BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Prokopienko AJ, Nolin TD. Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease. Expert Rev Clin Pharmacol 2018;11:71-82. [PMID: 28905671 DOI: 10.1080/17512433.2018.1378095] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Bolasco P. Very low protein plus ketoacid analogs of essential aminoacids do not confirm superiority of a low protein diet to retard chronic kidney disease progression. Kidney Res Clin Pract 2019;38:124-5. [PMID: 30866179 DOI: 10.23876/j.krcp.19.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Rong Y, Kiang TKL. Characterizations of Human UDP-Glucuronosyltransferase Enzymes in the Conjugation of p-Cresol. Toxicol Sci 2020;176:285-96. [PMID: 32421801 DOI: 10.1093/toxsci/kfaa072] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
3 Rong Y, Kiang TKL. Development and validation of a sensitive liquid-chromatography tandem mass spectrometry assay for mycophenolic acid and metabolites in HepaRG cell culture: Characterization of metabolism interactions between p-cresol and mycophenolic acid. Biomed Chromatogr 2019;33:e4549. [PMID: 30958902 DOI: 10.1002/bmc.4549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
4 Rong Y, Patel V, Kiang TK. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opinion on Drug Metabolism & Toxicology. [DOI: 10.1080/17425255.2021.2027906] [Reference Citation Analysis]
5 Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases 2019;7:E21. [PMID: 30781823 DOI: 10.3390/diseases7010021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
6 Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol 2019;15:301-16. [PMID: 30728454 DOI: 10.1038/s41581-019-0111-1] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 13.0] [Reference Citation Analysis]
7 Rong Y, Kiang TKL. Characterization of human sulfotransferases catalyzing the formation of p-cresol sulfate and identification of mefenamic acid as a potent metabolism inhibitor and potential therapeutic agent for detoxification. Toxicol Appl Pharmacol 2021;425:115553. [PMID: 33915121 DOI: 10.1016/j.taap.2021.115553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Rong Y, Kiang TKL. Mechanisms of Metabolism Interaction Between p-Cresol and Mycophenolic Acid. Toxicological Sciences 2020;173:267-79. [DOI: 10.1093/toxsci/kfz231] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
9 Mihaila SM, Faria J, Stefens MFJ, Stamatialis D, Verhaar MC, Gerritsen KGF, Masereeuw R. Drugs Commonly Applied to Kidney Patients May Compromise Renal Tubular Uremic Toxins Excretion. Toxins (Basel) 2020;12:E391. [PMID: 32545617 DOI: 10.3390/toxins12060391] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 André C, Choukroun G, Bennis Y, Kamel S, Lemaire-Hurtel AS, Masmoudi K, Bodeau S, Liabeuf S. Potential interactions between uremic toxins and drugs: an application in kidney transplant recipients treated with calcineurin inhibitors. Nephrol Dial Transplant 2021:gfab114. [PMID: 33783543 DOI: 10.1093/ndt/gfab114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Urquhart BL, Nolin TD. Drug Metabolism in Chronic Kidney Disease. Chronic Renal Disease. Elsevier; 2020. pp. 1035-51. [DOI: 10.1016/b978-0-12-815876-0.00063-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Rong Y, Colbourne P, Gourishankar S, Kiang TKL. Significant Correlations between p-Cresol Sulfate and Mycophenolic Acid Plasma Concentrations in Adult Kidney Transplant Recipients. Clin Drug Investig 2022. [PMID: 35182318 DOI: 10.1007/s40261-022-01121-1] [Reference Citation Analysis]
13 Moon Y. Predictive and Preventive Mucosal Communications in Particulate Matter Exposure-Linked Renal Distress. J Pers Med 2021;11:118. [PMID: 33670188 DOI: 10.3390/jpm11020118] [Reference Citation Analysis]
14 Zhu S, Rong Y, Kiang TKL. Effects of p-Cresol on Oxidative Stress, Glutathione Depletion, and Necrosis in HepaRG Cells: Comparisons to Other Uremic Toxins and the Role of p-Cresol Glucuronide Formation. Pharmaceutics 2021;13:857. [PMID: 34207666 DOI: 10.3390/pharmaceutics13060857] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Prokopienko AJ, West RE 3rd, Schrum DP, Stubbs JR, Leblond FA, Pichette V, Nolin TD. Metabolic Activation of Flavin Monooxygenase-mediated Trimethylamine-N-Oxide Formation in Experimental Kidney Disease. Sci Rep 2019;9:15901. [PMID: 31685846 DOI: 10.1038/s41598-019-52032-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
16 Kouidhi S, Souai N, Alhujaily M, Zidi O, Kochbati A, Redissi A, Belali TM, Kossai IE, El Manaa J, Cherif A, Mnif W, Mosbah A. Multi-Solvent Extraction Procedure for the Pioneer Fecal Metabolomic Analysis-Identification of Potential Biomarkers in Stable Kidney Transplant Patients. Diagnostics (Basel) 2021;11:962. [PMID: 34073647 DOI: 10.3390/diagnostics11060962] [Reference Citation Analysis]