BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Katzenberger RJ, Ganetzky B, Wassarman DA. The gut reaction to traumatic brain injury. Fly (Austin) 2015;9:68-74. [PMID: 26291482 DOI: 10.1080/19336934.2015.1085623] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Nukala KM, Lilienthal AJ, Lye SH, Bassuk AG, Chtarbanova S, Manak JR. Downregulation of oxidative stress-mediated glial innate immune response suppresses seizures in a fly epilepsy model. Cell Rep 2023;42:112004. [PMID: 36641750 DOI: 10.1016/j.celrep.2023.112004] [Reference Citation Analysis]
2 Perouansky M, Wassarman DA. Drosophila melanogaster model of traumatic brain injury: Investigating the pharmacodynamics of volatile anesthetics. Handbook of Animal Models in Neurological Disorders 2023. [DOI: 10.1016/b978-0-323-89833-1.00001-x] [Reference Citation Analysis]
3 Rahman Z, Pasam T, Kr R, Dandekar MP. Binary Classification Model of Machine Learning Detected Altered Gut Integrity in Controlled-Cortical Impact Model of Traumatic Brain Injury. Int J Neurosci 2022;:1-14. [PMID: 35758006 DOI: 10.1080/00207454.2022.2095271] [Reference Citation Analysis]
4 Nwafor DC, Brichacek AL, Foster CH, Lucke-wold BP, Ali A, Colantonio MA, Brown CM, Qaiser R. Pediatric Traumatic Brain Injury: An Update on Preclinical Models, Clinical Biomarkers, and the Implications of Cerebrovascular Dysfunction. J Cent Nerv Syst Dis 2022;14:117957352210981. [DOI: 10.1177/11795735221098125] [Reference Citation Analysis]
5 Patil AG, Prakash JK, More SS, Chandramohan V, Zameer F. Exploring Banana phytosterols (Beta-sitosterol) on tight junction protein (claudin) as anti-urolithiasis contributor in Drosophila: A phyto-lithomic approach. Informatics in Medicine Unlocked 2022. [DOI: 10.1016/j.imu.2022.100905] [Reference Citation Analysis]
6 Scharenbrock AR, Katzenberger RJ, Fischer MC, Ganetzky B, Wassarman DA. Beta-blockers reduce intestinal permeability and early mortality following traumatic brain injury in Drosophila. MicroPubl Biol 2021;2021. [PMID: 34723144 DOI: 10.17912/micropub.biology.000461] [Reference Citation Analysis]
7 Opeyemi OM, Rogers MB, Firek BA, Janesko-Feldman K, Vagni V, Mullett SJ, Wendell SG, Nelson BP, New LA, Mariño E, Kochanek PM, Bayır H, Clark RSB, Morowitz MJ, Simon DW. Sustained Dysbiosis and Decreased Fecal Short-Chain Fatty Acids after Traumatic Brain Injury and Impact on Neurologic Outcome. J Neurotrauma 2021;38:2610-21. [PMID: 33957773 DOI: 10.1089/neu.2020.7506] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
8 Buhlman LM, Krishna G, Jones TB, Thomas TC. Drosophila as a model to explore secondary injury cascades after traumatic brain injury. Biomed Pharmacother 2021;142:112079. [PMID: 34463269 DOI: 10.1016/j.biopha.2021.112079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2020;37:770-81. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 19.0] [Reference Citation Analysis]
10 Mazarati A, Medel-Matus JS, Shin D, Jacobs JP, Sankar R. Disruption of intestinal barrier and endotoxemia after traumatic brain injury: Implications for post-traumatic epilepsy. Epilepsia 2021;62:1472-81. [PMID: 33893636 DOI: 10.1111/epi.16909] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
11 Molina B, Mastroianni J, Suarez E, Soni B, Forsberg E, Finley K. Treatment with Bacterial Biologics Promotes Healthy Aging and Traumatic Brain Injury Responses in Adult Drosophila, Modeling the Gut-Brain Axis and Inflammation Responses. Cells 2021;10:900. [PMID: 33919883 DOI: 10.3390/cells10040900] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y, Xin Y, Wang XP. CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol 2021;341:113683. [PMID: 33711325 DOI: 10.1016/j.expneurol.2021.113683] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
13 Mikaelyan KA, Krylov KY, Petrova MV, Shestopalov AE. [Intestine morphology and microbiocenosis changes in critically ill patients in neurosurgery]. Zh Vopr Neirokhir Im N N Burdenko 2021;85:104-10. [PMID: 33560626 DOI: 10.17116/neiro202185011104] [Reference Citation Analysis]
