BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Prise KM, Ahnström G, Belli M, Carlsson J, Frankenberg D, Kiefer J, Löbrich M, Michael BD, Nygren J, Simone G, Stenerlöw B. A review of dsb induction data for varying quality radiations. Int J Radiat Biol 1998;74:173-84. [PMID: 9712547 DOI: 10.1080/095530098141564] [Cited by in Crossref: 161] [Cited by in F6Publishing: 123] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Holgersson Å, Jernberg AR, Persson LM, Edgren MR, Lewensohn R, Nilsson A, Brahme A, Meijer AE. Low and high LET radiation‐induced apoptosis in M059J and M059K cells. International Journal of Radiation Biology 2009;79:611-21. [DOI: 10.1080/09553000310001596995] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
2 Han J, Won E, Lee B, Hwang U, Kim I, Yim JH, Leung KMY, Lee YS, Lee J. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus. Aquatic Toxicology 2014;152:264-72. [DOI: 10.1016/j.aquatox.2014.04.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
3 Durante M, Cucinotta FA. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 2008;8:465-72. [DOI: 10.1038/nrc2391] [Cited by in Crossref: 376] [Cited by in F6Publishing: 260] [Article Influence: 26.9] [Reference Citation Analysis]
4 Mitra AK, Bhat N, Sarma A, Krishna M. Alteration in the expression of signaling parameters following carbon ion irradiation. Mol Cell Biochem 2005;276:169-73. [PMID: 16132698 DOI: 10.1007/s11010-005-3903-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
5 Takahashi K, Monzen S, Yoshino H, Abe Y, Eguchi-Kasai K, Kashiwakura I. Effects of a 2-step culture with cytokine combinations on megakaryocytopoiesis and thrombopoiesis from carbon-ion beam-irradiated human hematopoietic stem/progenitor cells. J Radiat Res 2008;49:417-24. [PMID: 18504345 DOI: 10.1269/jrr.07132] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
6 Leloup C, Garty G, Assaf G, Cristovão A, Breskin A, Chechik R, Shchemelinin S, Paz-Elizur T, Livneh Z, Schulte RW, Bashkirov V, Milligan JR, Grosswendt B. Evaluation of lesion clustering in irradiated plasmid DNA. Int J Radiat Biol 2005;81:41-54. [PMID: 15962762 DOI: 10.1080/09553000400017895] [Cited by in Crossref: 65] [Cited by in F6Publishing: 46] [Article Influence: 3.8] [Reference Citation Analysis]
7 Sasaki MS. Advances in the biophysical and molecular bases of radiation cytogenetics. Int J Radiat Biol. 2009;85:26-47. [PMID: 19205983 DOI: 10.1080/09553000802641185] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
8 Callegari AJ, Kelly TJ. Coordination of DNA damage tolerance mechanisms with cell cycle progression in fission yeast. Cell Cycle 2016;15:261-73. [PMID: 26652183 DOI: 10.1080/15384101.2015.1121353] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
9 Hellweg CE, Spitta LF, Henschenmacher B, Diegeler S, Baumstark-Khan C. Transcription Factors in the Cellular Response to Charged Particle Exposure. Front Oncol 2016;6:61. [PMID: 27047795 DOI: 10.3389/fonc.2016.00061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
10 Matuo Y, Nishijima S, Hase Y, Sakamoto A, Tanaka A, Shimizu K. Specificity of mutations induced by carbon ions in budding yeast Saccharomyces cerevisiae. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2006;602:7-13. [DOI: 10.1016/j.mrfmmm.2006.07.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
11 Stewart RD. Induction of DNA Damage by Light Ions Relative to 60Co γ-rays. Int J Part Ther 2018;5:25-39. [PMID: 31773018 DOI: 10.14338/IJPT-18-00030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
12 Liang Y, Yang G, Liu F, Wang Y. Monte Carlo simulation of ionizing radiation induced DNA strand breaks utilizing coarse grained high-order chromatin structures. Phys Med Biol 2016;61:445-60. [DOI: 10.1088/0031-9155/61/1/445] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
13 Slade D, Radman M. Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 2011;75:133-91. [PMID: 21372322 DOI: 10.1128/MMBR.00015-10] [Cited by in Crossref: 436] [Cited by in F6Publishing: 197] [Article Influence: 39.6] [Reference Citation Analysis]
14 Gruel G, Villagrasa C, Voisin P, Clairand I, Benderitter M, Bottollier-Depois JF, Barquinero JF. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition. PLoS One 2016;11:e0145786. [PMID: 26727594 DOI: 10.1371/journal.pone.0145786] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
15 Nikjoo H, Munson RJ, Bridges BA. RBE-LET relationships in mutagenesis by ionizing radiation. J Radiat Res 1999;40 Suppl:85-105. [PMID: 10804998 DOI: 10.1269/jrr.40.s85] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
16 Hawkins RB. The influence of concentration of DNA on the radiosensitivity of mammalian cells. Int J Radiat Oncol Biol Phys 2005;63:529-35. [PMID: 16168845 DOI: 10.1016/j.ijrobp.2005.05.055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
