BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Visintin A, Latz E, Monks BG, Espevik T, Golenbock DT. Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. J Biol Chem. 2003;278:48313-48320. [PMID: 12960171 DOI: 10.1074/jbc.m306802200] [Cited by in Crossref: 175] [Cited by in F6Publishing: 59] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Suomalainen M, Lobo LA, Brandenburg K, Lindner B, Virkola R, Knirel YA, Anisimov AP, Holst O, Korhonen TK. Temperature-induced changes in the lipopolysaccharide of Yersinia pestis affect plasminogen activation by the pla surface protease. Infect Immun 2010;78:2644-52. [PMID: 20368351 DOI: 10.1128/IAI.01329-09] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
2 Vogt L, Ramasamy U, Meyer D, Pullens G, Venema K, Faas MM, Schols HA, de Vos P. Immune modulation by different types of β2→1-fructans is toll-like receptor dependent. PLoS One 2013;8:e68367. [PMID: 23861894 DOI: 10.1371/journal.pone.0068367] [Cited by in Crossref: 113] [Cited by in F6Publishing: 96] [Article Influence: 14.1] [Reference Citation Analysis]
3 Roy S, Karmakar M, Pearlman E. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J Biol Chem 2014;289:1174-82. [PMID: 24275652 DOI: 10.1074/jbc.M113.523167] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
4 Rallabhandi P, Phillips RL, Boukhvalova MS, Pletneva LM, Shirey KA, Gioannini TL, Weiss JP, Chow JC, Hawkins LD, Vogel SN, Blanco JC. Respiratory syncytial virus fusion protein-induced toll-like receptor 4 (TLR4) signaling is inhibited by the TLR4 antagonists Rhodobacter sphaeroides lipopolysaccharide and eritoran (E5564) and requires direct interaction with MD-2. mBio 2012;3:e00218-12. [PMID: 22872782 DOI: 10.1128/mBio.00218-12] [Cited by in Crossref: 74] [Cited by in F6Publishing: 46] [Article Influence: 8.2] [Reference Citation Analysis]
5 Chou NT, Cheng CF, Wu HC, Lai CP, Lin LT, Pan IH, Ko CH. Chlorella sorokiniana-Induced Activation and Maturation of Human Monocyte-Derived Dendritic Cells through NF-κB and PI3K/MAPK Pathways. Evid Based Complement Alternat Med 2012;2012:735396. [PMID: 23304212 DOI: 10.1155/2012/735396] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
6 Jain V, Halle A, Halmen KA, Lien E, Charrel-Dennis M, Ram S, Golenbock DT, Visintin A. Phagocytosis and intracellular killing of MD-2 opsonized gram-negative bacteria depend on TLR4 signaling. Blood 2008;111:4637-45. [PMID: 18203953 DOI: 10.1182/blood-2007-11-126862] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.2] [Reference Citation Analysis]
7 Sigalov AB. SCHOOL model and new targeting strategies. Adv Exp Med Biol 2008;640:268-311. [PMID: 19065798 DOI: 10.1007/978-0-387-09789-3_20] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 0.6] [Reference Citation Analysis]
8 Figueroa L, Xiong Y, Song C, Piao W, Vogel SN, Medvedev AE. The Asp299Gly polymorphism alters TLR4 signaling by interfering with recruitment of MyD88 and TRIF. J Immunol. 2012;188:4506-4515. [PMID: 22474023 DOI: 10.4049/jimmunol.1200202] [Cited by in Crossref: 83] [Cited by in F6Publishing: 81] [Article Influence: 9.2] [Reference Citation Analysis]
9 Xiong Y, Song C, Snyder GA, Sundberg EJ, Medvedev AE. R753Q polymorphism inhibits Toll-like receptor (TLR) 2 tyrosine phosphorylation, dimerization with TLR6, and recruitment of myeloid differentiation primary response protein 88. J Biol Chem. 2012;287:38327-38337. [PMID: 22992740 DOI: 10.1074/jbc.m112.375493] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
10 Di Lorenzo F, Kubik Ł, Oblak A, Lorè NI, Cigana C, Lanzetta R, Parrilli M, Hamad MA, De Soyza A, Silipo A, Jerala R, Bragonzi A, Valvano MA, Martín-Santamaría S, Molinaro A. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. J Biol Chem 2015;290:21305-19. [PMID: 26160169 DOI: 10.1074/jbc.M115.649087] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
11 Quevedo-Diaz MA, Song C, Xiong Y, Chen H, Wahl LM, Radulovic S, Medvedev AE. Involvement of TLR2 and TLR4 in cell responses to Rickettsia akari. J Leukoc Biol 2010;88:675-85. [PMID: 20616112 DOI: 10.1189/jlb.1009674] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
