BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pham DT, Tiyaboonchai W. Fibroin nanoparticles: a promising drug delivery system. Drug Deliv 2020;27:431-48. [PMID: 32157919 DOI: 10.1080/10717544.2020.1736208] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 26.5] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, Cong X. Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects. Biomedicine & Pharmacotherapy 2023;157:113998. [DOI: 10.1016/j.biopha.2022.113998] [Reference Citation Analysis]
2 Wongkrongsak S, Piroonpan T, Coqueret X, Pasanphan W. Radiation-processed silk fibroin micro- /nano-gels as promising antioxidants: Electron beam treatment and physicochemical characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;653:129892. [DOI: 10.1016/j.colsurfa.2022.129892] [Reference Citation Analysis]
3 Montaseri Z, Abolmaali SS, Tamaddon AM, Farvadi F. Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.104018] [Reference Citation Analysis]
4 Gonzalez-obeso C, Jane Hartzell E, Albert Scheel R, Kaplan DL. Delivering on the promise of recombinant silk-inspired proteins for drug delivery. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114622] [Reference Citation Analysis]
5 Pham DT, Ha TKQ, Nguyen MQ, Tran VD, Nguyen VB, Quyen TTB. Silk fibroin nanoparticles as a versatile oral delivery system for drugs of different biopharmaceutics classification system (BCS) classes: A comprehensive comparison. Journal of Materials Research. [DOI: 10.1557/s43578-022-00782-0] [Reference Citation Analysis]
6 Li Z, Cheng G, Zhang Q, Wu W, Zhang Y, Wu B, Liu Z, Tong X, Xiao B, Cheng L, Dai F. PX478-loaded silk fibroin nanoparticles reverse multidrug resistance by inhibiting the hypoxia-inducible factor. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.10.018] [Reference Citation Analysis]
7 O’connell C, Vandenheuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. IJMS 2022;23:9981. [DOI: 10.3390/ijms23179981] [Reference Citation Analysis]
8 Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Rajendra PKM, Nidamanuri BSS, Balan AP, Venkatachalam S, Jawahar N. A review on structure, preparation and applications of silk fibroin-based nano-drug delivery systems. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05526-z] [Reference Citation Analysis]
10 Tan XH, Liu L, Mitryashkin A, Wang Y, Goh JCH. Silk Fibroin as a Bioink - A Thematic Review of Functionalization Strategies for Bioprinting Applications. ACS Biomater Sci Eng 2022. [PMID: 35786841 DOI: 10.1021/acsbiomaterials.2c00313] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Chomchalao P, Saelim N, Tiyaboonchai W. Preparation and characterization of amphotericin B-loaded silk fibroin nanoparticles-in situ hydrogel composites for topical ophthalmic application. J Mater Sci 2022;57:12522-39. [DOI: 10.1007/s10853-022-07413-3] [Reference Citation Analysis]
12 Lin L, Luo C, Li C, Abdel-samie MA, Cui H. Eugenol/silk fibroin nanoparticles embedded Lycium barbarum polysaccharide nanofibers for active food packaging. Food Packaging and Shelf Life 2022;32:100841. [DOI: 10.1016/j.fpsl.2022.100841] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Butnarasu C, Petrini P, Bracotti F, Visai L, Guagliano G, Fiorio Pla A, Sansone E, Petrillo S, Visentin S. Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multi-Drug Delivery Platform. Adv Healthc Mater 2022;:e2200340. [PMID: 35608152 DOI: 10.1002/adhm.202200340] [Reference Citation Analysis]
14 Zhang S, Shah SA, Basharat K, Qamar SA, Raza A, Mohamed A, Bilal M, Iqbal HM. Silk-based nano-hydrogels for futuristic biomedical applications. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103385] [Reference Citation Analysis]
