BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Marí M, Cederbaum AI. CYP2E1 overexpression in HepG2 cells induces glutathione synthesis by transcriptional activation of gamma-glutamylcysteine synthetase. J Biol Chem 2000;275:15563-71. [PMID: 10748080 DOI: 10.1074/jbc.M907022199] [Cited by in Crossref: 96] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Lu Y, Cederbaum A. The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells: modulation by ERK, ROS, glutathione, and thioredoxin. Free Radic Biol Med 2007;43:1061-75. [PMID: 17761302 DOI: 10.1016/j.freeradbiomed.2007.06.021] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 2.4] [Reference Citation Analysis]
2 Caro AA, Commissariat A, Dunn C, Kim H, García SL, Smith A, Strang H, Stuppy J, Desrochers LP, Goodwin TE. Prooxidant and antioxidant properties of salicylaldehyde isonicotinoyl hydrazone iron chelators in HepG2 cells. Biochim Biophys Acta 2015;1850:2256-64. [PMID: 26275495 DOI: 10.1016/j.bbagen.2015.08.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
3 Wang X, Wu D, Yang L, Gan L, Cederbaum AI. Cytochrome P450 2E1 potentiates ethanol induction of hypoxia and HIF-1α in vivo. Free Radic Biol Med. 2013;63:175-186. [PMID: 23669278 DOI: 10.1016/j.freeradbiomed.2013.05.009] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
4 Cubero FJ, Nieto N. Arachidonic acid stimulates TNFα production in Kupffer cells via a reactive oxygen species-pERK1/2-Egr1-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2012;303:G228-39. [PMID: 22538404 DOI: 10.1152/ajpgi.00465.2011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
5 Li L, Zhou YF, Li YL, Wang LL, Arai H, Xu Y. In vitro and in vivo antioxidative and hepatoprotective activity of aqueous extract of Cortex Dictamni. World J Gastroenterol 2017;23:2912-27. [PMID: 28522909 DOI: 10.3748/wjg.v23.i16.2912] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
6 Caro AA, Bell M, Ejiofor S, Zurcher G, Petersen DR, Ronis MJ. N-acetylcysteine inhibits the up-regulation of mitochondrial biogenesis genes in livers from rats fed ethanol chronically. Alcohol Clin Exp Res 2014;38:2896-906. [PMID: 25581647 DOI: 10.1111/acer.12576] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
7 Hong F, Liu X, Ward SS, Xiong H, Cederbaum AI, Lu Y. Absence of cytochrome P450 2A5 enhances alcohol-induced liver injury in mice. Dig Liver Dis 2015;47:470-7. [PMID: 25804444 DOI: 10.1016/j.dld.2015.02.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
8 Shepard BD, Tuma DJ, Tuma PL. Chronic ethanol consumption induces global hepatic protein hyperacetylation. Alcohol Clin Exp Res. 2010;34:280-291. [PMID: 19951295 DOI: 10.1111/j.1530-0277.2009.01091.x] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 3.8] [Reference Citation Analysis]
9 Dey A, Cederbaum AI. Geldanamycin, an inhibitor of Hsp90 increases cytochrome P450 2E1 mediated toxicity in HepG2 cells through sustained activation of the p38MAPK pathway. Arch Biochem Biophys 2007;461:275-86. [PMID: 17382893 DOI: 10.1016/j.abb.2007.02.014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
10 Andringa KK, King AL, Eccleston HB, Mantena SK, Landar A, Jhala NC, Dickinson DA, Squadrito GL, Bailey SM. Analysis of the liver mitochondrial proteome in response to ethanol and S-adenosylmethionine treatments: novel molecular targets of disease and hepatoprotection. Am J Physiol Gastrointest Liver Physiol. 2010;298:G732-G745. [PMID: 20150243 DOI: 10.1152/ajpgi.00332.2009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
11 Bansal S, Srinivasan S, Anandasadagopan S, Chowdhury AR, Selvaraj V, Kalyanaraman B, Joseph J, Avadhani NG. Additive effects of mitochondrion-targeted cytochrome CYP2E1 and alcohol toxicity on cytochrome c oxidase function and stability of respirosome complexes. J Biol Chem 2012;287:15284-97. [PMID: 22396533 DOI: 10.1074/jbc.M111.314062] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