17 Bernal MA, Liendo JA. An investigation on the capabilities of the PENELOPE MC code in nanodosimetry. Med Phys 2009;36:620-5. [PMID: 19292002 DOI: 10.1118/1.3056457] [Cited by in Crossref: 72] [Cited by in F6Publishing: 64] [Article Influence: 5.5] [Reference Citation Analysis]
18 Courtemanche C, Huang AC, Elson-Schwab I, Kerry N, Ng BY, Ames BN. Folate deficiency and ionizing radiation cause DNA breaks in primary human lymphocytes: a comparison. FASEB J 2004;18:209-11. [PMID: 14597554 DOI: 10.1096/fj.03-0382fje] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 3.3] [Reference Citation Analysis]
19 Mairani A, Böhlen TT, Dokic I, Cabal G, Brons S, Haberer T. Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation. Int J Radiat Biol 2013;89:782-93. [PMID: 23627742 DOI: 10.3109/09553002.2013.800247] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
20 Iwata H, Ogino H, Hashimoto S, Yamada M, Shibata H, Yasui K, Toshito T, Omachi C, Tatekawa K, Manabe Y, Mizoe JE, Shibamoto Y. Spot Scanning and Passive Scattering Proton Therapy: Relative Biological Effectiveness and Oxygen Enhancement Ratio in Cultured Cells. Int J Radiat Oncol Biol Phys 2016;95:95-102. [PMID: 27084632 DOI: 10.1016/j.ijrobp.2016.01.017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
21 Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. J Radiat Res 2009;50:27-36. [PMID: 19218779 DOI: 10.1269/jrr.08086] [Cited by in Crossref: 98] [Cited by in F6Publishing: 74] [Article Influence: 7.5] [Reference Citation Analysis]
22 Magnander K, Elmroth K. Biological consequences of formation and repair of complex DNA damage. Cancer Lett. 2012;327:90-96. [PMID: 22353687 DOI: 10.1016/j.canlet.2012.02.013] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
23 Gladyshev E, Meselson M. Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci U S A 2008;105:5139-44. [PMID: 18362355 DOI: 10.1073/pnas.0800966105] [Cited by in Crossref: 159] [Cited by in F6Publishing: 131] [Article Influence: 11.4] [Reference Citation Analysis]
24 Liew H, Klein C, Zenke FT, Abdollahi A, Debus J, Dokic I, Mairani A. Modeling the Effect of Hypoxia and DNA Repair Inhibition on Cell Survival After Photon Irradiation. Int J Mol Sci 2019;20:E6054. [PMID: 31801300 DOI: 10.3390/ijms20236054] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
25 Dong J, Mury SP, Drahos KE, Moscovitch M, Zia RK, Finkielstein CV. Shorter exposures to harder X-rays trigger early apoptotic events in Xenopus laevis embryos. PLoS One 2010;5:e8970. [PMID: 20126466 DOI: 10.1371/journal.pone.0008970] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
26 Rhee J, Kim B, Kim R, Seo JS, Kim I, Lee Y, Lee J. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae. Aquatic Toxicology 2013;140-141:58-67. [DOI: 10.1016/j.aquatox.2013.05.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
27 Grądzka I, Iwaneńko T. A non-radioactive, PFGE-based assay for low levels of DNA double-strand breaks in mammalian cells. DNA Repair 2005;4:1129-39. [DOI: 10.1016/j.dnarep.2005.06.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
28 Sankaranarayanan K, Nikjoo H. Ionising radiation and genetic risks. XVI. A genome-based framework for risk estimation in the light of recent advances in genome research. International Journal of Radiation Biology 2010;87:161-78. [DOI: 10.3109/09553002.2010.518214] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
29 Friedland W, Dingfelder M, Jacob P, Paretzke HG. Calculated DNA double-strand break and fragmentation yields after irradiation with He ions. Radiation Physics and Chemistry 2005;72:279-86. [DOI: 10.1016/j.radphyschem.2004.05.053] [Cited by in Crossref: 57] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
30 Rübe CE, Lorat Y, Schuler N, Schanz S, Wennemuth G, Rübe C. DNA repair in the context of chromatin: New molecular insights by the nanoscale detection of DNA repair complexes using transmission electron microscopy. DNA Repair 2011;10:427-37. [DOI: 10.1016/j.dnarep.2011.01.012] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 4.0] [Reference Citation Analysis]
31 Wada S, Natsuhori M, Ito N, Funayama T, Kobayashi Y. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2003;206:553-6. [DOI: 10.1016/s0168-583x(03)00820-6] [Cited by in Crossref: 4] [Article Influence: 0.2] [Reference Citation Analysis]
32 Balagurumoorthy P, Adelstein SJ, Kassis AI. Novel method for quantifying radiation-induced single-strand-break yields in plasmid DNA highlights 10-fold discrepancy. Anal Biochem 2011;417:242-6. [PMID: 21741945 DOI: 10.1016/j.ab.2011.06.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
