BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hegde NR, Gauthami S, Sampath Kumar HM, Bayry J. The use of databases, data mining and immunoinformatics in vaccinology: where are we? Expert Opin Drug Discov 2018;13:117-30. [PMID: 29226722 DOI: 10.1080/17460441.2018.1413088] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 [DOI: 10.1101/2020.02.04.934232] [Cited by in Crossref: 27] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
2 Rouka E, Gourgoulianis KI, Zarogiannis SG. In silico investigation of the viroporin E as a vaccine target against SARS-CoV-2. Am J Physiol Lung Cell Mol Physiol 2021;320:L1057-63. [PMID: 33822639 DOI: 10.1152/ajplung.00443.2020] [Reference Citation Analysis]
3 Abdelmageed MI, Abdelmoneim AH, Mustafa MI, Elfadol NM, Murshed NS, Shantier SW, Makhawi AM. Design of a Multiepitope-Based Peptide Vaccine against the E Protein of Human COVID-19: An Immunoinformatics Approach. Biomed Res Int 2020;2020:2683286. [PMID: 32461973 DOI: 10.1155/2020/2683286] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 28.0] [Reference Citation Analysis]
4 Jaiswal S, Kumar M, Mandeep, Sunita, Singh Y, Shukla P. Systems Biology Approaches for Therapeutics Development Against COVID-19. Front Cell Infect Microbiol 2020;10:560240. [PMID: 33194800 DOI: 10.3389/fcimb.2020.560240] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
5 Chong LC, Khan AM. Vaccine Target Discovery. Encyclopedia of Bioinformatics and Computational Biology. Elsevier; 2019. pp. 241-51. [DOI: 10.1016/b978-0-12-809633-8.20100-3] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
6 Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Front Immunol 2018;9:2936. [PMID: 30619296 DOI: 10.3389/fimmu.2018.02936] [Cited by in Crossref: 109] [Cited by in F6Publishing: 84] [Article Influence: 27.3] [Reference Citation Analysis]
7 Ezaj MMA, Junaid M, Akter Y, Nahrin A, Siddika A, Afrose SS, Nayeem SMA, Haque MS, Moni MA, Hosen SMZ. Whole proteome screening and identification of potential epitopes of SARS-CoV-2 for vaccine design-an immunoinformatic, molecular docking and molecular dynamics simulation accelerated robust strategy. J Biomol Struct Dyn 2021;:1-26. [PMID: 33586620 DOI: 10.1080/07391102.2021.1886171] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Mottram L, Chakraborty S, Cox E, Fleckenstein J. How genomics can be used to understand host susceptibility to enteric infection, aiding in the development of vaccines and immunotherapeutic interventions. Vaccine 2019;37:4805-10. [PMID: 30709726 DOI: 10.1016/j.vaccine.2019.01.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
9 Sharma M, Krammer F, García-Sastre A, Tripathi S. Moving from Empirical to Rational Vaccine Design in the 'Omics' Era. Vaccines (Basel) 2019;7:E89. [PMID: 31416125 DOI: 10.3390/vaccines7030089] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
10 Bagheri A, Nezafat N, Eslami M, Ghasemi Y, Negahdaripour M. Designing a therapeutic and prophylactic candidate vaccine against human papillomavirus through vaccinomics approaches. Infect Genet Evol 2021;95:105084. [PMID: 34547435 DOI: 10.1016/j.meegid.2021.105084] [Reference Citation Analysis]
11 Soltan MA, Elbassiouny N, Gamal H, Elkaeed EB, Eid RA, Eldeen MA, Al-Karmalawy AA. In Silico Prediction of a Multitope Vaccine against Moraxella catarrhalis: Reverse Vaccinology and Immunoinformatics. Vaccines (Basel) 2021;9:669. [PMID: 34207238 DOI: 10.3390/vaccines9060669] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020;9:13-30. [PMID: 32161726 DOI: 10.2147/ITT.S241064] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
13 Dong R, Chu Z, Yu F, Zha Y. Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches. Front Immunol 2020;11:1784. [PMID: 32849643 DOI: 10.3389/fimmu.2020.01784] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
14 Zawawi A, Forman R, Smith H, Mair I, Jibril M, Albaqshi MH, Brass A, Derrick JP, Else KJ. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS Pathog 2020;16:e1008243. [PMID: 32203551 DOI: 10.1371/journal.ppat.1008243] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
15 Qiu X, Duvvuri VR, Bahl J. Computational Approaches and Challenges to Developing Universal Influenza Vaccines. Vaccines (Basel) 2019;7:E45. [PMID: 31141933 DOI: 10.3390/vaccines7020045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
16 Bragazzi NL, Gianfredi V, Villarini M, Rosselli R, Nasr A, Hussein A, Martini M, Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is ("Isolate-Inactivate-Inject") Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front Public Health 2018;6:62. [PMID: 29556492 DOI: 10.3389/fpubh.2018.00062] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]