15 Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022. [PMID: 35487503 DOI: 10.1021/acs.bioconjchem.2c00030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Carissimi G, G. Montalbán M, G. Fuster M, Víllora G. Nanoparticles as Drug Delivery Systems. 21st Century Nanostructured Materials - Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture 2022. [DOI: 10.5772/intechopen.100253] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Giannelli M, Guerrini A, Ballestri M, Aluigi A, Zamboni R, Sotgiu G, Posati T. Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. Nanomaterials 2022;12:1406. [DOI: 10.3390/nano12091406] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Pham DT, Thao NTP, Thuy BTP, Tran VD, Nguyen TQC, Nguyen NNT. Silk fibroin hydrogel containing Sesbania sesban L. extract for rheumatoid arthritis treatment. Drug Delivery 2022;29:882-8. [DOI: 10.1080/10717544.2022.2050848] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 Guidetti G, d'Amone L, Kim T, Matzeu G, Mogas-soldevila L, Napier B, Ostrovsky-snider N, Roshko J, Ruggeri E, Omenetto FG. Silk materials at the convergence of science, sustainability, healthcare, and technology. Applied Physics Reviews 2022;9:011302. [DOI: 10.1063/5.0060344] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
20 Wang Z, Luo X, Sun J, Seib P, Phuagkhaopong S, Chang W, Gao J, Mir A, Cox A. Investigation of chip formation mechanism in ultra-precision diamond turning of silk fibroin film. Journal of Manufacturing Processes 2022;74:14-27. [DOI: 10.1016/j.jmapro.2021.11.061] [Reference Citation Analysis]
21 Ma Y, Duan L, Sun J, Gou S, Chen F, Liang Y, Dai F, Xiao B. Oral nanotherapeutics based on Antheraea pernyi silk fibroin for synergistic treatment of ulcerative colitis. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121410] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
22 Asensio Ruiz MA, Fuster MG, Martínez Martínez T, Montalbán MG, Cenis JL, Víllora G, Lozano-Pérez AA. The Effect of Sterilization on the Characteristics of Silk Fibroin Nanoparticles. Polymers (Basel) 2022;14:498. [PMID: 35160487 DOI: 10.3390/polym14030498] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Mitra K, Chadha A, Muthuvijayan V, Doble M. Self-Assembled Inhalable Immunomodulatory Silk Fibroin Nanocarriers for Enhanced Drug Loading and Intracellular Antibacterial Activity. ACS Biomater Sci Eng . [DOI: 10.1021/acsbiomaterials.1c01357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Nafiu S, Apalangya VA, Yaya A, Sabi EB. Boron Nitride Nanotubes for Curcumin Delivery as an Anticancer Drug: A DFT Investigation. Applied Sciences 2022;12:879. [DOI: 10.3390/app12020879] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
25 Byram PK, Das L, Sunka KC, Kulkarni G, Dhara S, Chakravorty N. Silk Fibroin-Based Biomaterials in Biomedical Applications. Functional Biomaterials 2022. [DOI: 10.1007/978-981-16-7152-4_8] [Reference Citation Analysis]
26 Jung D, Lee J, Park TY, Yang YJ, Cha HJ. Diverse silk and silk-like proteins derived from terrestrial and marine organisms and their applications. Acta Biomater 2021;136:56-71. [PMID: 34551332 DOI: 10.1016/j.actbio.2021.09.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Sharma S, Parveen R, Chatterji BP. Toxicology of Nanoparticles in Drug Delivery. Curr Pathobiol Rep 2021;:1-12. [PMID: 34840918 DOI: 10.1007/s40139-021-00227-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
28 Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021. [PMID: 34808032 DOI: 10.1002/term.3267] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 El Seoud OA, Jedvert K, Kostag M, Possidonio S. Cellulose, chitin and silk: the cornerstones of green composites. emergent mater . [DOI: 10.1007/s42247-021-00308-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Ode Boni BO, Bakadia BM, Osi AR, Shi Z, Chen H, Gauthier M, Yang G. Immune Response to Silk Sericin-Fibroin Composites: Potential Immunogenic Elements and Alternatives for Immunomodulation. Macromol Biosci 2021;:e2100292. [PMID: 34669251 DOI: 10.1002/mabi.202100292] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