33 Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021;13:2997. [PMID: 34203882 DOI: 10.3390/cancers13122997] [Reference Citation Analysis]
34 Wada S, Kobayashi Y, Funayama T, Natsuhori M, Ito N, Yamamoto K. Detection of DNA Damage in Individual Cells Induced by Heavy-ion Irradiation with an Non-denaturing Comet Assay. JRR 2002;43:S153-6. [DOI: 10.1269/jrr.43.s153] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
35 Thompson SJ, Rooney A, Prise KM, Mcmahon SJ. Evaluating Iodine-125 DNA Damage Benchmarks of Monte Carlo DNA Damage Models. Cancers 2022;14:463. [DOI: 10.3390/cancers14030463] [Reference Citation Analysis]
36 Serment-guerrero J, Breña-valle M, Aguilar-moreno M, Balcázar M. Evidence of DNA double strand breaks formation in Escherichia coli bacteria exposed to alpha particles of different LET assessed by the SOS response. Applied Radiation and Isotopes 2012;71:66-70. [DOI: 10.1016/j.apradiso.2012.05.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
37 Malyarchuk S, Castore R, Shi R, Harrison L. Artemis is required to improve the accuracy of repair of double-strand breaks with 5'-blocked termini generated from non-DSB-clustered lesions. Mutagenesis 2013;28:357-66. [PMID: 23448902 DOI: 10.1093/mutage/get009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
38 Fredericia PM, Siragusa M, Köster U, Severin G, Groesser T, Jensen M. Cs-131 as an experimental tool for the investigation and quantification of the radiotoxicity of intracellular Auger decays in vitro. Int J Radiat Biol 2020;:1-14. [PMID: 32600084 DOI: 10.1080/09553002.2020.1787541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Terato H, Tanaka R, Nakaarai Y, Nohara T, Doi Y, Iwai S, Hirayama R, Furusawa Y, Ide H. Quantitative Analysis of Isolated and Clustered DNA Damage Induced by Gamma-rays, Carbon Ion Beams, and Iron Ion Beams. JRR 2008;49:133-46. [DOI: 10.1269/jrr.07089] [Cited by in Crossref: 55] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
40 O'neill P. Radiation-induced damage in DNA. Radiation Chemistry - Present Status and Future Trends. Elsevier; 2001. pp. 585-622. [DOI: 10.1016/s0167-6881(01)80023-9] [Cited by in Crossref: 13] [Article Influence: 0.6] [Reference Citation Analysis]
41 Bernal MA, deAlmeida CE, David M, Pires E. Estimation of the RBE of mammography-quality beams using a combination of a Monte Carlo code with a B-DNA geometrical model. Phys Med Biol 2011;56:7393-403. [DOI: 10.1088/0031-9155/56/23/004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
42 Streitmatter SW, Stewart RD, Jenkins PA, Jevremovic T. DNA double strand break (DSB) induction and cell survival in iodine-enhanced computed tomography (CT). Phys Med Biol 2017;62:6164-84. [PMID: 28703119 DOI: 10.1088/1361-6560/aa772d] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
43 Thomas P, Tracy B, Ping T, Baweja A, Wickstrom M, Sidhu N, Hiebert L. Relative biological effectiveness (RBE) of alpha radiation in cultured porcine aortic endothelial cells. Int J Radiat Biol 2007;83:171-9. [PMID: 17378525 DOI: 10.1080/09553000601146915] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
44 Bellinzona VE, Cordoni F, Missiaggia M, Tommasino F, Scifoni E, La Tessa C, Attili A. Linking Microdosimetric Measurements to Biological Effectiveness in Ion Beam Therapy: A Review of Theoretical Aspects of MKM and Other Models. Front Phys 2021;8:578492. [DOI: 10.3389/fphy.2020.578492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Jakob B, Dubiak-Szepietowska M, Janiel E, Schmidt A, Durante M, Taucher-Scholz G. Differential Repair Protein Recruitment at Sites of Clustered and Isolated DNA Double-Strand Breaks Produced by High-Energy Heavy Ions. Sci Rep 2020;10:1443. [PMID: 31996740 DOI: 10.1038/s41598-020-58084-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
46 Mladenova V, Mladenov E, Iliakis G. Novel Biological Approaches for Testing the Contributions of Single DSBs and DSB Clusters to the Biological Effects of High LET Radiation. Front Oncol 2016;6:163. [PMID: 27446809 DOI: 10.3389/fonc.2016.00163] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
47 Pötter T, Wedemeyer N, van Dülmen A, Köhnlein W, Göhde W. Identification of a deletion hotspot on distal mouse chromosome 4 by YAC fingerprinting. Mutat Res 2001;476:29-42. [PMID: 11336981 DOI: 10.1016/s0027-5107(01)00062-8] [Reference Citation Analysis]
48 Mori N, Matsumoto Y, Okumoto M, Suzuki N, Yamate J. Variations in Prkdc encoding the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and susceptibility to radiation-induced apoptosis and lymphomagenesis. Oncogene 2001;20:3609-19. [PMID: 11439324 DOI: 10.1038/sj.onc.1204497] [Cited by in Crossref: 50] [Cited by in F6Publishing: 40] [Article Influence: 2.4] [Reference Citation Analysis]
