 Guha M, Mackman N. LPS induction of gene expre-ssion in human monocytes. Cell Signal. 2001;13:85-94. [PMID: 11257452 DOI: 10.1016/S0898-6568(00)00149-2] [Cited by in Crossref: 1664] [Cited by in F6Publishing: 545] [Article Influence: 83.2] [Reference Citation Analysis]
117 Volk-Draper L, Patel R, Bhattarai N, Yang J, Wilber A, DeNardo D, Ran S. Myeloid-Derived Lymphatic Endothelial Cell Progenitors Significantly Contribute to Lymphatic Metastasis in Clinical Breast Cancer. Am J Pathol 2019;189:2269-92. [PMID: 31421071 DOI: 10.1016/j.ajpath.2019.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
118 Viriyakosol S, Mathison JC, Tobias PS, Kirkland TN. Structure-Function Analysis of CD14 as a Soluble Receptor for Lipopolysaccharide. Journal of Biological Chemistry 2000;275:3144-9. [DOI: 10.1074/jbc.275.5.3144] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 2.1] [Reference Citation Analysis]
119 Lægreid A, Thommesen L, Jahr TG, Sundan A, Espevik T. Tumor Necrosis Factor Induces Lipopolysaccharide Tolerance in a Human Adenocarcinoma Cell Line Mainly through the TNF p55 Receptor. Journal of Biological Chemistry 1995;270:25418-25. [DOI: 10.1074/jbc.270.43.25418] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 1.0] [Reference Citation Analysis]
120 Espevik T, Otterlei M, Skjåk-braek G, Ryan L, Wright SD, Sundan A. The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. Eur J Immunol 1993;23:255-61. [DOI: 10.1002/eji.1830230140] [Cited by in Crossref: 147] [Cited by in F6Publishing: 124] [Article Influence: 5.3] [Reference Citation Analysis]
121 Su GL. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol. 2002;283:G256-G265. [PMID: 12121871 DOI: 10.1152/ajpgi.00550.2001] [Cited by in Crossref: 301] [Cited by in F6Publishing: 286] [Article Influence: 15.8] [Reference Citation Analysis]
122 Wurfel MM, Monks BG, Ingalls RR, Dedrick RL, Delude R, Zhou D, Lamping N, Schumann RR, Thieringer R, Fenton MJ, Wright SD, Golenbock D. Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact. J Exp Med 1997;186:2051-6. [PMID: 9396775 DOI: 10.1084/jem.186.12.2051] [Cited by in Crossref: 119] [Cited by in F6Publishing: 107] [Article Influence: 5.2] [Reference Citation Analysis]
123 Dunn DL. Endotoxin Antagonists. In: Baue AE, Faist E, Fry DE, editors. Multiple Organ Failure. New York: Springer; 2000. pp. 492-500. [DOI: 10.1007/978-1-4612-1222-5_48] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.0] [Reference Citation Analysis]
124 Read MA, Cordle SR, Veach RA, Carlisle CD, Hawiger J. Cell-free pool of CD14 mediates activation of transcription factor NF-kappa B by lipopolysaccharide in human endothelial cells. Proc Natl Acad Sci U S A 1993;90:9887-91. [PMID: 7694295 DOI: 10.1073/pnas.90.21.9887] [Cited by in Crossref: 97] [Cited by in F6Publishing: 96] [Article Influence: 3.5] [Reference Citation Analysis]
125 Gegner JA, Ulevitch RJ, Tobias PS. Lipopolysaccharide (LPS) Signal Transduction and Clearance. Journal of Biological Chemistry 1995;270:5320-5. [DOI: 10.1074/jbc.270.10.5320] [Cited by in Crossref: 187] [Cited by in F6Publishing: 170] [Article Influence: 7.2] [Reference Citation Analysis]
126 Ittig S, Lindner B, Stenta M, Manfredi P, Zdorovenko E, Knirel YA, dal Peraro M, Cornelis GR, Zähringer U. The lipopolysaccharide from Capnocytophaga canimorsus reveals an unexpected role of the core-oligosaccharide in MD-2 binding. PLoS Pathog 2012;8:e1002667. [PMID: 22570611 DOI: 10.1371/journal.ppat.1002667] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
127 Qiu X, Li Y, Li H, Yu Y, Zhang Q. Molecular cloning, mapping, and tissue expression of the porcine cluster of differentiation 14 (CD14) gene. Biochem Genet 2007;45:459-68. [DOI: 10.1007/s10528-007-9088-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
128 Malhotra R, Priest R, Bird MI. Role for L-selectin in lipopolysaccharide-induced activation of neutrophils. Biochem J 1996;320 ( Pt 2):589-93. [PMID: 8973571 DOI: 10.1042/bj3200589] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 1.5] [Reference Citation Analysis]
129 Hambleton J, McMahon M, DeFranco AL. Activation of Raf-1 and mitogen-activated protein kinase in murine macrophages partially mimics lipopolysaccharide-induced signaling events. J Exp Med 1995;182:147-54. [PMID: 7790814 DOI: 10.1084/jem.182.1.147] [Cited by in Crossref: 73] [Cited by in F6Publishing: 72] [Article Influence: 2.8] [Reference Citation Analysis]
