BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pandey PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2016;4:e1129476. [PMID: 27141418 DOI: 10.1080/21688370.2015.1129476] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 7.4] [Reference Citation Analysis]
Number Citing Articles
1 Faouzi A, Roullin VG. Think Big, Start Small: How Nanomedicine Could Alleviate the Burden of Rare CNS Diseases. Pharmaceuticals (Basel) 2021;14:109. [PMID: 33573213 DOI: 10.3390/ph14020109] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Villa-Cedillo SA, Rodríguez-Rocha H, Zavala-Flores LM, Montes-de-Oca-Luna R, García-García A, Loera-Arias MJ, Saucedo-Cárdenas O. Asn194Lys mutation in RVG29 peptide increases GFP transgene delivery by endocytosis to neuroblastoma and astrocyte cells. J Pharm Pharmacol 2017;69:1352-63. [PMID: 28643952 DOI: 10.1111/jphp.12766] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
3 Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021;287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Reference Citation Analysis]
4 Chen X, Liu C, Muok L, Zeng C, Li Y. Dynamic 3D On-Chip BBB Model Design, Development, and Applications in Neurological Diseases. Cells 2021;10:3183. [PMID: 34831406 DOI: 10.3390/cells10113183] [Reference Citation Analysis]
5 Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019;12:E20. [PMID: 31878061 DOI: 10.3390/pharmaceutics12010020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
6 Adam H, Gopinath SC, Arshad MM, Adam T, Hashim U. Perspectives of nanobiotechnology and biomacromolecules in parkinson’s disease. Process Biochemistry 2019;86:32-9. [DOI: 10.1016/j.procbio.2019.07.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
7 Al-Azzawi S, Masheta D, Guildford A, Phillips G, Santin M. Designing and Characterization of a Novel Delivery System for Improved Cellular Uptake by Brain Using Dendronised Apo-E-Derived Peptide. Front Bioeng Biotechnol 2019;7:49. [PMID: 30972332 DOI: 10.3389/fbioe.2019.00049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Chang CY, Liang MZ, Wu CC, Huang PY, Chen HI, Yet SF, Tsai JW, Kao CF, Chen L. WNT3A Promotes Neuronal Regeneration upon Traumatic Brain Injury. Int J Mol Sci 2020;21:E1463. [PMID: 32098078 DOI: 10.3390/ijms21041463] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Dos Santos Rodrigues B, Kanekiyo T, Singh J. In vitro and in vivo characterization of CPP and transferrin modified liposomes encapsulating pDNA. Nanomedicine 2020;28:102225. [PMID: 32485318 DOI: 10.1016/j.nano.2020.102225] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Jiang L, Li S, Zheng J, Li Y, Huang H. Recent Progress in Microfluidic Models of the Blood-Brain Barrier. Micromachines (Basel) 2019;10:E375. [PMID: 31195652 DOI: 10.3390/mi10060375] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
11 Seo S, Kim H, Sung JH, Choi N, Lee K, Kim HN. Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials 2020;232:119732. [PMID: 31901694 DOI: 10.1016/j.biomaterials.2019.119732] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
12 Semyachkina-Glushkovskaya O, Postnov D, Penzel T, Kurths J. Sleep as a Novel Biomarker and a Promising Therapeutic Target for Cerebral Small Vessel Disease: A Review Focusing on Alzheimer's Disease and the Blood-Brain Barrier. Int J Mol Sci 2020;21:E6293. [PMID: 32878058 DOI: 10.3390/ijms21176293] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Sokolova V, Mekky G, van der Meer SB, Seeds MC, Atala AJ, Epple M. Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci Rep 2020;10:18033. [PMID: 33093563 DOI: 10.1038/s41598-020-75125-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