12 Suzuki M, Sugimoto Y, Ohsaki Y, Ueno M, Kato S, Kitamura Y, Hosokawa H, Davies JP, Ioannou YA, Vanier MT, Ohno K, Ninomiya H. Endosomal accumulation of Toll-like receptor 4 causes constitutive secretion of cytokines and activation of signal transducers and activators of transcription in Niemann-Pick disease type C (NPC) fibroblasts: a potential basis for glial cell activation in the NPC brain. J Neurosci 2007;27:1879-91. [PMID: 17314284 DOI: 10.1523/JNEUROSCI.5282-06.2007] [Cited by in Crossref: 50] [Cited by in F6Publishing: 35] [Article Influence: 3.6] [Reference Citation Analysis]
13 White AF, Demchenko AV. Modulating LPS signal transduction at the LPS receptor complex with synthetic Lipid A analogues. Adv Carbohydr Chem Biochem 2014;71:339-89. [PMID: 25480508 DOI: 10.1016/B978-0-12-800128-8.00005-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
14 Huang Y, Halliday GM. Aspects of innate immunity and Parkinson's disease. Front Pharmacol 2012;3:33. [PMID: 22408621 DOI: 10.3389/fphar.2012.00033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
15 Gao M, London N, Cheng K, Tamura R, Jin J, Schueler-Furman O, Yin H. Rationally Designed Macrocyclic Peptides as Synergistic Agonists of LPS-Induced Inflammatory Response. Tetrahedron 2014;70:7664-8. [PMID: 25400297 DOI: 10.1016/j.tet.2014.07.026] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
16 Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol. 2005;6:571-578. [PMID: 15852007 DOI: 10.1038/ni1198] [Cited by in Crossref: 278] [Cited by in F6Publishing: 263] [Article Influence: 17.4] [Reference Citation Analysis]
17 Khalaf JK, Bowen WS, Bazin HG, Ryter KT, Livesay MT, Ward JR, Evans JT, Johnson DA. Characterization of TRIF selectivity in the AGP class of lipid A mimetics: role of secondary lipid chains. Bioorg Med Chem Lett 2015;25:547-53. [PMID: 25553892 DOI: 10.1016/j.bmcl.2014.12.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
18 Yoon SI, Hong M, Han GW, Wilson IA. Crystal structure of soluble MD-1 and its interaction with lipid IVa. Proc Natl Acad Sci U S A 2010;107:10990-5. [PMID: 20534476 DOI: 10.1073/pnas.1004153107] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
19 Kagan JC, Magupalli VG, Wu H. SMOCs: supramolecular organizing centres that control innate immunity. Nat Rev Immunol 2014;14:821-6. [PMID: 25359439 DOI: 10.1038/nri3757] [Cited by in Crossref: 139] [Cited by in F6Publishing: 110] [Article Influence: 19.9] [Reference Citation Analysis]
20 Mosoian A, Teixeira A, Burns CS, Sander LE, Gusella GL, He C, Blander JM, Klotman P, Klotman ME. Prothymosin-alpha inhibits HIV-1 via Toll-like receptor 4-mediated type I interferon induction. Proc Natl Acad Sci U S A 2010;107:10178-83. [PMID: 20479248 DOI: 10.1073/pnas.0914870107] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 6.0] [Reference Citation Analysis]
21 Zhang J, Kumar A, Wheater M, Yu FS. Lack of MD-2 expression in human corneal epithelial cells is an underlying mechanism of lipopolysaccharide (LPS) unresponsiveness. Immunol Cell Biol 2009;87:141-8. [PMID: 18936773 DOI: 10.1038/icb.2008.75] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 1.8] [Reference Citation Analysis]
22 Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113:153-162. [PMID: 15379975 DOI: 10.1111/j.1365-2567.2004.01976.x] [Cited by in Crossref: 762] [Cited by in F6Publishing: 714] [Article Influence: 44.8] [Reference Citation Analysis]
23 Gross P, Brandl K, Dierkes C, Schölmerich J, Salzberger B, Glück T, Falk W. Lipopolysaccharide-trap-Fc, a multifunctional agent to battle gram-negative bacteria. Infect Immun 2009;77:2925-31. [PMID: 19433546 DOI: 10.1128/IAI.00004-09] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
24 Dulay AT, Buhimschi CS, Zhao G, Oliver EA, Abdel-Razeq SS, Shook LL, Bahtiyar MO, Buhimschi IA. Amniotic Fluid Soluble Myeloid Differentiation-2 (sMD-2) as Regulator of Intra-amniotic Inflammation in Infection-induced Preterm Birth. Am J Reprod Immunol 2015;73:507-21. [PMID: 25605324 DOI: 10.1111/aji.12362] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
