BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lateef A, Folarin BI, Oladejo SM, Akinola PO, Beukes LS, Gueguim-Kana EB. Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Prep Biochem Biotechnol 2018;48:646-52. [PMID: 29958093 DOI: 10.1080/10826068.2018.1479864] [Cited by in Crossref: 50] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Akintayo GO, Lateef A, Azeez MA, Asafa TB, Oladipo IC, Badmus JA, Ojo SA, Elegbede JA, Gueguim-kana EB, Beukes LS, Yekeen TA. Synthesis, bioactivities and cytogenotoxicity of animal fur-mediated silver nanoparticles. IOP Conf Ser : Mater Sci Eng 2020;805:012041. [DOI: 10.1088/1757-899x/805/1/012041] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
2 Drozdov AS, Prilepskii AY, Koltsova EM, Anastasova EI, Vinogradov VV. Magnetic polyelectrolyte-based composites with dual anticoagulant and thrombolytic properties: towards optimal composition. J Sol-Gel Sci Technol 2020;95:771-82. [DOI: 10.1007/s10971-020-05313-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Asghar MA, Yousuf RI, Shoaib MH, Asghar MA. Antibacterial, anticoagulant and cytotoxic evaluation of biocompatible nanocomposite of chitosan loaded green synthesized bioinspired silver nanoparticles. Int J Biol Macromol 2020;160:934-43. [PMID: 32470586 DOI: 10.1016/j.ijbiomac.2020.05.197] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
4 Magalhães PKA, Araujo EN, Santos AM, Vanderlei MB, Souza CCL, Correia MS, Fonseca SA, Pavão JMJS, Souza MA, Costa JG, Santos AF, Matos-Rocha TJ. Ethnobotanical and ethnopharmacological study of medicinal plants used by a traditional community in Brazil's northeastern. Braz J Biol 2021;82:e237642. [PMID: 34105672 DOI: 10.1590/1519-6984.237642] [Reference Citation Analysis]
5 Ameen F, Srinivasan P, Selvankumar T, Kamala-Kannan S, Al Nadhari S, Almansob A, Dawoud T, Govarthanan M. Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity. Bioorg Chem 2019;88:102970. [PMID: 31174009 DOI: 10.1016/j.bioorg.2019.102970] [Cited by in Crossref: 30] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
6 Oladipo I, Lateef A, Azeez M, Asafa T, Yekeen T, Ogunsona S, Irshad H, Abbas S. Characterization and biomedical application of phytosynthesized gold nanoparticles from Datura stramonium seed extract. IOP Conf Ser : Mater Sci Eng 2020;805:012021. [DOI: 10.1088/1757-899x/805/1/012021] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology. [DOI: 10.1049/nbt2.12078] [Reference Citation Analysis]
8 Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020;25:E3324. [PMID: 32707950 DOI: 10.3390/molecules25153324] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
9 Al-radadi NS. Green Biosynthesis of Flaxseed Gold Nanoparticles (Au-NPs) as Potent Anti-cancer Agent Against Breast Cancer Cells. Journal of Saudi Chemical Society 2021;25:101243. [DOI: 10.1016/j.jscs.2021.101243] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
10 Lateef A, Oladejo SM, Akinola PO, Aina DA, Beukes LS, Folarin BI, Gueguim-kana EB. Facile synthesis of silver nanoparticles using leaf extract of Hyptis suaveolens (L.) Poit for environmental and biomedical applications. IOP Conf Ser : Mater Sci Eng 2020;805:012042. [DOI: 10.1088/1757-899x/805/1/012042] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Vishwanath R, Negi B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Current Research in Green and Sustainable Chemistry 2021;4:100205. [DOI: 10.1016/j.crgsc.2021.100205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Manikandan DB, Sridhar A, Krishnasamy Sekar R, Perumalsamy B, Veeran S, Arumugam M, Karuppaiah P, Ramasamy T. Green fabrication, characterization of silver nanoparticles using aqueous leaf extract of Ocimum americanum (Hoary Basil) and investigation of its in vitro antibacterial, antioxidant, anticancer and photocatalytic reduction. Journal of Environmental Chemical Engineering 2021;9:104845. [DOI: 10.1016/j.jece.2020.104845] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