14 Pereira P, Queiroz JA, Figueiras A, Sousa F. Current progress on microRNAs-based therapeutics in neurodegenerative diseases. Wiley Interdiscip Rev RNA 2017;8. [PMID: 27882692 DOI: 10.1002/wrna.1409] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
15 Talebi M, Talebi M, Farkhondeh T, Kopustinskiene DM, Simal-Gandara J, Bernatoniene J, Samarghandian S. An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomed Pharmacother 2021;141:111906. [PMID: 34328092 DOI: 10.1016/j.biopha.2021.111906] [Reference Citation Analysis]
16 Lübtow MM, Oerter S, Quader S, Jeanclos E, Cubukova A, Krafft M, Haider MS, Schulte C, Meier L, Rist M, Sampetrean O, Kinoh H, Gohla A, Kataoka K, Appelt-menzel A, Luxenhofer R. In Vitro Blood–Brain Barrier Permeability and Cytotoxicity of an Atorvastatin-Loaded Nanoformulation Against Glioblastoma in 2D and 3D Models. Mol Pharmaceutics 2020;17:1835-47. [DOI: 10.1021/acs.molpharmaceut.9b01117] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
17 Jackson S, Meeks C, Vézina A, Robey RW, Tanner K, Gottesman MM. Model systems for studying the blood-brain barrier: Applications and challenges. Biomaterials 2019;214:119217. [PMID: 31146177 DOI: 10.1016/j.biomaterials.2019.05.028] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
18 Russo G, Ermondi G, Caron G, Verzele D, Lynen F. Into the first biomimetic sphingomyelin stationary phase: Suitability in drugs’ biopharmaceutic profiling and block relevance analysis of selectivity. European Journal of Pharmaceutical Sciences 2021;156:105585. [DOI: 10.1016/j.ejps.2020.105585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zhang C, Feng W, Li Y, Kürths J, Yu T, Semyachkina-Glushkovskaya O, Zhu D. Age differences in photodynamic therapy-mediated opening of the blood-brain barrier through the optical clearing skull window in mice. Lasers Surg Med 2019;51:625-33. [PMID: 30811633 DOI: 10.1002/lsm.23075] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
20 Semyachkina-Glushkovskaya O, Chehonin V, Borisova E, Fedosov I, Namykin A, Abdurashitov A, Shirokov A, Khlebtsov B, Lyubun Y, Navolokin N, Ulanova M, Shushunova N, Khorovodov A, Agranovich I, Bodrova A, Sagatova M, Shareef AE, Saranceva E, Iskra T, Dvoryatkina M, Zhinchenko E, Sindeeva O, Tuchin V, Kurths J. Photodynamic opening of the blood-brain barrier and pathways of brain clearing. J Biophotonics 2018;11:e201700287. [PMID: 29380947 DOI: 10.1002/jbio.201700287] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
21 Augustine R, Aqel AH, Kalva SN, Joshy KS, Nayeem A, Hasan A. Bioengineered microfluidic blood-brain barrier models in oncology research. Transl Oncol 2021;14:101087. [PMID: 33865030 DOI: 10.1016/j.tranon.2021.101087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Liu N, Gujrati V, Malekzadeh-Najafabadi J, Werner JPF, Klemm U, Tang L, Chen Z, Prakash J, Huang Y, Stiel A, Mettenleiter G, Aichler M, Blutke A, Walch A, Kleigrewe K, Razansky D, Sattler M, Ntziachristos V. Croconaine-based nanoparticles enable efficient optoacoustic imaging of murine brain tumors. Photoacoustics 2021;22:100263. [PMID: 33948433 DOI: 10.1016/j.pacs.2021.100263] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020;149:192-217. [PMID: 31982574 DOI: 10.1016/j.ejpb.2020.01.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
24 Crinelli R, Zara C, Smietana M, Retini M, Magnani M, Fraternale A. Boosting GSH Using the Co-Drug Approach: I-152, a Conjugate of N-acetyl-cysteine and β-mercaptoethylamine. Nutrients 2019;11:E1291. [PMID: 31181621 DOI: 10.3390/nu11061291] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
