BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moise L, Gutierrez A, Kibria F, Martin R, Tassone R, Liu R, Terry F, Martin B, De Groot AS. iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Hum Vaccin Immunother 2015;11:2312-21. [PMID: 26155959 DOI: 10.1080/21645515.2015.1061159] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Negahdaripour M, Nezafat N, Eslami M, Ghoshoon MB, Shoolian E, Najafipour S, Morowvat MH, Dehshahri A, Erfani N, Ghasemi Y. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infection, Genetics and Evolution 2018;58:96-109. [DOI: 10.1016/j.meegid.2017.12.008] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 11.8] [Reference Citation Analysis]
2 Khan S, Parrillo M, Gutierrez AH, Terry FE, Moise L, Martin WD, De Groot AS. Immune escape and immune camouflage may reduce the efficacy of RTS,S vaccine in Malawi. Hum Vaccin Immunother 2020;16:214-27. [PMID: 30614773 DOI: 10.1080/21645515.2018.1560772] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
3 Reeves PM, Paul SR, Sluder AE, Brauns TA, Poznansky MC. Q-vaxcelerate: A distributed development approach for a new Coxiella burnetii vaccine. Hum Vaccin Immunother 2017;13:2977-81. [PMID: 28933682 DOI: 10.1080/21645515.2017.1371377] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
4 De Groot AS, Moise L, Terry F, Gutierrez AH, Hindocha P, Richard G, Hoft DF, Ross TM, Noe AR, Takahashi Y, Kotraiah V, Silk SE, Nielsen CM, Minassian AM, Ashfield R, Ardito M, Draper SJ, Martin WD. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools. Front Immunol 2020;11:442. [PMID: 32318055 DOI: 10.3389/fimmu.2020.00442] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
5 Eickhoff CS, Terry FE, Peng L, Meza KA, Sakala IG, Van Aartsen D, Moise L, Martin WD, Schriewer J, Buller RM, De Groot AS, Hoft DF. Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine 2019;37:5371-81. [PMID: 31331771 DOI: 10.1016/j.vaccine.2019.07.033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
6 Nezafat N, Eslami M, Negahdaripour M, Rahbar MR, Ghasemi Y. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Mol Biosyst 2017;13:699-713. [PMID: 28194462 DOI: 10.1039/c6mb00772d] [Cited by in Crossref: 55] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
7 Kruiswijk C, Richard G, Salverda MLM, Hindocha P, Martin WD, De Groot AS, Van Riet E. In silico identification and modification of T cell epitopes in pertussis antigens associated with tolerance. Hum Vaccin Immunother 2020;16:277-85. [PMID: 31951773 DOI: 10.1080/21645515.2019.1703453] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
8 Tucker KD, Schanen BC, Phares TW, Sassano E, Terry FE, Hindocha P, Moise L, Kotraiah V, Martin WD, De Groot AS, Drake DR 3rd, Gutierrez GM, Noe AR. Identification, Selection and Immune Assessment of Liver Stage CD8 T Cell Epitopes From Plasmodium falciparum. Front Immunol 2021;12:684116. [PMID: 34025684 DOI: 10.3389/fimmu.2021.684116] [Reference Citation Analysis]
9 Ghosh P, Bhakta S, Bhattacharya M, Sharma AR, Sharma G, Lee SS, Chakraborty C. A Novel Multi-Epitopic Peptide Vaccine Candidate Against Helicobacter pylori: In-Silico Identification, Design, Cloning and Validation Through Molecular Dynamics. Int J Pept Res Ther 2021;:1-18. [PMID: 33495694 DOI: 10.1007/s10989-020-10157-w] [Reference Citation Analysis]
10 Jang H, Meyers LM, Boyle C, De Groot AS, Moise L, Ross TM. Immune-engineered H7N9 influenza hemagglutinin improves protection against viral influenza virus challenge. Hum Vaccin Immunother 2020;16:2042-50. [PMID: 32783766 DOI: 10.1080/21645515.2020.1793711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Das NC, Patra R, Gupta PSS, Ghosh P, Bhattacharya M, Rana MK, Mukherjee S. Designing of a novel multi-epitope peptide based vaccine against Brugia malayi: An in silico approach. Infect Genet Evol 2021;87:104633. [PMID: 33181335 DOI: 10.1016/j.meegid.2020.104633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
