BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Raza A, Razzaq A, Mehmood SS, Hussain MA, Wei S, He H, Zaman QU, Xuekun Z, Hasanuzzaman M. Omics: The way forward to enhance abiotic stress tolerance in Brassica napus L. GM Crops Food 2021;12:251-81. [PMID: 33464960 DOI: 10.1080/21645698.2020.1859898] [Cited by in Crossref: 6] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Ma S, Zheng L, Liu X, Zhang K, Hu L, Hua Y, Huang J. Genome-Wide Identification of Brassicaceae Hormone-Related Transcription Factors and Their Roles in Stress Adaptation and Plant Height Regulation in Allotetraploid Rapeseed. Int J Mol Sci 2022;23:8762. [PMID: 35955899 DOI: 10.3390/ijms23158762] [Reference Citation Analysis]
2 He Y, Li Y, Bai Z, Xie M, Zuo R, Liu J, Xia J, Cheng X, Liu Y, Tong C, Zhang Y, Liu S. Genome-wide identification and functional analysis of cupin_1 domain-containing members involved in the responses to Sclerotinia sclerotiorum and abiotic stress in Brassica napus. Front Plant Sci 2022;13:983786. [DOI: 10.3389/fpls.2022.983786] [Reference Citation Analysis]
3 Reddy BM, Anthony Johnson AM, Jagadeesh Kumar N, Venkatesh B, Jayamma N, Pandurangaiah M, Sudhakar C. De novo Transcriptome Analysis of Drought-Adapted Cluster Bean (Cultivar RGC-1025) Reveals the Wax Regulatory Genes Involved in Drought Resistance. Front Plant Sci 2022;13:868142. [DOI: 10.3389/fpls.2022.868142] [Reference Citation Analysis]
4 Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri H. Understanding the Phytoremediation Mechanisms of Potentially Toxic Elements: A Proteomic Overview of Recent Advances. Front Plant Sci 2022;13:881242. [DOI: 10.3389/fpls.2022.881242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Kourani M, Mohareb F, Rezwan FI, Anastasiadi M, Hammond JP. Genetic and Physiological Responses to Heat Stress in Brassica napus. Front Plant Sci 2022;13:832147. [PMID: 35449889 DOI: 10.3389/fpls.2022.832147] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Raza A, Su W, Jia Z, Luo D, Zhang Y, Gao A, Hussain MA, Mehmood SS, Cheng Y, Lv Y, Zou X. Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed (Brassica napus L.) Seedlings. Front Plant Sci 2022;13:857980. [PMID: 35360297 DOI: 10.3389/fpls.2022.857980] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhang Y, Raza A, Huang H, Su W, Luo D, Zeng L, Ding X, Cheng Y, Liu Z, Li Q, Lv Y, Zou X. Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3.4” modulating cold tolerance. Environmental and Experimental Botany 2022. [DOI: 10.1016/j.envexpbot.2022.104848] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F Jr, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. Front Plant Sci 2021;12:794373. [PMID: 35058954 DOI: 10.3389/fpls.2021.794373] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
9 Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. Front Plant Sci 2021;12:774994. [PMID: 34925418 DOI: 10.3389/fpls.2021.774994] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
10 Tebele SM, Marks RA, Farrant JM. Two Decades of Desiccation Biology: A Systematic Review of the Best Studied Angiosperm Resurrection Plants. Plants (Basel) 2021;10:2784. [PMID: 34961255 DOI: 10.3390/plants10122784] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
11 Raza A, Su W, Hussain MA, Mehmood SS, Zhang X, Cheng Y, Zou X, Lv Y. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.). Front Plant Sci 2021;12:721681. [PMID: 34691103 DOI: 10.3389/fpls.2021.721681] [Cited by in Crossref: 1] [Cited by in F6Publishing: 17] [Article Influence: 1.0] [Reference Citation Analysis]
12 Li W, Huai X, Li P, Raza A, Mubarik MS, Habib M, Fiaz S, Zhang B, Pan J, Khan RSA. Genome-Wide Characterization of Glutathione Peroxidase (GPX) Gene Family in Rapeseed (Brassica napus L.) Revealed Their Role in Multiple Abiotic Stress Response and Hormone Signaling. Antioxidants (Basel) 2021;10:1481. [PMID: 34573113 DOI: 10.3390/antiox10091481] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
13 Zhao G, Cheng P, Zhang T, Abdalmegeed D, Xu S, Shen W. Hydrogen-rich water prepared by ammonia borane can enhance rapeseed (Brassica napus L.) seedlings tolerance against salinity, drought or cadmium. Ecotoxicol Environ Saf 2021;224:112640. [PMID: 34392154 DOI: 10.1016/j.ecoenv.2021.112640] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Su W, Raza A, Gao A, Jia Z, Zhang Y, Hussain MA, Mehmood SS, Cheng Y, Lv Y, Zou X. Genome-Wide Analysis and Expression Profile of Superoxide Dismutase (SOD) Gene Family in Rapeseed (Brassica napus L.) under Different Hormones and Abiotic Stress Conditions. Antioxidants (Basel) 2021;10:1182. [PMID: 34439430 DOI: 10.3390/antiox10081182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 21] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021;22:7182. [PMID: 34281232 DOI: 10.3390/ijms22137182] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Mehmood SS, Lu G, Luo D, Hussain MA, Raza A, Zafar Z, Zhang X, Cheng Y, Zou X, Lv Y. Integrated analysis of transcriptomics and proteomics provides insights into the molecular regulation of cold response in Brassica napus. Environmental and Experimental Botany 2021;187:104480. [DOI: 10.1016/j.envexpbot.2021.104480] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
17 Raza A, Tabassum J, Kudapa H, Varshney RK. Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 2021;:1-24. [PMID: 33827346 DOI: 10.1080/07388551.2021.1898332] [Cited by in Crossref: 6] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]