25 Park SH, Kim MJ, Jung HH, Chang WS, Choi HS, Rachmilevitch I, Zadicario E, Chang JW. One-Year Outcome of Multiple Blood-Brain Barrier Disruptions With Temozolomide for the Treatment of Glioblastoma. Front Oncol 2020;10:1663. [PMID: 33014832 DOI: 10.3389/fonc.2020.01663] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Kong C, Park SH, Shin J, Baek HG, Park J, Na YC, Chang WS, Chang JW. Factors Associated with Energy Efficiency of Focused Ultrasound Through the Skull: A Study of 3D-Printed Skull Phantoms and Its Comparison with Clinical Experiences. Front Bioeng Biotechnol 2021;9:783048. [PMID: 34957077 DOI: 10.3389/fbioe.2021.783048] [Reference Citation Analysis]
27 Ranadewa D, Wu J, Subramanianbalachandar VA, Steward RL Jr. Variable fluid flow regimes alter human brain microvascular endothelial cell-cell junctions and cytoskeletal structure. Cytoskeleton (Hoboken) 2021;78:323-34. [PMID: 34467654 DOI: 10.1002/cm.21687] [Reference Citation Analysis]
28 Bei HP, Yang Y, Zhang Q, Tian Y, Luo X, Yang M, Zhao X. Graphene-Based Nanocomposites for Neural Tissue Engineering. Molecules 2019;24:E658. [PMID: 30781759 DOI: 10.3390/molecules24040658] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 15.7] [Reference Citation Analysis]
29 Feng S, Zheng L, Tang S, Gu J, Jiang X, Wang L. In-vitro and in situ assessment of the efflux of five antidepressants by breast cancer resistance protein. Journal of Pharmacy and Pharmacology 2019;71:1133-41. [DOI: 10.1111/jphp.13100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
30 Bramini M, Alberini G, Colombo E, Chiacchiaretta M, DiFrancesco ML, Maya-Vetencourt JF, Maragliano L, Benfenati F, Cesca F. Interfacing Graphene-Based Materials With Neural Cells. Front Syst Neurosci 2018;12:12. [PMID: 29695956 DOI: 10.3389/fnsys.2018.00012] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
31 Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020;589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
32 Nair AL, Mesch L, Schulz I, Becker H, Raible J, Kiessling H, Werner S, Rothbauer U, Schmees C, Busche M, Trennheuser S, Fricker G, Stelzle M. Parallelizable Microfluidic Platform to Model and Assess In Vitro Cellular Barriers: Technology and Application to Study the Interaction of 3D Tumor Spheroids with Cellular Barriers. Biosensors (Basel) 2021;11:314. [PMID: 34562904 DOI: 10.3390/bios11090314] [Reference Citation Analysis]
33 Bjij I, Ramharack P, Khan S, Cherqaoui D, Soliman MES. Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling. Molecules 2019;24:E3125. [PMID: 31466292 DOI: 10.3390/molecules24173125] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Busatto S, Pham A, Suh A, Shapiro S, Wolfram J. Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomed Microdevices 2019;21:46. [PMID: 30989386 DOI: 10.1007/s10544-019-0396-7] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
35 Semyachkina-Glushkovskaya O, Kurths J, Borisova E, Sokolovski S, Mantareva V, Angelov I, Shirokov A, Navolokin N, Shushunova N, Khorovodov A, Ulanova M, Sagatova M, Agranivich I, Sindeeva O, Gekalyuk A, Bodrova A, Rafailov E. Photodynamic opening of blood-brain barrier. Biomed Opt Express 2017;8:5040-8. [PMID: 29188101 DOI: 10.1364/BOE.8.005040] [Cited by in Crossref: 33] [Cited by in F6Publishing: 10] [Article Influence: 6.6] [Reference Citation Analysis]
