BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Raza A, Tabassum J, Kudapa H, Varshney RK. Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 2021;:1-24. [PMID: 33827346 DOI: 10.1080/07388551.2021.1898332] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 36.0] [Reference Citation Analysis]
Number Citing Articles
1 Vijay A, Kumar A, Islam K, Momo J, Ramchiary N. Functional genomics to understand the tolerance mechanism against biotic and abiotic stresses in Capsicum species. Transcriptome Profiling 2023. [DOI: 10.1016/b978-0-323-91810-7.00001-7] [Reference Citation Analysis]
2 Lei Y, He H, Raza A, Liu Z, Xiaoyu D, Guijuan W, Yan L, Yong C, Xiling Z. Exogenous melatonin confers cold tolerance in rapeseed (Brassica napus L.) seedlings by improving antioxidants and genes expression. Plant Signal Behav 2022;17:2129289. [PMID: 36205498 DOI: 10.1080/15592324.2022.2129289] [Reference Citation Analysis]
3 Raza A, Charagh S, García-Caparrós P, Rahman MA, Ogwugwa VH, Saeed F, Jin W. Melatonin-mediated temperature stress tolerance in plants. GM Crops Food 2022;13:196-217. [PMID: 35983948 DOI: 10.1080/21645698.2022.2106111] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Hassan MU, Nawaz M, Shah AN, Raza A, Barbanti L, Skalicky M, Hashem M, Brestic M, Pandey S, Alamri S, Mostafa YS, Sabagh AEL, Qari SH. Trehalose: A Key Player in Plant Growth Regulation and Tolerance to Abiotic Stresses. J Plant Growth Regul 2022. [DOI: 10.1007/s00344-022-10851-7] [Reference Citation Analysis]
5 Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, Chen H, Chen Z, Siddique KHM, Zhuang W, Varshney RK. Developing drought‐smart, ready‐to‐grow future crops. The Plant Genome 2022. [DOI: 10.1002/tpg2.20279] [Reference Citation Analysis]
6 Aslam MM, Deng L, Meng J, Wang Y, Pan L, Niu L, Lu Z, Cui G, Zeng W, Wang Z. Characterization and expression analysis of basic leucine zipper (bZIP) transcription factors responsive to chilling injury in peach fruit. Mol Biol Rep 2022. [DOI: 10.1007/s11033-022-08035-3] [Reference Citation Analysis]
7 Singh AK, Mishra P, Kashyap SP, Karkute SG, Singh PM, Rai N, Bahadur A, Behera TK. Molecular insights into mechanisms underlying thermo-tolerance in tomato. Front Plant Sci 2022;13. [DOI: 10.3389/fpls.2022.1040532] [Reference Citation Analysis]
8 Singh G, Kaur N, Khanna R, Kaur R, Gudi S, Kaur R, Sidhu N, Vikal Y, Mangat GS. 2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice (Oryza sativa L.). Crit Rev Biotechnol 2022;:1-24. [PMID: 36176065 DOI: 10.1080/07388551.2022.2112648] [Reference Citation Analysis]
9 Naqvi RZ, Siddiqui HA, Mahmood MA, Najeebullah S, Ehsan A, Azhar M, Farooq M, Amin I, Asad S, Mukhtar Z, Mansoor S, Asif M. Smart breeding approaches in post-genomics era for developing climate-resilient food crops. Front Plant Sci 2022;13:972164. [DOI: 10.3389/fpls.2022.972164] [Reference Citation Analysis]
10 Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci 2022;13:961872. [DOI: 10.3389/fpls.2022.961872] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
11 Zhang X, Sun Y, Qiu X, Lu H, Hwang I, Wang T. Tolerant mechanism of model legume plant Medicago truncatula to drought, salt, and cold stresses. Front Plant Sci 2022;13:847166. [DOI: 10.3389/fpls.2022.847166] [Reference Citation Analysis]
12 Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. IJMS 2022;23:9280. [DOI: 10.3390/ijms23169280] [Reference Citation Analysis]
13 Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2022;:1-28. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
14 Babele PK, Kudapa H, Singh Y, Varshney RK, Kumar A. Mainstreaming orphan millets for advancing climate smart agriculture to secure nutrition and health. Front Plant Sci 2022;13:902536. [DOI: 10.3389/fpls.2022.902536] [Reference Citation Analysis]
15 Farooq MS, Uzair M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Front Plant Sci 2022;13:927535. [DOI: 10.3389/fpls.2022.927535] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
16 Ullah MA, Abdullah-zawawi M, Zainal-abidin R, Sukiran NL, Uddin MI, Zainal Z. A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. Plants 2022;11:1430. [DOI: 10.3390/plants11111430] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, Bohra A, Varshney RK. Moving Beyond DNA Sequence to Improve Plant Stress Responses. Front Genet 2022;13:874648. [PMID: 35518351 DOI: 10.3389/fgene.2022.874648] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
18 Altaf A, Zada A, Hussain S, Gull S, Ding Y, Tao R, Zhu M, Zhu X. Genome-Wide Identification, Characterization, and Expression Analysis of TUBBY Gene Family in Wheat (Triticum aestivum L.) under Biotic and Abiotic Stresses. Agronomy 2022;12:1121. [DOI: 10.3390/agronomy12051121] [Reference Citation Analysis]
19 Raza A, Su W, Jia Z, Luo D, Zhang Y, Gao A, Hussain MA, Mehmood SS, Cheng Y, Lv Y, Zou X. Mechanistic Insights Into Trehalose-Mediated Cold Stress Tolerance in Rapeseed (Brassica napus L.) Seedlings. Front Plant Sci 2022;13:857980. [PMID: 35360297 DOI: 10.3389/fpls.2022.857980] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. Front Plant Sci 2022;13:819658. [DOI: 10.3389/fpls.2022.819658] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