12 Liu G, Carter B, Bricken T, Jain S, Viard M, Carrington M, Gifford DK. Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions. Cell Syst 2020;11:131-144.e6. [PMID: 32721383 DOI: 10.1016/j.cels.2020.06.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
13 Scholzen A, Richard G, Moise L, Hartman E, Bleeker-Rovers CP, Reeves PM, Raju Paul S, Martin WD, De Groot AS, Poznansky MC, Sluder AE, Garritsen A. Coxiella burnetii Epitope-Specific T-Cell Responses in Patients with Chronic Q Fever. Infect Immun 2019;87:e00213-19. [PMID: 31331958 DOI: 10.1128/IAI.00213-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
14 Wada Y, Nithichanon A, Nobusawa E, Moise L, Martin WD, Yamamoto N, Terahara K, Hagiwara H, Odagiri T, Tashiro M, Lertmemongkolchai G, Takeyama H, De Groot AS, Ato M, Takahashi Y. A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines. Sci Rep 2017;7:1283. [PMID: 28455520 DOI: 10.1038/s41598-017-01372-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
15 Ning L, He B, Zhou P, Derda R, Huang J. Molecular Design of Peptide-Fc Fusion Drugs. CDM 2019;20:203-8. [DOI: 10.2174/1389200219666180821095355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
16 Caruso FP, Scala G, Cerulo L, Ceccarelli M. A review of COVID-19 biomarkers and drug targets: resources and tools. Brief Bioinform 2021;22:701-13. [PMID: 33279954 DOI: 10.1093/bib/bbaa328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
17 Ahmad TA, Eweida AE, El-sayed LH. T-cell epitope mapping for the design of powerful vaccines. Vaccine Reports 2016;6:13-22. [DOI: 10.1016/j.vacrep.2016.07.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
18 Maine CJ, Richard G, Spasova DS, Miyake-Stoner SJ, Sparks J, Moise L, Sullivan RP, Garijo O, Choz M, Crouse JM, Aguilar A, Olesiuk MD, Lyons K, Salvador K, Blomgren M, DeHart JL, Kamrud KI, Berdugo G, De Groot AS, Wang NS, Aliahmad P. Self-Replicating RNAs Drive Protective Anti-tumor T Cell Responses to Neoantigen Vaccine Targets in a Combinatorial Approach. Mol Ther 2021;29:1186-98. [PMID: 33278563 DOI: 10.1016/j.ymthe.2020.11.027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Gharbavi M, Danafar H, Amani J, Sharafi A. Immuno-informatics analysis and expression of a novel multi-domain antigen as a vaccine candidate against glioblastoma. Int Immunopharmacol 2021;91:107265. [PMID: 33360829 DOI: 10.1016/j.intimp.2020.107265] [Reference Citation Analysis]
20 Bragazzi NL, Gianfredi V, Villarini M, Rosselli R, Nasr A, Hussein A, Martini M, Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is ("Isolate-Inactivate-Inject") Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front Public Health 2018;6:62. [PMID: 29556492 DOI: 10.3389/fpubh.2018.00062] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
21 Stephen-victor E, Bosschem I, Haesebrouck F, Bayry J. The Yin and Yang of regulatory T cells in infectious diseases and avenues to target them. Cellular Microbiology 2017;19:e12746. [DOI: 10.1111/cmi.12746] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
22 Ong E, Wang H, Wong MU, Seetharaman M, Valdez N, He Y. Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics 2020;36:3185-91. [PMID: 32096826 DOI: 10.1093/bioinformatics/btaa119] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
23 Liu G, Carter B, Bricken T, Jain S, Viard M, Carrington M, Gifford DK. Robust computational design and evaluation of peptide vaccines for cellular immunity with application to SARS-CoV-2. bioRxiv 2020:2020. [PMID: 32511351 DOI: 10.1101/2020.05.16.088989] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
24 Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020;9:13-30. [PMID: 32161726 DOI: 10.2147/ITT.S241064] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
25 Moise L, Beseme S, Tassone R, Liu R, Kibria F, Terry F, Martin W, De Groot AS. T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity. Expert Rev Vaccines 2016;15:607-17. [PMID: 26588466 DOI: 10.1586/14760584.2016.1123098] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