49 Hoehn D, Pujol-Canadell M, Young EF, Serban G, Shuryak I, Maerki J, Xu Z, Chowdhury M, Luna AM, Vlada G, Smilenov LB. Effects of High- and Low-LET Radiation on Human Hematopoietic System Reconstituted in Immunodeficient Mice. Radiat Res 2019;191:162-75. [PMID: 30520704 DOI: 10.1667/RR15148.1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
50 Splinter J, Jakob B, Lang M, Yano K, Engelhardt J, Hell SW, Chen DJ, Durante M, Taucher-Scholz G. Biological dose estimation of UVA laser microirradiation utilizing charged particle-induced protein foci. Mutagenesis 2010;25:289-97. [PMID: 20167590 DOI: 10.1093/mutage/geq005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
51 Ugenskiene R, Lekki J, Polak W, Prise K, Folkard M, Veselov O, Stachura Z, Kwiatek W, Zazula M, Stachura J. Double strand break formation as a response to X-ray and targeted proton-irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2007;260:159-63. [DOI: 10.1016/j.nimb.2007.02.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
52 Kegel P, Riballo E, Kühne M, Jeggo PA, Löbrich M. X-irradiation of cells on glass slides has a dose doubling impact. DNA Repair (Amst) 2007;6:1692-7. [PMID: 17644493 DOI: 10.1016/j.dnarep.2007.05.013] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 2.7] [Reference Citation Analysis]
53 Gustafsson A, Hartman T, Stenerlöw B. Formation and repair of clustered damaged DNA sites in high LET irradiated cells. International Journal of Radiation Biology 2015;91:820-6. [DOI: 10.3109/09553002.2015.1068463] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
54 Friedland W, Jacob P, Paretzke HG, Ottolenghi A, Ballarini F, Liotta M. Simulation of light ion induced DNA damage patterns. Radiation Protection Dosimetry 2006;122:116-20. [DOI: 10.1093/rpd/ncl451] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 2.8] [Reference Citation Analysis]
55 Vandersickel V, Beukes P, Van Bockstaele B, Depuydt J, Vral A, Slabbert J. Induction and disappearance of γH2AX foci and formation of micronuclei after exposure of human lymphocytes to ⁶⁰Co γ-rays and p(66)+ Be(40) neutrons. Int J Radiat Biol 2014;90:149-58. [PMID: 24168313 DOI: 10.3109/09553002.2014.860252] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
56 Lundin C, Erixon K, Arnaudeau C, Schultz N, Jenssen D, Meuth M, Helleday T. Different roles for nonhomologous end joining and homologous recombination following replication arrest in mammalian cells. Mol Cell Biol 2002;22:5869-78. [PMID: 12138197 DOI: 10.1128/MCB.22.16.5869-5878.2002] [Cited by in Crossref: 164] [Cited by in F6Publishing: 100] [Article Influence: 8.2] [Reference Citation Analysis]
57 Saisho Y, Ito A. Mathematical models of the generation of radiation-induced DNA double-strand breaks. J Math Biol 2013;67:717-36. [PMID: 22864976 DOI: 10.1007/s00285-012-0567-0] [Reference Citation Analysis]
58 Padula G, González HF, Varea A, Seoane AI. Protein Energy-Malnutrition: Does the In Vitro Zinc Sulfate Supplementation Improve Chromosomal Damage Repair? Biol Trace Elem Res 2014;162:64-71. [DOI: 10.1007/s12011-014-0109-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
59 Chen J. Estimated yield of double-strand breaks from internal exposure to tritium. Radiat Environ Biophys 2012;51:295-302. [PMID: 22639304 DOI: 10.1007/s00411-012-0424-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
60 Holgersson A, Heiden T, Castro J, Edgren MR, Lewensohn R, Meijer AE. Different G2/M accumulation in M059J and M059K cells after exposure to DNA double-strand break-inducing agents. Int J Radiat Oncol Biol Phys 2005;61:915-21. [PMID: 15708275 DOI: 10.1016/j.ijrobp.2004.10.036] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
61 Belousov AV, Bliznyuk UA, Borschegovskaya PY, Osipov AS. The biological effectiveness of X-ray radiation. Moscow Univ Phys 2014;69:157-61. [DOI: 10.3103/s0027134914020052] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
62 Weissmann R, Kacprowski T, Peper M, Esche J, Jensen LR, van Diepen L, Port M, Kuss AW, Scherthan H. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts. Health Phys 2016;111:75-84. [PMID: 27356049 DOI: 10.1097/HP.0000000000000419] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
63 Fakir H, Hofmann W. Incorporation of microdosimetric concepts into a biologically-based model of radiation carcinogenesis. Radiation Protection Dosimetry 2006;122:330-4. [DOI: 10.1093/rpd/ncl462] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