13 Akinola P, Lateef A, Asafa T, Beukes L, Abbas S, Irshad H. Phytofabrication of titanium-silver alloy nanoparticles (Ti-AgNPs) by Cola nitida for biomedical and catalytic applications. Inorganic Chemistry Communications 2022;139:109357. [DOI: 10.1016/j.inoche.2022.109357] [Reference Citation Analysis]
14 Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Hakeem AS, Beukes LS, Gueguim‐kana EB. Silver‐gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol Prog 2019;35. [DOI: 10.1002/btpr.2829] [Cited by in Crossref: 39] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
15 Dharmaraj D, Krishnamoorthy M, Rajendran K, Karuppiah K, Annamalai J, Durairaj KR, Santhiyagu P, Ethiraj K. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. Journal of Drug Delivery Science and Technology 2021;61:102111. [DOI: 10.1016/j.jddst.2020.102111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
16 Rizwan M, Hussain M, Muhammad, Rauf A, Zafar MN, Mabkhot YN, Maalik A. Green synthesis and antimicrobial evaluation of silver nanoparticles mediated by leaf extract of Syzygium cumini against poultry pathogens. Micro & Nano Letters 2020;15:600-5. [DOI: 10.1049/mnl.2019.0617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens 2021;10:1303. [PMID: 34684252 DOI: 10.3390/pathogens10101303] [Reference Citation Analysis]
18 Mao JY, Lin FY, Chu HW, Harroun SG, Lai JY, Lin HJ, Huang CC. In situ synthesis of core-shell carbon nanowires as a potent targeted anticoagulant. J Colloid Interface Sci 2019;552:583-96. [PMID: 31163388 DOI: 10.1016/j.jcis.2019.05.086] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
19 Jahan I, Erci F, Isildak I. Rapid green synthesis of non-cytotoxic silver nanoparticles using aqueous extracts of 'Golden Delicious' apple pulp and cumin seeds with antibacterial and antioxidant activity. SN Appl Sci 2021;3. [DOI: 10.1007/s42452-020-04046-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Akinola PO, Lateef A, Asafa TB, Beukes LS, Hakeem AS, Irshad HM. Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon 2020;6:e04610. [PMID: 32775756 DOI: 10.1016/j.heliyon.2020.e04610] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
21 Ibrahim S, Ahmad Z, Manzoor MZ, Mujahid M, Faheem Z, Adnan A. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Sci Rep 2021;11:770. [PMID: 33436966 DOI: 10.1038/s41598-020-80805-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
22 Moudgil A, Deval AS, Dharne MS, Sarkar DM, Choudhari AS, Chaudhari BP. Eichhornia crassipes Mediated Bioinspired Synthesis of Crystalline Nano Silver as an Integrated Medicinal Material: A Waste to Value Approach. J Clust Sci 2021;32:391-404. [DOI: 10.1007/s10876-020-01797-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
23 Lingaraju K, Basavaraj R, Jayanna K, S.bhavana, Devaraja S, Kumar Swamy H, Nagaraju G, Nagabhushana H, Raja Naika H. Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties. Inorganic Chemistry Communications 2021;127:108505. [DOI: 10.1016/j.inoche.2021.108505] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
24 Salem MZM, El-Hefny M, Ali HM, Abdel-Megeed A, El-Settawy AAA, Böhm M, Mansour MMA, Salem AZM. Plants-derived bioactives: Novel utilization as antimicrobial, antioxidant and phytoreducing agents for the biosynthesis of metallic nanoparticles. Microb Pathog 2021;158:105107. [PMID: 34303810 DOI: 10.1016/j.micpath.2021.105107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Aina A, Owolo O, Adeoye-isijola M, Olukanni OD, Lateef A, Egbe T, Aina F, Asafa T, Abbas S. Ecofriendly production of silver nanoparticles from the seeds of Carica papaya and its larvicidal and antibacterial efficacy against some selected bacterial pathogens. IOP Conf Ser : Mater Sci Eng 2020;805:012038. [DOI: 10.1088/1757-899x/805/1/012038] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Suriyakala G, Sathiyaraj S, Gandhi AD, Vadakkan K, Mahadeva Rao U, Babujanarthanam R. Plumeria pudica Jacq. flower extract - mediated silver nanoparticles: Characterization and evaluation of biomedical applications. Inorganic Chemistry Communications 2021;126:108470. [DOI: 10.1016/j.inoche.2021.108470] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