14 Chao CM, Hsu CC, Huang CC, Wang CH, Lin MT, Chang CP, Lin HJ, Chio CC. Selective brain cooling achieves peripheral organs protection in hemorrhagic shock resuscitation via preserving the integrity of the brain-gut axis. Int J Med Sci 2021;18:2920-9. [PMID: 34220319 DOI: 10.7150/ijms.61191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021;16:254-63. [PMID: 32859772 DOI: 10.4103/1673-5374.290883] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Yamakawa GR, Brady RD, Sun M, McDonald SJ, Shultz SR, Mychasiuk R. The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2020;9:100058. [PMID: 33364525 DOI: 10.1016/j.nbscr.2020.100058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Weaver JL. The brain-gut axis: A prime therapeutic target in traumatic brain injury. Brain Res 2021;1753:147225. [PMID: 33359374 DOI: 10.1016/j.brainres.2020.147225] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Jeon J, Lourenco J, Kaiser EE, Waters ES, Scheulin KM, Fang X, Kinder HA, Platt SR, Rothrock MJ Jr, Callaway TR, West FD, Park HJ. Dynamic Changes in the Gut Microbiome at the Acute Stage of Ischemic Stroke in a Pig Model. Front Neurosci 2020;14:587986. [PMID: 33343283 DOI: 10.3389/fnins.2020.587986] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
19 Swanson LC, Trujillo EA, Thiede GH, Katzenberger RJ, Shishkova E, Coon JJ, Ganetzky B, Wassarman DA. Survival Following Traumatic Brain Injury in Drosophila Is Increased by Heterozygosity for a Mutation of the NF-κB Innate Immune Response Transcription Factor Relish. Genetics 2020;216:1117-36. [PMID: 33109529 DOI: 10.1534/genetics.120.303776] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Swanson LC, Rimkus SA, Ganetzky B, Wassarman DA. Loss of the Antimicrobial Peptide Metchnikowin Protects Against Traumatic Brain Injury Outcomes in Drosophila melanogaster. G3 (Bethesda) 2020;10:3109-19. [PMID: 32631949 DOI: 10.1534/g3.120.401377] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
21 Yuen KCJ, Masel BE, Reifschneider KL, Sheffield-Moore M, Urban RJ, Pyles RB. Alterations of the GH/IGF-I Axis and Gut Microbiome after Traumatic Brain Injury: A New Clinical Syndrome? J Clin Endocrinol Metab 2020;105:dgaa398. [PMID: 32585029 DOI: 10.1210/clinem/dgaa398] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
22 Patil PP, Subramanian A, Aggarwal G, Lalwani S, Agrawal D. A Study to Ascertain the Expression of Aquaporin 4 and Neuropeptide Y in the Jejunal Mucosa Secondary to Traumatic Brain Injury in Humans. Indian Journal of Neurotrauma 2020;17:130-8. [DOI: 10.1055/s-0040-1713311] [Reference Citation Analysis]
23 Simon DW, Rogers MB, Gao Y, Vincent G, Firek BA, Janesko-Feldman K, Vagni V, Kochanek PM, Ozolek JA, Mollen KP, Clark RSB, Morowitz MJ. Depletion of gut microbiota is associated with improved neurologic outcome following traumatic brain injury. Brain Res 2020;1747:147056. [PMID: 32798452 DOI: 10.1016/j.brainres.2020.147056] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
24 Wallace DJ, Sayre NL, Patterson TT, Nicholson SE, Hilton D, Grandhi R. Spinal cord injury and the human microbiome: beyond the brain-gut axis. Neurosurg Focus. 2019;46:E11. [PMID: 30835680 DOI: 10.3171/2018.12.focus18206] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
25 Urban RJ, Pyles RB, Stewart CJ, Ajami N, Randolph KM, Durham WJ, Danesi CP, Dillon EL, Summons JR, Singh CK, Morrison M, Kreber LA, Masel B, Miller AL, Wright TJ, Sheffield-moore M. Altered Fecal Microbiome Years after Traumatic Brain Injury. Journal of Neurotrauma 2020;37:1037-51. [DOI: 10.1089/neu.2019.6688] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 10.0] [Reference Citation Analysis]
26 Chakraborty T, Wijdicks E. A Punch to the Gut from a Ruptured Cerebral Aneurysm. Neurocrit Care 2021;34:343-4. [PMID: 32232725 DOI: 10.1007/s12028-020-00949-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Wood T, Nance E. Disease-directed engineering for physiology-driven treatment interventions in neurological disorders. APL Bioeng 2019;3:040901. [PMID: 31673672 DOI: 10.1063/1.5117299] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
28 Royes LFF, Gomez-Pinilla F. Making sense of gut feelings in the traumatic brain injury pathogenesis. Neurosci Biobehav Rev 2019;102:345-61. [PMID: 31102601 DOI: 10.1016/j.neubiorev.2019.05.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