26 Moise L, Gutiérrez AH, Khan S, Tan S, Ardito M, Martin WD, De Groot AS. New Immunoinformatics Tools for Swine: Designing Epitope-Driven Vaccines, Predicting Vaccine Efficacy, and Making Vaccines on Demand. Front Immunol 2020;11:563362. [PMID: 33123135 DOI: 10.3389/fimmu.2020.563362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Nieto-gómez R, Angulo C, Monreal-escalante E, Govea-alonso DO, De Groot AS, Rosales-mendoza S. Design of a multiepitopic Zaire ebolavirus protein and its expression in plant cells. Journal of Biotechnology 2019;295:41-8. [DOI: 10.1016/j.jbiotec.2019.02.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
28 Heinson AI, Gunawardana Y, Moesker B, Hume CC, Vataga E, Hall Y, Stylianou E, McShane H, Williams A, Niranjan M, Woelk CH. Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology. Int J Mol Sci 2017;18:E312. [PMID: 28157153 DOI: 10.3390/ijms18020312] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
29 Tan S, Gutiérrez AH, Gauger PC, Opriessnig T, Bahl J, Moise L, De Groot AS. Quantifying the Persistence of Vaccine-Related T Cell Epitopes in Circulating Swine Influenza A Strains from 2013-2017. Vaccines (Basel) 2021;9:468. [PMID: 34066605 DOI: 10.3390/vaccines9050468] [Reference Citation Analysis]
30 Frederiksen LSF, Zhang Y, Foged C, Thakur A. The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front Immunol 2020;11:1817. [PMID: 32793245 DOI: 10.3389/fimmu.2020.01817] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 27.5] [Reference Citation Analysis]
31 Maeurer M, Rao M, Zumla A. Host-directed therapies for antimicrobial resistant respiratory tract infections: . Current Opinion in Pulmonary Medicine 2016;22:203-11. [DOI: 10.1097/mcp.0000000000000271] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
32 Shey RA, Ghogomu SM, Shintouo CM, Nkemngo FN, Nebangwa DN, Esoh K, Yaah NE, Manka'aFri M, Nguve JE, Ngwese RA, Njume FN, Bertha FA, Ayong L, Njemini R, Vanhamme L, Souopgui J. Computational Design and Preliminary Serological Analysis of a Novel Multi-Epitope Vaccine Candidate against Onchocerciasis and Related Filarial Diseases. Pathogens 2021;10:99. [PMID: 33494344 DOI: 10.3390/pathogens10020099] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Rev Vaccines 2020;19:699-726. [PMID: 32648830 DOI: 10.1080/14760584.2020.1794832] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
34 Noe AR, Terry FE, Schanen BC, Sassano E, Hindocha P, Phares TW, Moise L, Christen JM, Tucker KD, Kotraiah V, Drake DR 3rd, Martin WD, De Groot AS, Gutierrez GM. Bridging Computational Vaccinology and Vaccine Development Through Systematic Identification, Characterization, and Downselection of Conserved and Variable Circumsporozoite Protein CD4 T Cell Epitopes From Diverse Plasmodium falciparum Strains. Front Immunol 2021;12:689920. [PMID: 34168657 DOI: 10.3389/fimmu.2021.689920] [Reference Citation Analysis]
35 Bayry J. Harnessing the regulators to enhance viral vaccine efficacy. Future Med Chem 2017;9:1319-21. [PMID: 28771039 DOI: 10.4155/fmc-2017-0103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
36 Richard G, Princiotta MF, Bridon D, Martin WD, Steinberg GD, De Groot AS. Neoantigen-based personalized cancer vaccines: the emergence of precision cancer immunotherapy. Expert Rev Vaccines 2021;:1-12. [PMID: 34882038 DOI: 10.1080/14760584.2022.2012456] [Reference Citation Analysis]
37 Inácio MM, Cruz-leite VRM, Moreira ALE, Mattos K, Paccez JD, Ruiz OH, Venturini J, de Souza Carvalho Melhem M, Paniago AMM, de Almeida Soares CM, Weber SS, Borges CL. Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens 2022;11:569. [DOI: 10.3390/pathogens11050569] [Reference Citation Analysis]
38 Ullah N, Anwer F, Ishaq Z, Siddique A, Shah MA, Rahman M, Rahman A, Mao X, Jiang T, Lee BL, Bae T, Ali A. In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. J Immunol Methods 2022;:113264. [PMID: 35341759 DOI: 10.1016/j.jim.2022.113264] [Reference Citation Analysis]
