BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wei L, Gregorich ZR, Lin Z, Cai W, Jin Y, McKiernan SH, McIlwain S, Aiken JM, Moss RL, Diffee GM, Ge Y. Novel Sarcopenia-related Alterations in Sarcomeric Protein Post-translational Modifications (PTMs) in Skeletal Muscles Identified by Top-down Proteomics. Mol Cell Proteomics 2018;17:134-45. [PMID: 29046390 DOI: 10.1074/mcp.RA117.000124] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Tucholski T, Ge Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. Mass Spectrom Rev 2020. [PMID: 32894796 DOI: 10.1002/mas.21653] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Smith NT, Soriano-Arroquia A, Goljanek-Whysall K, Jackson MJ, McDonagh B. Redox responses are preserved across muscle fibres with differential susceptibility to aging. J Proteomics 2018;177:112-23. [PMID: 29438851 DOI: 10.1016/j.jprot.2018.02.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
3 Melby JA, de Lange WJ, Zhang J, Roberts DS, Mitchell SD, Tucholski T, Kim G, Kyrvasilis A, McIlwain SJ, Kamp TJ, Ralphe JC, Ge Y. Functionally Integrated Top-Down Proteomics for Standardized Assessment of Human Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissues. J Proteome Res 2021;20:1424-33. [PMID: 33395532 DOI: 10.1021/acs.jproteome.0c00830] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Yu D, Wang Z, Cupp-Sutton KA, Guo Y, Kou Q, Smith K, Liu X, Wu S. Quantitative Top-Down Proteomics in Complex Samples Using Protein-Level Tandem Mass Tag Labeling. J Am Soc Mass Spectrom 2021;32:1336-44. [PMID: 33725447 DOI: 10.1021/jasms.0c00464] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
5 Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019;7:25. [PMID: 31226838 DOI: 10.3390/proteomes7020025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Czajkowski ER, Cisneros M, Garcia BS, Shen J, Cripps RM. The Drosophila CG1674 gene encodes a synaptopodin 2-like related protein that localizes to the Z-disc and is required for normal flight muscle development and function. Dev Dyn 2021;250:99-110. [PMID: 32893414 DOI: 10.1002/dvdy.250] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Teigen LE, Sundberg CW, Kelly LJ, Hunter SK, Fitts RH. Ca2+ dependency of limb muscle fiber contractile mechanics in young and older adults. Am J Physiol Cell Physiol 2020;318:C1238-51. [PMID: 32348175 DOI: 10.1152/ajpcell.00575.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Brown KA, Melby JA, Roberts DS, Ge Y. Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev Proteomics 2020;17:719-33. [PMID: 33232185 DOI: 10.1080/14789450.2020.1855982] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
9 Cho Y, Ross RS. A mini review: Proteomics approaches to understand disused vs. exercised human skeletal muscle. Physiol Genomics 2018;50:746-57. [PMID: 29958080 DOI: 10.1152/physiolgenomics.00043.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
10 Ahn B, Pharaoh G, Premkumar P, Huseman K, Ranjit R, Kinter M, Szweda L, Kiss T, Fulop G, Tarantini S, Csiszar A, Ungvari Z, Van Remmen H. Nrf2 deficiency exacerbates age-related contractile dysfunction and loss of skeletal muscle mass. Redox Biol 2018;17:47-58. [PMID: 29673700 DOI: 10.1016/j.redox.2018.04.004] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
11 Liang D, Chen C, Huang S, Liu S, Fu L, Niu Y. Alterations of Lysine Acetylation Profile in Murine Skeletal Muscles Upon Exercise. Front Aging Neurosci 2022;14:859313. [DOI: 10.3389/fnagi.2022.859313] [Reference Citation Analysis]
12 Melby JA, Jin Y, Lin Z, Tucholski T, Wu Z, Gregorich ZR, Diffee GM, Ge Y. Top-Down Proteomics Reveals Myofilament Proteoform Heterogeneity among Various Rat Skeletal Muscle Tissues. J Proteome Res 2020;19:446-54. [PMID: 31647247 DOI: 10.1021/acs.jproteome.9b00623] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
13 Cupp-Sutton KA, Wu S. High-throughput quantitative top-down proteomics. Mol Omics 2020;16:91-9. [PMID: 31932818 DOI: 10.1039/c9mo00154a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 8.5] [Reference Citation Analysis]
14 Melby JA, Roberts DS, Larson EJ, Brown KA, Bayne EF, Jin S, Ge Y. Novel Strategies to Address the Challenges in Top-Down Proteomics. J Am Soc Mass Spectrom 2021;32:1278-94. [PMID: 33983025 DOI: 10.1021/jasms.1c00099] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Kim J, Grotegut CA, Wisler JW, Li T, Mao L, Chen M, Chen W, Rosenberg PB, Rockman HA, Lefkowitz RJ. β-arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skelet Muscle 2018;8:39. [PMID: 30591079 DOI: 10.1186/s13395-018-0184-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
16 Jin Y, Diffee GM, Colman RJ, Anderson RM, Ge Y. Top-down Mass Spectrometry of Sarcomeric Protein Post-translational Modifications from Non-human Primate Skeletal Muscle. J Am Soc Mass Spectrom 2019;30:2460-9. [PMID: 30834509 DOI: 10.1007/s13361-019-02139-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]