31 Carvalho JPF, Silva ACQ, Silvestre AJD, Freire CSR, Vilela C. Spherical Cellulose Micro and Nanoparticles: A Review of Recent Developments and Applications. Nanomaterials (Basel) 2021;11:2744. [PMID: 34685185 DOI: 10.3390/nano11102744] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
32 Zare-zardini H, Vojdani Nejad Yazdi S, Zandian A, Zare F, Miresmaeili SM, Dehghan-manshadi M, Fesahat F. Synthesis, characterization, and biological evaluation of doxorubicin containing silk fibroin micro- and nanoparticles. Journal of the Indian Chemical Society 2021;98:100161. [DOI: 10.1016/j.jics.2021.100161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Lunin AV, Korenkov ES, Mochalova EN, Nikitin MP. Green Synthesis of Size-Controlled in Vivo Biocompatible Immunoglobulin-Based Nanoparticles by a Swift Thermal Formation. ACS Sustainable Chem Eng 2021;9:13128-34. [DOI: 10.1021/acssuschemeng.1c03409] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
34 Pham DT, Phewchan P, Navesit K, Chokamonsirikun A, Khemwong T, Tiyaboonchai W. Development of Metronidazole-loaded In situ Thermosensitive Hydrogel for Periodontitis Treatment. Turk J Pharm Sci 2021;18:510-6. [PMID: 34496558 DOI: 10.4274/tjps.galenos.2020.09623] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Zhang L, Yang R, Yu H, Xu Z, Kang Y, Cui H, Xue P. MnO2-capped silk fibroin (SF) nanoparticles with chlorin e6 (Ce6) encapsulation for augmented photo-driven therapy by modulating the tumor microenvironment. J Mater Chem B 2021;9:3677-88. [PMID: 33949613 DOI: 10.1039/d1tb00296a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Moin A, Wani SUD, Osmani RA, Abu Lila AS, Khafagy ES, Arab HH, Gangadharappa HV, Allam AN. Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer. Drug Deliv 2021;28:1626-36. [PMID: 34328806 DOI: 10.1080/10717544.2021.1958106] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
37 Diez-Echave P, Ruiz-Malagón AJ, Molina-Tijeras JA, Hidalgo-García L, Vezza T, Cenis-Cifuentes L, Rodríguez-Sojo MJ, Cenis JL, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J, Lozano-Pérez AA. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int J Pharm 2021;606:120935. [PMID: 34310954 DOI: 10.1016/j.ijpharm.2021.120935] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
38 Hudita A, Radu IC, Galateanu B, Ginghina O, Herman H, Balta C, Rosu M, Zaharia C, Costache M, Tanasa E, Velonia K, Tsatsakis A, Hermenean A. Bioinspired silk fibroin nano-delivery systems protect against 5-FU induced gastrointestinal mucositis in a mouse model and display antitumor effects on HT-29 colorectal cancer cells in vitro. Nanotoxicology 2021;15:973-94. [PMID: 34213984 DOI: 10.1080/17435390.2021.1943032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Nangare S, Dugam S, Patil P, Tade R, Jadhav N. Silk industry waste protein: isolation, purification and fabrication of electrospun silk protein nanofibers as a possible nanocarrier for floating drug delivery. Nanotechnology 2021;32:035101. [PMID: 32932237 DOI: 10.1088/1361-6528/abb8a9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
40 Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021;9:4541-67. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
41 Yin Z, Liu H, Lin M, Xie W, Yang X, Cai Y. Controllable performance of a dopamine-modified silk fibroin-based bio-adhesive by doping metal ions. Biomed Mater 2021;16. [PMID: 33979788 DOI: 10.1088/1748-605X/ac0087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
42 Karaly AH, Sarhan WA, El-Sherbiny IM. Development of a silk fibroin-based multitask aerosolized nanopowder formula for efficient wound healing. Int J Biol Macromol 2021;182:413-24. [PMID: 33798572 DOI: 10.1016/j.ijbiomac.2021.03.178] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
43 Voci S, Gagliardi A, Molinaro R, Fresta M, Cosco D. Recent Advances of Taxol-Loaded Biocompatible Nanocarriers Embedded in Natural Polymer-Based Hydrogels. Gels 2021;7:33. [PMID: 33804970 DOI: 10.3390/gels7020033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