64 Ding LH, Park S, Xie Y, Girard L, Minna JD, Story MD. Elucidation of changes in molecular signalling leading to increased cellular transformation in oncogenically progressed human bronchial epithelial cells exposed to radiations of increasing LET. Mutagenesis 2015;30:685-94. [PMID: 26001755 DOI: 10.1093/mutage/gev028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
65 van Veelen LR, Cervelli T, van de Rakt MW, Theil AF, Essers J, Kanaar R. Analysis of ionizing radiation-induced foci of DNA damage repair proteins. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2005;574:22-33. [DOI: 10.1016/j.mrfmmm.2005.01.019] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 3.1] [Reference Citation Analysis]
66 Shuryak I. Mechanistic Modeling of Dose and Dose Rate Dependences of Radiation-Induced DNA Double Strand Break Rejoining Kinetics in Saccharomyces cerevisiae. PLoS One 2016;11:e0146407. [PMID: 26741137 DOI: 10.1371/journal.pone.0146407] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
67 Takeda J, Uematsu N, Shiraishi S, Toyoshima M, Matsumoto T, Niwa O. Radiation induction of delayed recombination in Schizosaccharomyces pombe. DNA Repair (Amst) 2008;7:1250-61. [PMID: 18547878 DOI: 10.1016/j.dnarep.2008.04.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
68 Pang D, Chasovskikh S, Rodgers JE, Dritschilo A. Short DNA Fragments Are a Hallmark of Heavy Charged-Particle Irradiation and May Underlie Their Greater Therapeutic Efficacy. Front Oncol 2016;6:130. [PMID: 27376024 DOI: 10.3389/fonc.2016.00130] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
69 Scholz M. Effects of Ion Radiation on Cells and Tissues. In: Kausch H, Anjum N, Chevolot Y, Gupta B, Léonard D, Mathieu HJ, Pruitt LA, Ruiz-taylor L, Scholz M, editors. Radiation Effects on Polymers for Biological Use. Berlin: Springer Berlin Heidelberg; 2003. pp. 95-155. [DOI: 10.1007/3-540-45668-6_4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
70 Behr TM. Higher relative biological efficiency of α-particles: in vitro veritas, in vivo vanitas? Eur J Nucl Med 2001;28:939-40. [DOI: 10.1007/s002590100569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
71 Du LL, Nakamura TM, Moser BA, Russell P. Retention but not recruitment of Crb2 at double-strand breaks requires Rad1 and Rad3 complexes. Mol Cell Biol 2003;23:6150-8. [PMID: 12917337 DOI: 10.1128/MCB.23.17.6150-6158.2003] [Cited by in Crossref: 75] [Cited by in F6Publishing: 57] [Article Influence: 3.9] [Reference Citation Analysis]
72 Kültz D, Chakravarty D. Hyperosmolality in the form of elevated NaCl but not urea causes DNA damage in murine kidney cells. Proc Natl Acad Sci U S A 2001;98:1999-2004. [PMID: 11172065 DOI: 10.1073/pnas.98.4.1999] [Cited by in Crossref: 133] [Cited by in F6Publishing: 124] [Article Influence: 6.3] [Reference Citation Analysis]
73 Alloni D, Campa A, Friedland W, Mariotti L, Ottolenghi A. Track structure, radiation quality and initial radiobiological events: considerations based on the PARTRAC code experience. Int J Radiat Biol 2012;88:77-86. [PMID: 21957961 DOI: 10.3109/09553002.2011.627976] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
74 Paganetti H. Proton Relative Biological Effectiveness - Uncertainties and Opportunities. Int J Part Ther 2018;5:2-14. [PMID: 30370315 DOI: 10.14338/IJPT-18-00011.1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
75 Hirayama R, Uzawa A, Matsumoto Y, Noguchi M, Kase Y, Takase N, Ito A, Koike S, Ando K, Okayasu R, Furusawa Y. Induction of DNA DSB and its rejoining in clamped and non-clamped tumours after exposure to carbon ion beams in comparison to X rays. Radiation Protection Dosimetry 2011;143:508-12. [DOI: 10.1093/rpd/ncq478] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
76 Forster JC, Douglass MJJ, Phillips WM, Bezak E. Stochastic multicellular modeling of x-ray irradiation, DNA damage induction, DNA free-end misrejoining and cell death. Sci Rep 2019;9:18888. [PMID: 31827107 DOI: 10.1038/s41598-019-54941-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
77 Yamaguchi H, Ohara H, Waker AJ. A Model for the Induction of DNA Damages and their Evolution into Cell Clonogenic Inactivation. JRR 2006;47:197-211. [DOI: 10.1269/jrr.47.197] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
78 Cornforth MN, Durante M. Radiation quality and intra-chromosomal aberrations: Size matters. Mutat Res Genet Toxicol Environ Mutagen 2018;836:28-35. [PMID: 30389158 DOI: 10.1016/j.mrgentox.2018.05.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
79 Kienker LJ, Shin EK, Meek K. Both V(D)J recombination and radioresistance require DNA-PK kinase activity, though minimal levels suffice for V(D)J recombination. Nucleic Acids Res. 2000;28:2752-2761. [PMID: 10908332 DOI: 10.1093/nar/28.14.2752] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 2.7] [Reference Citation Analysis]