130 Grube B, Cochane C, Ye R, Green C, Mcphail M, Ulevitch R, Tobias P. Lipopolysaccharide binding protein expression in primary human hepatocytes and HepG2 hepatoma cells. Journal of Biological Chemistry 1994;269:8477-82. [DOI: 10.1016/s0021-9258(17)37218-6] [Cited by in Crossref: 36] [Article Influence: 1.3] [Reference Citation Analysis]
131 Shimizu T, Iwamoto Y, Yanagihara Y, Ryoyama K, Suhara Y, Ikeda K, Achiwa K. Comparison of the Biological Activity of Synthetic N-Acylated Asparagine or Serine Linked Monosaccharide Lipid A Analogs. Immunobiology 1996;196:321-31. [DOI: 10.1016/s0171-2985(96)80055-6] [Cited by in Crossref: 3] [Article Influence: 0.1] [Reference Citation Analysis]
132 Chuang TH, Hahn KM, Lee JD, Danley DE, Bokoch GM. The small GTPase Cdc42 initiates an apoptotic signaling pathway in Jurkat T lymphocytes. Mol Biol Cell 1997;8:1687-98. [PMID: 9307966 DOI: 10.1091/mbc.8.9.1687] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 2.5] [Reference Citation Analysis]
133 Esparza GA, Teghanemt A, Zhang D, Gioannini TL, Weiss JP. Endotoxin{middle dot}albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4. Innate Immun 2012;18:478-91. [PMID: 21994253 DOI: 10.1177/1753425911422723] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
134 Dye JR, Palvanov A, Guo B, Rothstein TL. B Cell Receptor Cross-Talk: Exposure to Lipopolysaccharide Induces an Alternate Pathway for B Cell Receptor-Induced ERK Phosphorylation and NF-κB Activation. J Immunol 2007;179:229-35. [DOI: 10.4049/jimmunol.179.1.229] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.1] [Reference Citation Analysis]
135 An D, Hao F, Zhang F, Kong W, Chun J, Xu X, Cui MZ. CD14 is a key mediator of both lysophosphatidic acid and lipopolysaccharide induction of foam cell formation. J Biol Chem 2017;292:14391-400. [PMID: 28705936 DOI: 10.1074/jbc.M117.781807] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
136 Schromm AB, Brandenburg K, Rietschel ET, Flad HD, Carroll SF, Seydel U. Lipopolysaccharide-binding protein mediates CD14-independent intercalation of lipopolysaccharide into phospholipid membranes. FEBS Lett 1996;399:267-71. [PMID: 8985160 DOI: 10.1016/s0014-5793(96)01338-5] [Cited by in Crossref: 91] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
137 Pugin J. Recognition of Bacteria and Bacterial Products by Host Immune Cells in Sepsis. In: Vincent J, editor. Yearbook of Intensive Care and Emergency Medicine. Berlin: Springer Berlin Heidelberg; 1996. pp. 11-23. [DOI: 10.1007/978-3-642-80053-5_2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
138 Kirkland TN, Finley F, Leturcq D, Moriarty A, Lee JD, Ulevitch RJ, Tobias PS. Analysis of lipopolysaccharide binding by CD14. Journal of Biological Chemistry 1993;268:24818-23. [DOI: 10.1016/s0021-9258(19)74538-4] [Cited by in Crossref: 78] [Article Influence: 2.8] [Reference Citation Analysis]
139 Someya K, Tsutomi Y, Soga T, Akahane K. A Lipid a Analog Inhibits LPS-Induced Cytokine Expression and Improves Survival in Endotoxemic Mice. Immunopharmacology and Immunotoxicology 2008;18:477-95. [DOI: 10.3109/08923979609052749] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
140 Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003;16:379-414. [PMID: 12857774 DOI: 10.1128/cmr.16.3.379-414.2003] [Cited by in Crossref: 491] [Cited by in F6Publishing: 162] [Article Influence: 27.3] [Reference Citation Analysis]
141 Peppelenbosch MP, Desmedt M, ten Hove T, van Deventer SJ, Grooten J. Lipopolysaccharide Regulates Macrophage Fluid Phase Pinocytosis Via CD14-Dependent and CD14-Independent Pathways. Blood 1999;93:4011-8. [DOI: 10.1182/blood.v93.11.4011] [Cited by in Crossref: 18] [Article Influence: 0.8] [Reference Citation Analysis]
142 Józefowski S. The danger model: questioning an unconvincing theory. Immunol Cell Biol 2016;94:164-8. [PMID: 26215791 DOI: 10.1038/icb.2015.68] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
143 Hoebe K, Jiang Z, Tabeta K, Du X, Georgel P, Crozat K, Beutler B. Genetic Analysis of Innate Immunity. Elsevier; 2006. pp. 175-226. [DOI: 10.1016/s0065-2776(06)91005-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
144 Meng J, Parroche P, Golenbock DT, Mcknight CJ. The Differential Impact of Disulfide Bonds and N-Linked Glycosylation on the Stability and Function of CD14. Journal of Biological Chemistry 2008;283:3376-84. [DOI: 10.1074/jbc.m707640200] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