44 Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021;13:429. [PMID: 33806846 DOI: 10.3390/pharmaceutics13030429] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
45 Norouzi P, Motasadizadeh H, Atyabi F, Dinarvand R, Gholami M, Farokhi M, Shokrgozar MA, Mottaghitalab F. Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin siRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. ACS Biomater Sci Eng 2021;7:1074-87. [PMID: 33539074 DOI: 10.1021/acsbiomaterials.0c01511] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
46 Nie H, Zhang Y, Yu H, Xiao H, Li T, Yang Q. Oral delivery of carrier-free dual-drug nanocrystal self-assembled microspheres improved NAD+ bioavailability and attenuated cardiac ischemia/reperfusion injury in mice. Drug Deliv 2021;28:433-44. [PMID: 33605178 DOI: 10.1080/10717544.2021.1886198] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
47 Lee C, Choi M, MacKay JA. Live long and active: Polypeptide-mediated assembly of antibody variable fragments. Adv Drug Deliv Rev 2020;167:1-18. [PMID: 33129938 DOI: 10.1016/j.addr.2020.10.017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
48 Herold HM, Döbl A, Wohlrab S, Humenik M, Scheibel T. Designed Spider Silk-Based Drug Carrier for Redox- or pH-Triggered Drug Release. Biomacromolecules 2020;21:4904-12. [PMID: 33249826 DOI: 10.1021/acs.biomac.0c01138] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
49 Ghalei S, Mondal A, Hopkins S, Singha P, Devine R, Handa H. Silk Nanoparticles: A Natural Polymeric Platform for Nitric Oxide Delivery in Biomedical Applications. ACS Appl Mater Interfaces 2020;12:53615-23. [DOI: 10.1021/acsami.0c13813] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
50 Ma Y, Canup BSB, Tong X, Dai F, Xiao B. Multi-Responsive Silk Fibroin-Based Nanoparticles for Drug Delivery. Front Chem 2020;8:585077. [PMID: 33240846 DOI: 10.3389/fchem.2020.585077] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
51 Wang Z, Li X, Cui Y, Cheng K, Dong M, Liu L. Effect of molecular weight of regenerated silk fibroin on silk-based spheres for drug delivery. Korean J Chem Eng 2020;37:1732-42. [DOI: 10.1007/s11814-020-0591-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
52 Zielińska A, Alves H, Marques V, Durazzo A, Lucarini M, Alves TF, Morsink M, Willemen N, Eder P, Chaud MV, Severino P, Santini A, Souto EB. Properties, Extraction Methods, and Delivery Systems for Curcumin as a Natural Source of Beneficial Health Effects. Medicina (Kaunas) 2020;56:E336. [PMID: 32635279 DOI: 10.3390/medicina56070336] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
53 Johari N, Moroni L, Samadikuchaksaraei A. Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal 2020;134:109842. [DOI: 10.1016/j.eurpolymj.2020.109842] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 26.0] [Reference Citation Analysis]
54 Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020;12:E604. [PMID: 32610448 DOI: 10.3390/pharmaceutics12070604] [Cited by in Crossref: 112] [Cited by in F6Publishing: 121] [Article Influence: 56.0] [Reference Citation Analysis]
55 Carissimi G, Baronio CM, Montalbán MG, Víllora G, Barth A. On the Secondary Structure of Silk Fibroin Nanoparticles Obtained Using Ionic Liquids: An Infrared Spectroscopy Study. Polymers (Basel) 2020;12:E1294. [PMID: 32516911 DOI: 10.3390/polym12061294] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
56 Pham DT, Saelim N, Cornu R, Béduneau A, Tiyaboonchai W. Crosslinked Fibroin Nanoparticles: Investigations on Biostability, Cytotoxicity, and Cellular Internalization. Pharmaceuticals (Basel) 2020;13:E86. [PMID: 32366020 DOI: 10.3390/ph13050086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
57 Singla RK, Shen B. In silico analysis of drug delivery in respiratory disease. Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems 2020. [DOI: 10.1016/b978-0-12-820658-4.00008-x] [Reference Citation Analysis]