BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Minami H, Dubouzet E, Iwasa K, Sato F. Functional Analysis of Norcoclaurine Synthase in Coptis japonica. Journal of Biological Chemistry 2007;282:6274-82. [DOI: 10.1074/jbc.m608933200] [Cited by in Crossref: 93] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Usera AR, O'Connor SE. Mechanistic advances in plant natural product enzymes. Curr Opin Chem Biol 2009;13:492-8. [PMID: 19632140 DOI: 10.1016/j.cbpa.2009.06.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
2 Li J, Lee EJ, Chang L, Facchini PJ. Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Sci Rep 2016;6:39256. [PMID: 27991536 DOI: 10.1038/srep39256] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
3 Farrow SC, Facchini PJ. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Front Plant Sci 2014;5:524. [PMID: 25346740 DOI: 10.3389/fpls.2014.00524] [Cited by in Crossref: 78] [Cited by in F6Publishing: 74] [Article Influence: 9.8] [Reference Citation Analysis]
4 Vimolmangkang S, Deng X, Owiti A, Meelaph T, Ogutu C, Han Y. Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants. Sci Rep 2016;6:26323. [PMID: 27189519 DOI: 10.1038/srep26323] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
5 Ruff BM, Bräse S, O'Connor SE. Biocatalytic production of tetrahydroisoquinolines. Tetrahedron Lett 2012;53:1071-4. [PMID: 22966211 DOI: 10.1016/j.tetlet.2011.12.089] [Cited by in Crossref: 79] [Cited by in F6Publishing: 64] [Article Influence: 7.9] [Reference Citation Analysis]
6 He SM, Song WL, Cong K, Wang X, Dong Y, Cai J, Zhang JJ, Zhang GH, Yang JL, Yang SC, Fan W. Identification of candidate genes involved in isoquinoline alkaloids biosynthesis in Dactylicapnos scandens by transcriptome analysis. Sci Rep 2017;7:9119. [PMID: 28831066 DOI: 10.1038/s41598-017-08672-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
7 He SM, Liang YL, Cong K, Chen G, Zhao X, Zhao QM, Zhang JJ, Wang X, Dong Y, Yang JL, Zhang GH, Qian ZL, Fan W, Yang SC. Identification and Characterization of Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in Coptis Species. Front Plant Sci 2018;9:731. [PMID: 29915609 DOI: 10.3389/fpls.2018.00731] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
8 Dang TT, Facchini PJ. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy. Plant Physiol 2012;159:618-31. [PMID: 22535422 DOI: 10.1104/pp.112.194886] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 5.5] [Reference Citation Analysis]
9 Lichman BR, Gershater MC, Lamming ED, Pesnot T, Sula A, Keep NH, Hailes HC, Ward JM. 'Dopamine-first' mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile. FEBS J 2015;282:1137-51. [PMID: 25620686 DOI: 10.1111/febs.13208] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 7.1] [Reference Citation Analysis]
10 Zhong F, Huang L, Qi L, Ma Y, Yan Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. Plant Mol Biol 2020;102:477-99. [PMID: 31902069 DOI: 10.1007/s11103-019-00959-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
11 Nomura T, Kutchan TM. Is a metabolic enzyme complex involved in the efficient and accurate control of Ipecac alkaloid biosynthesis in Psychotria ipecacuanha? Plant Signal Behav 2010;5:875-7. [PMID: 20495341 DOI: 10.4161/psb.5.7.11901] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
12 Li Y, Winzer T, He Z, Graham IA. Over 100 Million Years of Enzyme Evolution Underpinning the Production of Morphine in the Papaveraceae Family of Flowering Plants. Plant Commun 2020;1:100029. [PMID: 32685922 DOI: 10.1016/j.xplc.2020.100029] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
13 Schrittwieser JH, Resch V. The role of biocatalysis in the asymmetric synthesis of alkaloids. RSC Adv 2013;3:17602-32. [PMID: 25580241 DOI: 10.1039/c3ra42123f] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 5.6] [Reference Citation Analysis]
14 Zhao J, Méndez-sánchez D, Roddan R, Ward JM, Hailes HC. Norcoclaurine Synthase-Mediated Stereoselective Synthesis of 1,1’-Disubstituted, Spiro- and Bis-Tetrahydroisoquinoline Alkaloids. ACS Catal 2021;11:131-8. [DOI: 10.1021/acscatal.0c04704] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
15 Lee EJ, Facchini P. Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell 2010;22:3489-503. [PMID: 21037103 DOI: 10.1105/tpc.110.077958] [Cited by in Crossref: 78] [Cited by in F6Publishing: 67] [Article Influence: 6.5] [Reference Citation Analysis]