27 Al-radadi NS. Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. Arabian Journal of Chemistry 2021;14:102956. [DOI: 10.1016/j.arabjc.2020.102956] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
28 S.s. D, M.b. M, M.n. SK, Golla R, P. RK, S. D, Hosamani R. Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. International Journal of Biological Macromolecules 2019;131:787-97. [DOI: 10.1016/j.ijbiomac.2019.01.222] [Cited by in Crossref: 36] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
29 Dong Z, Wu Q, Long J, Lu B, Zheng N, Hu C, Chen P, Hu N, Lu C, Pan M. Silver nanoparticles are effective in controlling microsporidia. Mater Sci Eng C Mater Biol Appl 2021;125:112106. [PMID: 33965113 DOI: 10.1016/j.msec.2021.112106] [Reference Citation Analysis]
30 Arshad H, Sami MA, Sadaf S, Hassan U. Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy. Sci Rep 2021;11:5996. [PMID: 33727607 DOI: 10.1038/s41598-021-85584-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
31 Mao JY, Unnikrishnan B, Chu HW, Harroun SG, Chen YR, Wu AT, Chang HT, Lin HJ, Huang CC. Thermally driven formation of polyphenolic carbonized nanogels with high anticoagulant activity from polysaccharides. Biomater Sci 2021;9:4679-90. [PMID: 34018502 DOI: 10.1039/d1bm00402f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Baskaran XR, Vigila AG, Rajan K, Zhang S, Liao W. Free Radical Scavenging and Some Pharmaceutical Utilities of Nanoparticles in the Recent Scenario. Curr Pharm Des 2019;25:2677-93. [PMID: 31333102 DOI: 10.2174/1381612825666190716110330] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Naidoo CM, Naidoo Y, Dewir YH, Murthy HN, El-Hendawy S, Al-Suhaibani N. Major Bioactive Alkaloids and Biological Activities of Tabernaemontana Species (Apocynaceae). Plants (Basel) 2021;10:313. [PMID: 33562893 DOI: 10.3390/plants10020313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Majeed M, Hakeem KR, Rehman RU. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. Chemosphere 2021;288:132527. [PMID: 34637861 DOI: 10.1016/j.chemosphere.2021.132527] [Reference Citation Analysis]
35 Simsek A, Pehlivanoglu S, Aydin Acar C. Anti-proliferative and apoptotic effects of green synthesized silver nanoparticles using Lavandula angustifolia on human glioblastoma cells. 3 Biotech 2021;11:374. [PMID: 34367866 DOI: 10.1007/s13205-021-02923-4] [Reference Citation Analysis]
36 Mohammadi G, Zangeneh MM, Zangeneh A, Haghighi ZMS. Chemical characterization and anti‐breast cancer effects of silver nanoparticles using Phoenix dactylifera seed ethanolic extract on 7,12‐Dimethylbenz[a] anthracene‐induced mammary gland carcinogenesis in Sprague Dawley male rats. Appl Organometal Chem 2019;34. [DOI: 10.1002/aoc.5136] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
37 Leite PM, Martins MAP, Carvalho MDG, Castilho RO. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: An updated review. Biomed Pharmacother 2021;143:112103. [PMID: 34474338 DOI: 10.1016/j.biopha.2021.112103] [Reference Citation Analysis]
38 Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Reference Citation Analysis]
39 Andleeb S, Tariq F, Muneer A, Nazir T, Shahid B, Latif Z, Abbasi SA, Haq IU, Majeed Z, Khan SU, Khan SU, Khan TM, Al Farraj DA. In vitro bactericidal, antidiabetic, cytotoxic, anticoagulant, and hemolytic effect of green-synthesized silver nanoparticles using Allium sativum clove extract incubated at various temperatures. Green Processing and Synthesis 2020;9:538-53. [DOI: 10.1515/gps-2020-0051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
40 Reddy NV, Satyanarayana BM, Sivasankar S, Pragathi D, Subbaiah KV, Vijaya T. Eco-friendly synthesis of silver nanoparticles using leaf extract of Flemingia wightiana: spectral characterization, antioxidant and anticancer activity studies. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-2702-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
41 Elsaied BE, Diab AM, Tayel AA, Alghuthaymi MA, Moussa SH. Potent antibacterial action of phycosynthesized selenium nanoparticles using Spirulina platensis extract. Green Processing and Synthesis 2021;10:49-60. [DOI: 10.1515/gps-2021-0005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]