145 Ziegler-Heitbrock HW, Ulevitch RJ. CD14: cell surface receptor and differentiation marker. Immunol Today. 1993;14:121-125. [PMID: 7682078 DOI: 10.1016/0167-5699(93)90212-4] [Cited by in Crossref: 382] [Cited by in F6Publishing: 357] [Article Influence: 13.6] [Reference Citation Analysis]
146 Lee JD, Kravchenko V, Kirkland TN, Han J, Mackman N, Moriarty A, Leturcq D, Tobias PS, Ulevitch RJ. Glycosyl-phosphatidylinositol-anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin. Proc Natl Acad Sci U S A 1993;90:9930-4. [PMID: 7694296 DOI: 10.1073/pnas.90.21.9930] [Cited by in Crossref: 128] [Cited by in F6Publishing: 122] [Article Influence: 4.6] [Reference Citation Analysis]
147 Viriyakosol S, Kirkland TN. A region of human CD14 required for lipopolysaccharide binding. J Biol Chem 1995;270:361-8. [PMID: 7529231 DOI: 10.1074/jbc.270.1.361] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 3.0] [Reference Citation Analysis]
148 Peterson PK, Gekker G, Hu S, Sheng WS, Anderson WR, Ulevitch RJ, Tobias PS, Gustafson KV, Molitor TW, Chao CC. CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia. Infect Immun 1995;63:1598-602. [PMID: 7534279 DOI: 10.1128/iai.63.4.1598-1602.1995] [Cited by in Crossref: 116] [Cited by in F6Publishing: 44] [Article Influence: 4.5] [Reference Citation Analysis]
149 Müller JM, Ziegler-heitbrock HL, Baeuerle PA. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 1993;187:233-56. [DOI: 10.1016/s0171-2985(11)80342-6] [Cited by in Crossref: 360] [Cited by in F6Publishing: 85] [Article Influence: 12.9] [Reference Citation Analysis]
150 Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One. 2013;8:e63983. [PMID: 23704966 DOI: 10.1371/journal.pone.0063983] [Cited by in Crossref: 93] [Cited by in F6Publishing: 78] [Article Influence: 11.6] [Reference Citation Analysis]
151 Jersmann HP, Hii CS, Hodge GL, Ferrante A. Synthesis and surface expression of CD14 by human endothelial cells. Infect Immun. 2001;69:479-485. [PMID: 11119540 DOI: 10.1128/iai.69.1.479-485.2001] [Cited by in Crossref: 67] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
152 Cavaillon J, Marie C, Caroff M, Ledur A, Godard I, Poulain D, Fitting C, Haeffner-cavaillon N. CD14/LPS receptor exhibits lectin-like properties. Journal of Endotoxin Research 1996;3:471-80. [DOI: 10.1177/096805199600300605] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 5.2] [Reference Citation Analysis]
153 Park H, Han KM, Jeon H, Lee JS, Lee H, Jeon SG, Park JH, Kim YG, Lin Y, Lee YH, Jeong YH, Hoe HS. The MAO Inhibitor Tranylcypromine Alters LPS- and Aβ-Mediated Neuroinflammatory Responses in Wild-type Mice and a Mouse Model of AD. Cells 2020;9:E1982. [PMID: 32872335 DOI: 10.3390/cells9091982] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Recinella L, Chiavaroli A, Orlando G, Menghini L, Ferrante C, Di Cesare Mannelli L, Ghelardini C, Brunetti L, Leone S. Protective Effects Induced by Two Polyphenolic Liquid Complexes from Olive (Olea europaea, mainly Cultivar Coratina) Pressing Juice in Rat Isolated Tissues Challenged with LPS. Molecules 2019;24:E3002. [PMID: 31430921 DOI: 10.3390/molecules24163002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
155 Tsukamoto H, Fukudome K, Takao S, Tsuneyoshi N, Kimoto M. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Int Immunol 2010;22:271-80. [PMID: 20133493 DOI: 10.1093/intimm/dxq005] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 4.6] [Reference Citation Analysis]
156 Lloyd KL, Kubes P. GPI-linked endothelial CD14 contributes to the detection of LPS. Am J Physiol Heart Circ Physiol 2006;291:H473-81. [PMID: 16443672 DOI: 10.1152/ajpheart.01234.2005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
157 Moore RN, Ding A, Thieblemont N, Zhu J, Jin F, Zhang J, Wright S. Secretory Leukocyte Protease Inhibitor Interferes with Uptake of Lipopolysaccharide by Macrophages. Infect Immun 1999;67:4485-9. [DOI: 10.1128/iai.67.9.4485-4489.1999] [Cited by in Crossref: 66] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
158 Berghaus LJ, Moore JN, Hurley DJ, Vandenplas ML, Fortes BP, Wolfert MA, Boons GJ. Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4. Comp Immunol Microbiol Infect Dis 2010;33:443-54. [PMID: 19732955 DOI: 10.1016/j.cimid.2009.07.001] [Cited by in Crossref: 77] [Cited by in F6Publishing: 63] [Article Influence: 6.4] [Reference Citation Analysis]