29 Pan P, Song Y, Du X, Bai L, Hua X, Xiao Y, Yu X. Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci 2019;40:1105-10. [PMID: 30771023 DOI: 10.1007/s10072-019-03739-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
30 De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020;51:454-81. [PMID: 30269400 DOI: 10.1111/ejn.14176] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
31 Wagner AK, Kumar RG. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions. Neuropharmacology 2019;145:133-44. [PMID: 30222984 DOI: 10.1016/j.neuropharm.2018.09.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
32 Patel JJ, Rosenthal MD, Miller KR, Martindale RG. The gut in trauma. Curr Opin Crit Care 2016;22:339-46. [PMID: 27314259 DOI: 10.1097/MCC.0000000000000331] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 5.8] [Reference Citation Analysis]
33 Li H, Sun J, Du J, Wang F, Fang R, Yu C, Xiong J, Chen W, Lu Z, Liu J. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil 2018;30:e13260. [PMID: 29193450 DOI: 10.1111/nmo.13260] [Cited by in Crossref: 81] [Cited by in F6Publishing: 79] [Article Influence: 16.2] [Reference Citation Analysis]
34 Karakula-Juchnowicz H, Gałęcka M, Rog J, Bartnicka A, Łukaszewicz Z, Krukow P, Morylowska-Topolska J, Skonieczna-Zydecka K, Krajka T, Jonak K, Juchnowicz D. The Food-Specific Serum IgG Reactivity in Major Depressive Disorder Patients, Irritable Bowel Syndrome Patients and Healthy Controls. Nutrients 2018;10:E548. [PMID: 29710769 DOI: 10.3390/nu10050548] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
35 Morley WA. Environmental Subconcussive Injury, Axonal Injury, and Chronic Traumatic Encephalopathy. Front Neurol 2018;9:166. [PMID: 29636723 DOI: 10.3389/fneur.2018.00166] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
36 Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol 2018;19:327-41. [PMID: 29507356 DOI: 10.1038/s41590-018-0064-8] [Cited by in Crossref: 244] [Cited by in F6Publishing: 256] [Article Influence: 48.8] [Reference Citation Analysis]
37 De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017;2017:4723836. [PMID: 29391952 DOI: 10.1155/2017/4723836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
38 Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 2017;66:31-44. [PMID: 28526435 DOI: 10.1016/j.bbi.2017.05.009] [Cited by in Crossref: 102] [Cited by in F6Publishing: 101] [Article Influence: 17.0] [Reference Citation Analysis]
39 Medcalf RL. Fibrinolysis: from blood to the brain. J Thromb Haemost 2017;15:2089-98. [DOI: 10.1111/jth.13849] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 6.2] [Reference Citation Analysis]
40 Adams H, Donnelly J, Czosnyka M, Kolias AG, Helmy A, Menon DK, Smielewski P, Hutchinson PJ. Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: An observational study. PLoS Med 2017;14:e1002353. [PMID: 28742817 DOI: 10.1371/journal.pmed.1002353] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 8.2] [Reference Citation Analysis]
41 Katzenberger RJ, Ganetzky B, Wassarman DA. Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in Drosophila. G3 (Bethesda) 2016;6:4151-66. [PMID: 27754853 DOI: 10.1534/g3.116.036194] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
42 Kashio S, Obata F, Miura M. How tissue damage MET metabolism: Regulation of the systemic damage response. Fly (Austin) 2017;11:27-36. [PMID: 27562340 DOI: 10.1080/19336934.2016.1221549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
43 Barekat A, Gonzalez A, Mauntz RE, Kotzebue RW, Molina B, El-Mecharrafie N, Conner CJ, Garza S, Melkani GC, Joiner WJ, Lipinski MM, Finley KD, Ratliff EP. Using Drosophila as an integrated model to study mild repetitive traumatic brain injury. Sci Rep 2016;6:25252. [PMID: 27143646 DOI: 10.1038/srep25252] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
44 Ganetzky B, Wassarman DA. Non-mammalian Animal Models Offer New Perspectives on the Treatment of TBI. Curr Phys Med Rehabil Rep 2016;4:1-4. [DOI: 10.1007/s40141-016-0107-8] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]