80 Plante I, Ponomarev A, Cucinotta FA. 3D visualisation of the stochastic patterns of the radial dose in nano-volumes by a Monte Carlo simulation of HZE ion track structure. Radiat Prot Dosimetry 2011;143:156-61. [PMID: 21199826 DOI: 10.1093/rpd/ncq526] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
81 Ding LH, Park S, Peyton M, Girard L, Xie Y, Minna JD, Story MD. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy. BMC Genomics 2013;14:372. [PMID: 23724988 DOI: 10.1186/1471-2164-14-372] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
82 Lundin C, North M, Erixon K, Walters K, Jenssen D, Goldman AS, Helleday T. Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res 2005;33:3799-811. [PMID: 16009812 DOI: 10.1093/nar/gki681] [Cited by in Crossref: 242] [Cited by in F6Publishing: 225] [Article Influence: 14.2] [Reference Citation Analysis]
83 Tajik M, Rozatian AS, Semsarha F. Simulation of ultrasoft X-rays induced DNA damage using the Geant4 Monte Carlo toolkit. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2015;342:258-65. [DOI: 10.1016/j.nimb.2014.10.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
84 Schulte RW, Wroe AJ, Bashkirov VA, Garty GY, Breskin A, Chechik R, Shchemelinin S, Gargioni E, Grosswendt B, Rosenfeld AB. Nanodosimetry-based quality factors for radiation protection in space. Zeitschrift für Medizinische Physik 2008;18:286-96. [DOI: 10.1016/j.zemedi.2008.06.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
85 Iarovaia OV, Rubtsov M, Ioudinkova E, Tsfasman T, Razin SV, Vassetzky YS. Dynamics of double strand breaks and chromosomal translocations. Mol Cancer 2014;13:249. [PMID: 25404525 DOI: 10.1186/1476-4598-13-249] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
86 Li WB, Friedland W, Jacob P, Panyutin IG, Paretzke HG. Simulation of (125)I decay in a synthetic oligodeoxynucleotide with normal and distorted geometry and the role of radiation and non-radiation actions. Radiat Environ Biophys 2004;43:23-33. [PMID: 15042380 DOI: 10.1007/s00411-004-0231-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
87 Liew H, Mein S, Debus J, Dokic I, Mairani A. Modeling Direct and Indirect Action on Cell Survival After Photon Irradiation under Normoxia and Hypoxia. Int J Mol Sci 2020;21:E3471. [PMID: 32423018 DOI: 10.3390/ijms21103471] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
88 Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021;66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Chen Y, Li J, Li C, Qiu R, Wu Z. A modified microdosimetric kinetic model for relative biological effectiveness calculation. Phys Med Biol 2018;63:015008. [DOI: 10.1088/1361-6560/aa9a68] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
90 Liew H, Mein S, Dokic I, Haberer T, Debus J, Abdollahi A, Mairani A. Deciphering Time-Dependent DNA Damage Complexity, Repair, and Oxygen Tension: A Mechanistic Model for FLASH-Dose-Rate Radiation Therapy. International Journal of Radiation Oncology*Biology*Physics 2021;110:574-86. [DOI: 10.1016/j.ijrobp.2020.12.048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
91 Gajendiran N, Tanaka K, Kamada N. Comet assay to sense neutron 'fingerprint'. Mutat Res. 2000;452:179-187. [PMID: 11024477 DOI: 10.1016/s0027-5107(00)00082-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
92 Sofińska K, Wilkosz N, Szymoński M, Lipiec E. Molecular Spectroscopic Markers of DNA Damage. Molecules 2020;25:E561. [PMID: 32012927 DOI: 10.3390/molecules25030561] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
93 Kiefer J. The physical basis for the biological action of heavy ions. New J Phys 2008;10:075004. [DOI: 10.1088/1367-2630/10/7/075004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
94 Hada M, Georgakilas AG. Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res (Tokyo). 2008;49:203-210. [PMID: 18413977 DOI: 10.1269/jrr.07123] [Cited by in Crossref: 299] [Cited by in F6Publishing: 250] [Article Influence: 21.4] [Reference Citation Analysis]
95 McMahon SJ, Prise KM. A Mechanistic DNA Repair and Survival Model (Medras): Applications to Intrinsic Radiosensitivity, Relative Biological Effectiveness and Dose-Rate. Front Oncol 2021;11:689112. [PMID: 34268120 DOI: 10.3389/fonc.2021.689112] [Reference Citation Analysis]
96 Huang YW, Pan CY, Hsiao YY, Chao TC, Lee CC, Tung CJ. Monte Carlo simulations of the relative biological effectiveness for DNA double strand breaks from 300 MeV u(-1) carbon-ion beams. Phys Med Biol 2015;60:5995-6012. [PMID: 26183156 DOI: 10.1088/0031-9155/60/15/5995] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
97 Liu SK, Olive PL, Bristow RG. Biomarkers for DNA DSB inhibitors and radiotherapy clinical trials. Cancer Metastasis Rev 2008;27:445-58. [DOI: 10.1007/s10555-008-9137-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
98 Nikjoo H, Uehara S, Emfietzoglou D, Brahme A. Heavy charged particles in radiation biology and biophysics. New J Phys 2008;10:075006. [DOI: 10.1088/1367-2630/10/7/075006] [Cited by in Crossref: 63] [Cited by in F6Publishing: 34] [Article Influence: 4.5] [Reference Citation Analysis]
99 Gulston M, Fulford J, Jenner T, de Lara C, O'Neill P. Clustered DNA damage induced by gamma radiation in human fibroblasts (HF19), hamster (V79-4) cells and plasmid DNA is revealed as Fpg and Nth sensitive sites. Nucleic Acids Res 2002;30:3464-72. [PMID: 12140332 DOI: 10.1093/nar/gkf467] [Cited by in Crossref: 136] [Cited by in F6Publishing: 122] [Article Influence: 6.8] [Reference Citation Analysis]
100 Hellweg CE, Chishti AA, Diegeler S, Spitta LF, Henschenmacher B, Baumstark-Khan C. Molecular Signaling in Response to Charged Particle Exposures and its Importance in Particle Therapy. Int J Part Ther 2018;5:60-73. [PMID: 31773020 DOI: 10.14338/IJPT-18-00016.1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
101 Yokota Y, Sakamoto AN. The Moss Physcomitrella patens Is Hyperresistant to DNA Double-Strand Breaks Induced by γ-Irradiation. Genes (Basel) 2018;9:E76. [PMID: 29414843 DOI: 10.3390/genes9020076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
102 Palmans H, Rabus H, Belchior AL, Bug MU, Galer S, Giesen U, Gonon G, Gruel G, Hilgers G, Moro D, Nettelbeck H, Pinto M, Pola A, Pszona S, Schettino G, Sharpe PH, Teles P, Villagrasa C, Wilkens JJ. Future development of biologically relevant dosimetry. Br J Radiol 2015;88:20140392. [PMID: 25257709 DOI: 10.1259/bjr.20140392] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
103 He Y, Gong Y, Lin J, Chang DW, Gu J, Roth JA, Wu X. Ionizing radiation-induced γ-H2AX activity in whole blood culture and the risk of lung cancer. Cancer Epidemiol Biomarkers Prev 2013;22:443-51. [PMID: 23300022 DOI: 10.1158/1055-9965.EPI-12-0794] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
104 Held KD. Effects of low fluences of radiations found in space on cellular systems. International Journal of Radiation Biology 2009;85:379-90. [DOI: 10.1080/09553000902838558] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
105 Valota A, Ballarini F, Friedland W, Jacob P, Ottolenghi A, Paretzke HG. Modelling study on the protective role of OH radical scavengers and DNA higher-order structures in induction of single- and double-strand break by gamma-radiation. Int J Radiat Biol 2003;79:643-53. [PMID: 14555347 DOI: 10.1080/09553000310001596977] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 1.8] [Reference Citation Analysis]
106 Blakely EA. Biological Effects of Cosmic Radiation: Deterministic and Stochastic: . Health Physics 2000;79:495-506. [DOI: 10.1097/00004032-200011000-00006] [Cited by in Crossref: 55] [Cited by in F6Publishing: 42] [Article Influence: 2.5] [Reference Citation Analysis]
107 Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res 2011;711:28-40. [PMID: 21281649 DOI: 10.1016/j.mrfmmm.2011.01.003] [Cited by in Crossref: 230] [Cited by in F6Publishing: 175] [Article Influence: 20.9] [Reference Citation Analysis]
108 Friesner JD, Liu B, Culligan K, Britt AB. Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol Biol Cell 2005;16:2566-76. [PMID: 15772150 DOI: 10.1091/mbc.e04-10-0890] [Cited by in Crossref: 143] [Cited by in F6Publishing: 114] [Article Influence: 8.4] [Reference Citation Analysis]
109 Chauhan V, Kuo B, Mcnamee JP, Wilkins RC, Yauk CL. Transcriptional benchmark dose modeling: Exploring how advances in chemical risk assessment may be applied to the radiation field: BMD and Radiation Risk Assessment. Environ Mol Mutagen 2016;57:589-604. [DOI: 10.1002/em.22043] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
110 Gulston M, de Lara C, Jenner T, Davis E, O'Neill P. Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation. Nucleic Acids Res 2004;32:1602-9. [PMID: 15004247 DOI: 10.1093/nar/gkh306] [Cited by in Crossref: 145] [Cited by in F6Publishing: 125] [Article Influence: 8.1] [Reference Citation Analysis]
111 Zhou Q, Howard ME, Tu X, Zhu Q, Denbeigh JM, Remmes NB, Herman MG, Beltran CJ, Yuan J, Greipp PT, Boughey JC, Wang L, Johnson N, Goetz MP, Sarkaria JN, Lou Z, Mutter RW. Inhibition of ATM Induces Hypersensitivity to Proton Irradiation by Upregulating Toxic End Joining. Cancer Res 2021;81:3333-46. [PMID: 33597272 DOI: 10.1158/0008-5472.CAN-20-2960] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
112 Jakob B, Splinter J, Durante M, Taucher-Scholz G. Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A 2009;106:3172-7. [PMID: 19221031 DOI: 10.1073/pnas.0810987106] [Cited by in Crossref: 131] [Cited by in F6Publishing: 109] [Article Influence: 10.1] [Reference Citation Analysis]
113 Colmenares R, Krupa K, Muñoz A, Blanco F, Williart A, García G. A process to describe radiation damage at the molecular level. Application to the 125I seeds in water. Appl Radiat Isot 2018;140:163-70. [PMID: 30015047 DOI: 10.1016/j.apradiso.2018.05.031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
114 Dokic I, Mairani A, Brons S, Schoell B, Jauch A, Krunic D, Debus J, Régnier-Vigouroux A, Weber KJ. High resistance to X-rays and therapeutic carbon ions in glioblastoma cells bearing dysfunctional ATM associates with intrinsic chromosomal instability. Int J Radiat Biol 2015;91:157-65. [PMID: 24991884 DOI: 10.3109/09553002.2014.937511] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
115 Bernhardt P, Friedland W, Jacob P, Paretzke H. Modeling of ultrasoft X-ray induced DNA damage using structured higher order DNA targets. International Journal of Mass Spectrometry 2003;223-224:579-97. [DOI: 10.1016/s1387-3806(02)00879-5] [Cited by in Crossref: 44] [Article Influence: 2.3] [Reference Citation Analysis]
116 Villegas F, Tilly N, Bäckström G, Ahnesjö A. Cluster pattern analysis of energy deposition sites for the brachytherapy sources 103 Pd, 125 I, 192 Ir, 137 Cs, and 60 Co. Phys Med Biol 2014;59:5531-43. [DOI: 10.1088/0031-9155/59/18/5531] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
117 . Overview of DNA Repair Pathways. In: Madhusudan S, Wilson Iii DM, editors. DNA Repair and Cancer. CRC Press; 2013. pp. 19-25. [DOI: 10.1201/b14587-5] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
118 Charbonnel C, Gallego ME, White CI. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants: Double-strand break repair kinetics in Arabidopsis. The Plant Journal 2010;64:280-90. [DOI: 10.1111/j.1365-313x.2010.04331.x] [Cited by in Crossref: 60] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
119 Psonka K, Gudowska-nowak E, Brons S, Elsässer T, Heiss M, Taucher-scholz G. Ionizing radiation-induced fragmentation of plasmid DNA – Atomic force microscopy and biophysical modeling. Advances in Space Research 2007;39:1043-9. [DOI: 10.1016/j.asr.2007.02.089] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
120 Puchała M, Szweda-Lewandowska Z, Kiefer J. The influence of radiation quality on radiation-induced hemolysis and hemoglobin oxidation of human erythrocytes. J Radiat Res 2004;45:275-9. [PMID: 15304971 DOI: 10.1269/jrr.45.275] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
121 Willis N, Rhind N. Mus81, Rhp51(Rad51), and Rqh1 form an epistatic pathway required for the S-phase DNA damage checkpoint. Mol Biol Cell 2009;20:819-33. [PMID: 19037101 DOI: 10.1091/mbc.e08-08-0798] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 2.2] [Reference Citation Analysis]
122 Brandt A, Meeßen J, Jänicke RU, Raguse M, Ott S. Simulated Space Radiation: Impact of Four Different Types of High-Dose Ionizing Radiation on the Lichen Xanthoria elegans. Astrobiology 2017;17:136-44. [PMID: 28206821 DOI: 10.1089/ast.2015.1455] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
123 Singh H, Apte SK. Low concentrations of ethanol during irradiation drastically reduce DNA damage caused by very high doses of ionizing radiation. J Biosci 2018;43:15-23. [DOI: 10.1007/s12038-018-9739-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
124 Tang N, Bueno M, Meylan S, Perrot Y, Tran HN, Freneau A, Dos Santos M, Vaurijoux A, Gruel G, Bernal MA, Bordage MC, Emfietzoglou D, Francis Z, Guatelli S, Ivanchenko V, Karamitros M, Kyriakou I, Shin WG, Incerti S, Villagrasa C. Assessment of Radio-Induced Damage in Endothelial Cells Irradiated with 40 kVp, 220 kVp, and 4 MV X-rays by Means of Micro and Nanodosimetric Calculations. Int J Mol Sci 2019;20:E6204. [PMID: 31835321 DOI: 10.3390/ijms20246204] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
125 Synytsya A, Alexa P, de Boer J, Loewe M, Moosburger M, Würkner M, Volka K. Raman spectroscopic study of calf thymus DNA: an effect of proton- and γ-irradiation. J Raman Spectrosc 2007;38:1406-15. [DOI: 10.1002/jrs.1787] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
126 Falk M, Lukasova E, Gabrielova B, Ondrej V, Kozubek S. Local changes of higher-order chromatin structure during DSB-repair. J Phys : Conf Ser 2008;101:012018. [DOI: 10.1088/1742-6596/101/1/012018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
127 Kundrát P, Lokajíček M, Hromčíková H. Probabilistic two-stage model of cell inactivation by ionizing particles. Phys Med Biol 2005;50:1433-47. [DOI: 10.1088/0031-9155/50/7/007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]