21 Zhang Y, Raza A, Huang H, Su W, Luo D, Zeng L, Ding X, Cheng Y, Liu Z, Li Q, Lv Y, Zou X. Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3.4” modulating cold tolerance. Environmental and Experimental Botany 2022. [DOI: 10.1016/j.envexpbot.2022.104848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Haider S, Raza A, Iqbal J, Shaukat M, Mahmood T. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. Mol Biol Rep 2022. [PMID: 35182323 DOI: 10.1007/s11033-022-07190-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
23 Han S, Jiang S, Xiong R, Shafique K, Zahid KR, Wang Y. Response and tolerance mechanism of food crops under high temperature stress: a review. Braz J Biol 2022;82:e253898. [PMID: 35107484 DOI: 10.1590/1519-6984.253898] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F Jr, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. Front Plant Sci 2021;12:794373. [PMID: 35058954 DOI: 10.3389/fpls.2021.794373] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
25 Zaynab M, Peng J, Sharif Y, Albaqami M, Al-yahyai R, Fatima M, Nadeem MA, Khan KA, Alotaibi SS, Alaraidh IA, Shaikhaldein HO, Li S. Genome-Wide Identification and Expression Profiling of DUF221 Gene Family Provides New Insights Into Abiotic Stress Responses in Potato. Front Plant Sci 2022;12:804600. [DOI: 10.3389/fpls.2021.804600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Pervaiz T, Amjid MW, El-kereamy A, Niu S, Wu HX. MicroRNA and cDNA-Microarray as Potential Targets against Abiotic Stress Response in Plants: Advances and Prospects. Agronomy 2021;12:11. [DOI: 10.3390/agronomy12010011] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. Front Plant Sci 2021;12:774994. [PMID: 34925418 DOI: 10.3389/fpls.2021.774994] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
28 Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H. Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol (Stuttg) 2021. [PMID: 34870354 DOI: 10.1111/plb.13368] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
29 Gill RA, Ahmar S, Ali B, Saleem MH, Khan MU, Zhou W, Liu S. The Role of Membrane Transporters in Plant Growth and Development, and Abiotic Stress Tolerance. Int J Mol Sci 2021;22:12792. [PMID: 34884597 DOI: 10.3390/ijms222312792] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
30 Haider S, Rehman S, Ahmad Y, Raza A, Tabassum J, Javed T, Osman HS, Mahmood T. In Silico Characterization and Expression Profiles of Heat Shock Transcription Factors (HSFs) in Maize (Zea mays L.). Agronomy 2021;11:2335. [DOI: 10.3390/agronomy11112335] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
31 Raza A, Su W, Hussain MA, Mehmood SS, Zhang X, Cheng Y, Zou X, Lv Y. Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Cold Tolerance in Rapeseed (Brassica napus L.). Front Plant Sci 2021;12:721681. [PMID: 34691103 DOI: 10.3389/fpls.2021.721681] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
32 Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, Kanwal S, Aslam HMU, Gill RA, Zhou W. Biofortification of Cereals and Pulses Using New Breeding Techniques: Current and Future Perspectives. Front Nutr 2021;8:721728. [PMID: 34692743 DOI: 10.3389/fnut.2021.721728] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
33 Ritonga FN, Ngatia JN, Wang Y, Khoso MA, Farooq U, Chen S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiol Mol Biol Plants 2021;27:1953-68. [PMID: 34616115 DOI: 10.1007/s12298-021-01061-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 17.0] [Reference Citation Analysis]
34 Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, Li J, Sirohi MH, Wang F. Applications of Multi-Omics Technologies for Crop Improvement. Front Plant Sci 2021;12:563953. [PMID: 34539683 DOI: 10.3389/fpls.2021.563953] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
35 Majeed S, Rana IA, Mubarik MS, Atif RM, Yang S, Chung G, Jia Y, Du X, Hinze L, Azhar MT. Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy 2021;11:1825. [DOI: 10.3390/agronomy11091825] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
36 Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, Rauf A, Hano C, El-Esawi MA. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes (Basel) 2021;12:1256. [PMID: 34440430 DOI: 10.3390/genes12081256] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 21.0] [Reference Citation Analysis]
37 Zainal-abidin R, Ruhaizat-ooi I, Harun S. A Review of Omics Technologies and Bioinformatics to Accelerate Improvement of Papaya Traits. Agronomy 2021;11:1356. [DOI: 10.3390/agronomy11071356] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Zenda T, Liu S, Dong A, Duan H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life (Basel) 2021;11:502. [PMID: 34072447 DOI: 10.3390/life11060502] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
39 Sharif R, Liu P, Wang D, Jin Z, Uzair U, Yadav V, Mujtaba M, Chen P, Li Y. Genome-wide characterisation and expression analysis of cellulose synthase genes superfamily under various environmental stresses in Cucumis sativus L . New Zealand Journal of Crop and Horticultural Science 2021;49:127-50. [DOI: 10.1080/01140671.2021.1926291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
40 Raza A, Javed R, Zahid Z, Sharif R, Hafeez MB, Ghouri MZ, Nawaz MU, Siddiqui MH. Strigolactones for Sustainable Plant Growth and Production Under Adverse Environmental Conditions. Plant Performance Under Environmental Stress 2021. [DOI: 10.1007/978-3-030-78521-5_6] [Reference Citation Analysis]