39 Salerno-Gonçalves R, Tettelin H, Luo D, Guo Q, Ardito MT, Martin WD, De Groot AS, Sztein MB. Differential functional patterns of memory CD4+ and CD8+ T-cells from volunteers immunized with Ty21a typhoid vaccine observed using a recombinant Escherichia coli system expressing S. Typhi proteins. Vaccine 2020;38:258-70. [PMID: 31629569 DOI: 10.1016/j.vaccine.2019.10.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
40 Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, Asa BF, Ngale FN, Vanhamme L, Souopgui J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep 2019;9:4409. [PMID: 30867498 DOI: 10.1038/s41598-019-40833-x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 87] [Article Influence: 29.0] [Reference Citation Analysis]
41 Opriessnig T, Mattei AA, Karuppannan AK, Halbur PG. Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021;7:1. [PMID: 33397477 DOI: 10.1186/s40813-020-00179-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Majid M, Andleeb S. Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach. Sci Rep 2019;9:19780. [PMID: 31874963 DOI: 10.1038/s41598-019-55613-w] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
43 Almofti YA, Abd-Elrahman KA, Eltilib EEM. Vaccinomic approach for novel multi epitopes vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC Immunol 2021;22:22. [PMID: 33765919 DOI: 10.1186/s12865-021-00412-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
44 Hoffmann PR, Hoffmann FW, Premeaux TA, Fujita T, Soprana E, Panigada M, Chew GM, Richard G, Hindocha P, Menor M, Khadka VS, Deng Y, Moise L, Ndhlovu LC, Siccardi A, Weinberg AD, De Groot AS, Bertino P. Multi-antigen Vaccination With Simultaneous Engagement of the OX40 Receptor Delays Malignant Mesothelioma Growth and Increases Survival in Animal Models. Front Oncol 2019;9:720. [PMID: 31428586 DOI: 10.3389/fonc.2019.00720] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
45 Kotraiah V, Phares TW, Terry FE, Hindocha P, Silk SE, Nielsen CM, Moise L, Tucker KD, Ashfield R, Martin WD, De Groot AS, Draper SJ, Gutierrez GM, Noe AR. Identification and Immune Assessment of T Cell Epitopes in Five Plasmodium falciparum Blood Stage Antigens to Facilitate Vaccine Candidate Selection and Optimization. Front Immunol 2021;12:690348. [PMID: 34305923 DOI: 10.3389/fimmu.2021.690348] [Reference Citation Analysis]
46 Hewitt JS, Karuppannan AK, Tan S, Gauger P, Halbur PG, Gerber PF, De Groot AS, Moise L, Opriessnig T. A prime-boost concept using a T-cell epitope-driven DNA vaccine followed by a whole virus vaccine effectively protected pigs in the pandemic H1N1 pig challenge model. Vaccine 2019;37:4302-9. [PMID: 31248687 DOI: 10.1016/j.vaccine.2019.06.044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
47 Dimitrov I, Zaharieva N, Doytchinova I. Bacterial Immunogenicity Prediction by Machine Learning Methods. Vaccines (Basel) 2020;8:E709. [PMID: 33265930 DOI: 10.3390/vaccines8040709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Valdivia-Olarte H, Requena D, Ramirez M, Saravia LE, Izquierdo R, Falconi-Agapito F, Zavaleta M, Best I, Fernández-Díaz M, Zimic M. Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection. Bioinformation 2015;11:460-5. [PMID: 26664030 DOI: 10.6026/97320630011460] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
49 Kumar S, Thangakani AM, Nagarajan R, Singh SK, Velmurugan D, Gromiha MM. Autoimmune Responses to Soluble Aggregates of Amyloidogenic Proteins Involved in Neurodegenerative Diseases: Overlapping Aggregation Prone and Autoimmunogenic regions. Sci Rep 2016;6:22258. [PMID: 26924748 DOI: 10.1038/srep22258] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
50 Scholzen A, Richard G, Moise L, Baeten LA, Reeves PM, Martin WD, Brauns TA, Boyle CM, Raju Paul S, Bucala R, Bowen RA, Garritsen A, De Groot AS, Sluder AE, Poznansky MC. Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine. Front Immunol 2019;10:207. [PMID: 30828331 DOI: 10.3389/fimmu.2019.00207] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
51 De Groot AS, Moise L, Olive D, Einck L, Martin W. Agility in adversity: Vaccines on Demand. Expert Rev Vaccines 2016;15:1087-91. [PMID: 27389971 DOI: 10.1080/14760584.2016.1205951] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]