36 de Buhr N, Martens A, Meurer M, Bonilla MC, Söbbeler F, Twele L, Neudeck S, Wendt M, Beineke A, Kästner S, von Köckritz-Blickwede M. In vivo oxygen measurement in cerebrospinal fluid of pigs to determine physiologic and pathophysiologic oxygen values during CNS infections. BMC Neurosci 2021;22:45. [PMID: 34182939 DOI: 10.1186/s12868-021-00648-x] [Reference Citation Analysis]
37 Cavaco M, Gaspar D, Arb Castanho M, Neves V. Antibodies for the Treatment of Brain Metastases, a Dream or a Reality? Pharmaceutics 2020;12:E62. [PMID: 31940974 DOI: 10.3390/pharmaceutics12010062] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
38 Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int J Nanomedicine 2019;14:6497-517. [PMID: 31616141 DOI: 10.2147/IJN.S215941] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
39 Paul G, Elabi OF. Microvascular Changes in Parkinson’s Disease- Focus on the Neurovascular Unit. Front Aging Neurosci 2022;14:853372. [DOI: 10.3389/fnagi.2022.853372] [Reference Citation Analysis]
40 Feng W, Zhang C, Yu T, Semyachkina‐glushkovskaya O, Zhu D. In vivo monitoring blood‐brain barrier permeability using spectral imaging through optical clearing skull window. J Biophotonics 2018;12:e201800330. [DOI: 10.1002/jbio.201800330] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
41 Kola SM, Kumar P, Choonara YE, du Toit LC, Pillay V. Hypothesis: Can drug-loaded platelets be used as delivery vehicles for blood-brain barrier penetration? Med Hypotheses 2019;125:75-8. [PMID: 30902155 DOI: 10.1016/j.mehy.2019.02.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Fan S, Zheng Y, Liu X, Fang W, Chen X, Liao W, Jing X, Lei M, Tao E, Ma Q, Zhang X, Guo R, Liu J. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer's disease. Drug Deliv 2018;25:1091-102. [PMID: 30107760 DOI: 10.1080/10717544.2018.1461955] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 13.7] [Reference Citation Analysis]
43 Lacerda S, Morfin J, Geraldes CFGC, Tóth É. Metal complexes for multimodal imaging of misfolded protein-related diseases. Dalton Trans 2017;46:14461-74. [DOI: 10.1039/c7dt02371e] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
44 Semyachkina-glushkovskaya OV, Abdurashitov AS, Saranceva EI, Borisova EG, Shirokov AA, Navolokin NV. Blood–brain barrier and laser technology for drug brain delivery. J Innov Opt Health Sci 2017;10:1730011. [DOI: 10.1142/s1793545817300117] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
45 Zuhorn IS. Introduction for the Special Issue on the Blood-Brain Barrier. Tissue Barriers 2016;4:e1170456. [PMID: 27141428 DOI: 10.1080/21688370.2016.1170456] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Rusiecka I, Ruczyński J, Kozłowska A, Backtrog E, Mucha P, Kocić I, Rekowski P. TP10-Dopamine Conjugate as a Potential Therapeutic Agent in the Treatment of Parkinson's Disease. Bioconjug Chem 2019;30:760-74. [PMID: 30653302 DOI: 10.1021/acs.bioconjchem.8b00894] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
47 Grumetto L, Russo G. cΔlog kw IAM: can we afford estimation of small molecules' blood-brain barrier passage based upon in silico phospholipophilicity? ADMET DMPK 2021;9:267-81. [PMID: 35300371 DOI: 10.5599/admet.1034] [Reference Citation Analysis]
48 Russo G, Grumetto L, Szucs R, Barbato F, Lynen F. Screening therapeutics according to their uptake across the blood-brain barrier: A high throughput method based on immobilized artificial membrane liquid chromatography-diode-array-detection coupled to electrospray-time-of-flight mass spectrometry. Eur J Pharm Biopharm 2018;127:72-84. [PMID: 29427629 DOI: 10.1016/j.ejpb.2018.02.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]