12 Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC. Mitochondrial cholesterol accumulation in alcoholic liver disease: Role of ASMase and endoplasmic reticulum stress. Redox Biol 2014;3:100-8. [PMID: 25453982 DOI: 10.1016/j.redox.2014.09.005] [Cited by in F6Publishing: 20] [Reference Citation Analysis]
13 Leung TM, Lu Y. Alcoholic Liver Disease: from CYP2E1 to CYP2A5. Curr Mol Pharmacol 2017;10:172-8. [PMID: 26278389 DOI: 10.2174/1874467208666150817111846] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Yang L, Wu D, Wang X, Cederbaum AI. Depletion of cytosolic or mitochondrial thioredoxin increases CYP2E1-induced oxidative stress via an ASK-1-JNK1 pathway in HepG2 cells. Free Radic Biol Med 2011;51:185-96. [PMID: 21557999 DOI: 10.1016/j.freeradbiomed.2011.04.030] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
15 Lu Y, Cederbaum AI. Cytochrome P450s and Alcoholic Liver Disease. Curr Pharm Des 2018;24:1502-17. [PMID: 29637855 DOI: 10.2174/1381612824666180410091511] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
16 Caro AA, Adlong LW, Crocker SJ, Gardner MW, Luikart EF, Gron LU. Effect of garlic-derived organosulfur compounds on mitochondrial function and integrity in isolated mouse liver mitochondria. Toxicol Lett 2012;214:166-74. [PMID: 22960305 DOI: 10.1016/j.toxlet.2012.08.017] [Cited by in Crossref: 47] [Cited by in F6Publishing: 44] [Article Influence: 5.2] [Reference Citation Analysis]
17 Kumar SM, Swaminathan K, Clemens DL, Dey A. GSH protects against oxidative stress and toxicity in VL-17A cells exposed to high glucose. Eur J Nutr 2015;54:223-34. [PMID: 24756473 DOI: 10.1007/s00394-014-0703-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
18 Brai BI, Adisa RA, Odetola AA. Hepatoprotective properties of aqueous leaf extract of Persea Americana, Mill (Lauraceae) 'avocado' against CCL4-induced damage in rats. Afr J Tradit Complement Altern Med 2014;11:237-44. [PMID: 25435602 DOI: 10.4314/ajtcam.v11i2.2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
19 Borin TF, Angara K, Rashid MH, Achyut BR, Arbab AS. Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis. Int J Mol Sci 2017;18:E2661. [PMID: 29292756 DOI: 10.3390/ijms18122661] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
20 Caro AA, Thompson S, Tackett J. Increased oxidative stress and cytotoxicity by hydrogen sulfide in HepG2 cells overexpressing cytochrome P450 2E1. Cell Biol Toxicol 2011;27:439-53. [PMID: 21850523 DOI: 10.1007/s10565-011-9198-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
21 Thomes PG, Ehlers RA, Trambly CS, Clemens DL, Fox HS, Tuma DJ, Donohue TM. Multilevel regulation of autophagosome content by ethanol oxidation in HepG2 cells. Autophagy. 2013;9:63-73. [PMID: 23090141 DOI: 10.4161/auto.22490] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 6.1] [Reference Citation Analysis]
22 Sawal HA, Asghar K, Bureik M, Jalal N. Bystander signaling via oxidative metabolism. Onco Targets Ther 2017;10:3925-40. [PMID: 28831267 DOI: 10.2147/OTT.S136076] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
23 Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med. 2008;44:1259-1272. [PMID: 18242193 DOI: 10.1016/j.freeradbiomed.2007.12.029] [Cited by in Crossref: 291] [Cited by in F6Publishing: 268] [Article Influence: 22.4] [Reference Citation Analysis]
24 Marí M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A. Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants (Basel) 2020;9:E909. [PMID: 32987701 DOI: 10.3390/antiox9100909] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 16.0] [Reference Citation Analysis]
25 Tan HK, Yates E, Lilly K, Dhanda AD. Oxidative stress in alcohol-related liver disease. World J Hepatol 2020;12:332-49. [PMID: 32821333 DOI: 10.4254/wjh.v12.i7.332] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
26 Lu Y, Gong P, Cederbaum AI. Pyrazole induced oxidative liver injury independent of CYP2E1/2A5 induction due to Nrf2 deficiency. Toxicology 2008;252:9-16. [PMID: 18721845 DOI: 10.1016/j.tox.2008.07.058] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]