16 Maresh JJ, Giddings LA, Friedrich A, Loris EA, Panjikar S, Trout BL, Stöckigt J, Peters B, O'Connor SE. Strictosidine synthase: mechanism of a Pictet-Spengler catalyzing enzyme. J Am Chem Soc 2008;130:710-23. [PMID: 18081287 DOI: 10.1021/ja077190z] [Cited by in Crossref: 151] [Cited by in F6Publishing: 130] [Article Influence: 10.8] [Reference Citation Analysis]
17 Liu Y, Wang B, Shu S, Li Z, Song C, Liu D, Niu Y, Liu J, Zhang J, Liu H, Hu Z, Huang B, Liu X, Liu W, Jiang L, Alami MM, Zhou Y, Ma Y, He X, Yang Y, Zhang T, Hu H, Barker MS, Chen S, Wang X, Nie J. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat Commun 2021;12:3276. [PMID: 34078898 DOI: 10.1038/s41467-021-23611-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Huang Z, Hou Z, Liu F, Zhang M, Hu W, Xu S. Scientometric Analysis of Medicinal and Edible Plant Coptis. Front Pharmacol 2021;12:725162. [PMID: 34456737 DOI: 10.3389/fphar.2021.725162] [Reference Citation Analysis]
19 Feng J, Geng WC, Jiang H, Wu B. Recent advances in biocatalysis of nitrogen-containing heterocycles. Biotechnol Adv 2022;54:107813. [PMID: 34450199 DOI: 10.1016/j.biotechadv.2021.107813] [Reference Citation Analysis]
20 Minami H, Ikezawa N, Sato F. Microbial expression of alkaloid biosynthetic enzymes for characterization of their properties. Methods Mol Biol 2010;643:111-20. [PMID: 20552447 DOI: 10.1007/978-1-60761-723-5_8] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
21 Hagel JM, Facchini PJ. Biochemistry and occurrence of o-demethylation in plant metabolism. Front Physiol 2010;1:14. [PMID: 21423357 DOI: 10.3389/fphys.2010.00014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
22 Sangster JJ, Marshall JR, Turner NJ, Mangas-Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2021. [PMID: 34726813 DOI: 10.1002/cbic.202100464] [Reference Citation Analysis]
23 Canedo-Téxon A, Ramón-Farias F, Monribot-Villanueva JL, Villafán E, Alonso-Sánchez A, Pérez-Torres CA, Ángeles G, Guerrero-Analco JA, Ibarra-Laclette E. Novel findings to the biosynthetic pathway of magnoflorine and taspine through transcriptomic and metabolomic analysis of Croton draco (Euphorbiaceae). BMC Plant Biol 2019;19:560. [PMID: 31852435 DOI: 10.1186/s12870-019-2195-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
24 Yamada Y, Yoshimoto T, Yoshida ST, Sato F. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica. Front Plant Sci 2016;7:1352. [PMID: 27642289 DOI: 10.3389/fpls.2016.01352] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
25 Yang L, Zhu J, Sun C, Deng Z, Qu X. Biosynthesis of plant tetrahydroisoquinoline alkaloids through an imine reductase route. Chem Sci 2020;11:364-71. [PMID: 32190259 DOI: 10.1039/c9sc03773j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
26 Yang M, Zhu L, Li L, Li J, Xu L, Feng J, Liu Y. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera). Front Plant Sci 2017;8:80. [PMID: 28197160 DOI: 10.3389/fpls.2017.00080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
27 Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F. Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci U S A 2008;105:7393-8. [PMID: 18492807 DOI: 10.1073/pnas.0802981105] [Cited by in Crossref: 239] [Cited by in F6Publishing: 195] [Article Influence: 17.1] [Reference Citation Analysis]
28 Lichman BR, Zhao J, Hailes HC, Ward JM. Enzyme catalysed Pictet-Spengler formation of chiral 1,1'-disubstituted- and spiro-tetrahydroisoquinolines. Nat Commun 2017;8:14883. [PMID: 28368003 DOI: 10.1038/ncomms14883] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 10.8] [Reference Citation Analysis]
29 Sato F, Kumagai H. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research. Proc Jpn Acad Ser B Phys Biol Sci 2013;89:165-82. [PMID: 23666088 DOI: 10.2183/pjab.89.165] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
30 Pyne ME, Kevvai K, Grewal PS, Narcross L, Choi B, Bourgeois L, Dueber JE, Martin VJJ. A yeast platform for high-level synthesis of tetrahydroisoquinoline alkaloids. Nat Commun 2020;11:3337. [PMID: 32620756 DOI: 10.1038/s41467-020-17172-x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
31 Singh A, Desgagné-Penix I. Transcriptome and metabolome profiling of Narcissus pseudonarcissus 'King Alfred' reveal components of Amaryllidaceae alkaloid metabolism. Sci Rep 2017;7:17356. [PMID: 29229969 DOI: 10.1038/s41598-017-17724-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]