25 Triantafilou M, Lepper PM, Olden R, Dias IS, Triantafilou K. Location, location, location: is membrane partitioning everything when it comes to innate immune activation? Mediators Inflamm 2011;2011:186093. [PMID: 21765613 DOI: 10.1155/2011/186093] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
26 Kopitar-Jerala N. Innate Immune Response in Brain, NF-Kappa B Signaling and Cystatins. Front Mol Neurosci 2015;8:73. [PMID: 26696821 DOI: 10.3389/fnmol.2015.00073] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 8.5] [Reference Citation Analysis]
27 Cluff CW, Baldridge JR, Stöver AG, Evans JT, Johnson DA, Lacy MJ, Clawson VG, Yorgensen VM, Johnson CL, Livesay MT, Hershberg RM, Persing DH. Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect Immun 2005;73:3044-52. [PMID: 15845512 DOI: 10.1128/IAI.73.5.3044-3052.2005] [Cited by in Crossref: 85] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
28 Srivastava A, Henneke P, Visintin A, Morse SC, Martin V, Watkins C, Paton JC, Wessels MR, Golenbock DT, Malley R. The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect Immun 2005;73:6479-87. [PMID: 16177320 DOI: 10.1128/IAI.73.10.6479-6487.2005] [Cited by in Crossref: 128] [Cited by in F6Publishing: 73] [Article Influence: 8.0] [Reference Citation Analysis]
29 O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61:177-197. [PMID: 19474110 DOI: 10.1124/pr.109.001073] [Cited by in Crossref: 302] [Cited by in F6Publishing: 277] [Article Influence: 25.2] [Reference Citation Analysis]
30 Koraha J, Tsuneyoshi N, Kimoto M, Gauchat JF, Nakatake H, Fukudome K. Comparison of lipopolysaccharide-binding functions of CD14 and MD-2. Clin Diagn Lab Immunol 2005;12:1292-7. [PMID: 16275943 DOI: 10.1128/CDLI.12.11.1292-1297.2005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
31 Zimmer SM, Liu J, Clayton JL, Stephens DS, Snyder JP. Paclitaxel binding to human and murine MD-2. J Biol Chem 2008;283:27916-26. [PMID: 18650420 DOI: 10.1074/jbc.M802826200] [Cited by in Crossref: 57] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
32 Lei MG, Tan X, Qureshi N, Morrison DC. Regulation of cellular caveolin-1 protein expression in murine macrophages by microbial products. Infect Immun 2005;73:8136-43. [PMID: 16299308 DOI: 10.1128/IAI.73.12.8136-8143.2005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
33 Gray P, Michelsen KS, Sirois CM, Lowe E, Shimada K, Crother TR, Chen S, Brikos C, Bulut Y, Latz E, Underhill D, Arditi M. Identification of a novel human MD-2 splice variant that negatively regulates Lipopolysaccharide-induced TLR4 signaling. J Immunol 2010;184:6359-66. [PMID: 20435923 DOI: 10.4049/jimmunol.0903543] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
34 Kanoh H, Nitta T, Go S, Inamori KI, Veillon L, Nihei W, Fujii M, Kabayama K, Shimoyama A, Fukase K, Ohto U, Shimizu T, Watanabe T, Shindo H, Aoki S, Sato K, Nagasaki M, Yatomi Y, Komura N, Ando H, Ishida H, Kiso M, Natori Y, Yoshimura Y, Zonca A, Cattaneo A, Letizia M, Ciampa M, Mauri L, Prinetti A, Sonnino S, Suzuki A, Inokuchi JI. Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity. EMBO J 2020;39:e101732. [PMID: 32378734 DOI: 10.15252/embj.2019101732] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
35 Liu D, Cramer CC, Scafidi J, Davis AE 3rd. N-linked glycosylation at Asn3 and the positively charged residues within the amino-terminal domain of the c1 inhibitor are required for interaction of the C1 Inhibitor with Salmonella enterica serovar typhimurium lipopolysaccharide and lipid A. Infect Immun 2005;73:4478-87. [PMID: 16040958 DOI: 10.1128/IAI.73.8.4478-4487.2005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
36 Triantafilou M, Brandenburg K, Kusumoto S, Fukase K, Mackie A, Seydel U, Triantafilou K. Combinational clustering of receptors following stimulation by bacterial products determines lipopolysaccharide responses. Biochem J. 2004;381:527-536. [PMID: 15040785 DOI: 10.1042/BJ20040172] [Cited by in Crossref: 111] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
37 Slivka PF, Shridhar M, Lee GI, Sammond DW, Hutchinson MR, Martinko AJ, Buchanan MM, Sholar PW, Kearney JJ, Harrison JA, Watkins LR, Yin H. A peptide antagonist of the TLR4-MD2 interaction. Chembiochem 2009;10:645-9. [PMID: 19184989 DOI: 10.1002/cbic.200800769] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
38 Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, Blanco JC. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol 2014;9:811-29. [PMID: 25620999 DOI: 10.2217/fvl.14.70] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
39 Tumurkhuu G, Dagvadorj J, Jones HD, Chen S, Shimada K, Crother TR, Arditi M. Alternatively spliced myeloid differentiation protein-2 inhibits TLR4-mediated lung inflammation. J Immunol 2015;194:1686-94. [PMID: 25576596 DOI: 10.4049/jimmunol.1402123] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
40 Bowen WS, Minns LA, Johnson DA, Mitchell TC, Hutton MM, Evans JT. Selective TRIF-dependent signaling by a synthetic toll-like receptor 4 agonist. Sci Signal 2012;5:ra13. [PMID: 22337809 DOI: 10.1126/scisignal.2001963] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 5.9] [Reference Citation Analysis]
41 Zhang W, Zhang Y, Guo X, Zeng Z, Wu J, Liu Y, He J, Wang R, Huang Q, Chen Z. Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction. Oxid Med Cell Longev 2017;2017:4082102. [PMID: 29209448 DOI: 10.1155/2017/4082102] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
42 Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. Self Nonself 2010;1:192-224. [PMID: 21487477 DOI: 10.4161/self.1.3.12794] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
43 Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2006;2:2006.0015. [PMID: 16738560 DOI: 10.1038/msb4100057] [Cited by in Crossref: 188] [Cited by in F6Publishing: 213] [Article Influence: 12.5] [Reference Citation Analysis]
44 Iliev DB, Roach JC, Mackenzie S, Planas JV, Goetz FW. Endotoxin recognition: in fish or not in fish? FEBS Lett 2005;579:6519-28. [PMID: 16297386 DOI: 10.1016/j.febslet.2005.10.061] [Cited by in Crossref: 156] [Cited by in F6Publishing: 146] [Article Influence: 9.8] [Reference Citation Analysis]
45 Davis AE 3rd, Cai S, Liu D. C1 inhibitor: biologic activities that are independent of protease inhibition. Immunobiology 2007;212:313-23. [PMID: 17544816 DOI: 10.1016/j.imbio.2006.10.003] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 2.7] [Reference Citation Analysis]
46 Srivastava A, Casey H, Johnson N, Levy O, Malley R. Recombinant bactericidal/permeability-increasing protein rBPI21 protects against pneumococcal disease. Infect Immun 2007;75:342-9. [PMID: 17101667 DOI: 10.1128/IAI.01089-06] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
47 Köllisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, Bauer S, Jakob T, Mempel M, Ollert M. Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology. 2005;114:531-541. [PMID: 15804290 DOI: 10.1111/j.1365-2567.2005.02122.x] [Cited by in Crossref: 242] [Cited by in F6Publishing: 224] [Article Influence: 15.1] [Reference Citation Analysis]
48 Vamadevan AS, Fukata M, Arnold ET, Thomas LS, Hsu D, Abreu MT. Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis. Innate Immun. 2010;16:93-103. [PMID: 19710105 DOI: 10.1177/1753425909339231] [Cited by in Crossref: 62] [Cited by in F6Publishing: 56] [Article Influence: 5.2] [Reference Citation Analysis]
49 Peng Y, Gong JP, Liu CA, Li XH, Gan L, Li SB. Expression of toll-like receptor 4 and MD-2 gene and protein in Kupffer cells after ischemia-reperfu-sion in rat liver graft. World J Gastroenterol. 2004;10:2890-2893. [PMID: 15334694 DOI: 10.3748/wjg.v10.i19.2890] [Cited by in CrossRef: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
50 Shoma S, Tsuchiya K, Kawamura I, Nomura T, Hara H, Uchiyama R, Daim S, Mitsuyama M. Critical involvement of pneumolysin in production of interleukin-1alpha and caspase-1-dependent cytokines in infection with Streptococcus pneumoniae in vitro: a novel function of pneumolysin in caspase-1 activation. Infect Immun 2008;76:1547-57. [PMID: 18195026 DOI: 10.1128/IAI.01269-07] [Cited by in Crossref: 60] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
51 Ittig S, Lindner B, Stenta M, