BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Terrissol M. Modelling of Radiation Damage by 125 I on a Nucleosome. International Journal of Radiation Biology 2009;66:447-51. [DOI: 10.1080/09553009414551441] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Lobachevsky PN, Martin RF. DNA Strand Breakage by 125 I-Decay in a Synthetic Oligodeoxynucleotide: Quantitative analysis of fragment distribution. Acta Oncologica 2009;35:809-15. [DOI: 10.3109/02841869609104031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
2 Plante I, Cucinotta FA. Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte-Carlo simulation of HZE radiation tracks. New J Phys 2009;11:063047. [DOI: 10.1088/1367-2630/11/6/063047] [Cited by in Crossref: 67] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
3 Moeini H, Mokari M, Alamatsaz MH, Taleei R. Calculation of the initial DNA damage induced by alpha particles in comparison with protons and electrons using Geant4-DNA. International Journal of Radiation Biology 2020;96:767-78. [DOI: 10.1080/09553002.2020.1730015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Champion C. Electron impact ionization of liquid and gaseous water: a single-center partial-wave approach. Phys Med Biol 2010;55:11-32. [DOI: 10.1088/0031-9155/55/1/002] [Cited by in Crossref: 36] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
5 Nikjoo H, Emfietzoglou D, Watanabe R, Uehara S. Can Monte Carlo track structure codes reveal reaction mechanism in DNA damage and improve radiation therapy? Radiation Physics and Chemistry 2008;77:1270-9. [DOI: 10.1016/j.radphyschem.2008.05.043] [Cited by in Crossref: 51] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
6 Mokari M, Alamatsaz MH, Moeini H, Babaei-brojeny AA, Taleei R. Track structure simulation of low energy electron damage to DNA using Geant4-DNA. Biomed Phys Eng Express 2018;4:065009. [DOI: 10.1088/2057-1976/aae02e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
7 Nikjoo H, Panyutin IG, Terrissol M, Vrigneaud JM, Laughton CA. Distribution of strand breaks produced by Auger electrons in decay of 125I in triplex DNA. Acta Oncol 2000;39:707-12. [PMID: 11130008 DOI: 10.1080/028418600750063767] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
8 Mokari M, Alamatsaz MH, Moeini H, Taleei R. A simulation approach for determining the spectrum of DNA damage induced by protons. Phys Med Biol 2018;63:175003. [DOI: 10.1088/1361-6560/aad7ee] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
9 Nikjoo H, O'Neill P, Goodhead DT, Terrissol M. Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. Int J Radiat Biol 1997;71:467-83. [PMID: 9191891 DOI: 10.1080/095530097143798] [Cited by in Crossref: 240] [Cited by in F6Publishing: 194] [Article Influence: 9.6] [Reference Citation Analysis]
10 Friedland W, Dingfelder M, Kundrát P, Jacob P. Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutat Res 2011;711:28-40. [PMID: 21281649 DOI: 10.1016/j.mrfmmm.2011.01.003] [Cited by in Crossref: 230] [Cited by in F6Publishing: 175] [Article Influence: 20.9] [Reference Citation Analysis]
11 Bousis C. Dosimetry on sub-cellular level for intracellular incorporated auger-electron-emitting radionuclides: a comparison of Monte Carlo simulations and analytic calculations. Radiat Prot Dosimetry 2011;143:33-41. [PMID: 20959340 DOI: 10.1093/rpd/ncq293] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
12 Panyutin IG, Neumann RD. Radioprobing of DNA: distribution of DNA breaks produced by decay of 125I incorporated into a triplex-forming oligonucleotide correlates with geometry of the triplex. Nucleic Acids Res 1997;25:883-7. [PMID: 9016642 DOI: 10.1093/nar/25.4.883] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 1.5] [Reference Citation Analysis]
13 Goorley T, Terrissol M, Nikjoo H. Calculated strand breaks from 125 I in coiled DNA. International Journal of Radiation Biology 2009;84:1050-6. [DOI: 10.1080/09553000802478109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
14 Sinha N, Antony B. Mean Free Paths and Cross Sections for Electron Scattering from Liquid Water. J Phys Chem B 2021;125:5479-88. [PMID: 34014676 DOI: 10.1021/acs.jpcb.0c10781] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Hofer KG. Biophysical Aspects of Auger Processes. Acta Oncologica 2009;35:789-96. [DOI: 10.3109/02841869609104028] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
16 Nikjoo H, Martin RF, Charlton DE, Terrissol M, Kandaiya S, Lobachevsky P. Modelling of Auger-induced DNA damage by incorporated 125I. Acta Oncol 1996;35:849-56. [PMID: 9004762 DOI: 10.3109/02841869609104036] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 1.7] [Reference Citation Analysis]
17 Champion C. Theoretical cross sections for electron collisions in water: structure of electron tracks. Phys Med Biol 2003;48:2147-68. [DOI: 10.1088/0031-9155/48/14/308] [Cited by in Crossref: 76] [Cited by in F6Publishing: 50] [Article Influence: 4.0] [Reference Citation Analysis]
18 Champion C, Le Loirec C, Stosic B. EPOTRAN: A full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. International Journal of Radiation Biology 2011;88:54-61. [DOI: 10.3109/09553002.2011.641451] [Cited by in Crossref: 31] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
19 Kalantzis G, Emfietzoglou D, Hadjidoukas P. A unified spatio-temporal parallelization framework for accelerated Monte Carlo radiobiological modeling of electron tracks and subsequent radiation chemistry. Computer Physics Communications 2012;183:1683-95. [DOI: 10.1016/j.cpc.2012.03.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
20 Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM 3rd. A quantitative model of human DNA base excision repair. I. Mechanistic insights. Nucleic Acids Res 2002;30:1817-25. [PMID: 11937636 DOI: 10.1093/nar/30.8.1817] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 3.0] [Reference Citation Analysis]
21 Pomplun E, Terrissol M, Demonchy M. Modelling of initial events and chemical behaviour of species induced in DNA units by Auger electrons from 125I, 123I and carbon. Acta Oncol 1996;35:857-62. [PMID: 9004763 DOI: 10.3109/02841869609104037] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.2] [Reference Citation Analysis]
22 Bardiès M, Myers MJ. Computational methods in radionuclide dosimetry. Phys Med Biol 1996;41:1941-55. [DOI: 10.1088/0031-9155/41/10/007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
23 Carles AG, Malonda AG. Combined electron emission effects on the biologically damaging efficiency of 125I. Int J Radiat Biol 2006;82:211-20. [PMID: 16638718 DOI: 10.1080/09553000600637708] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]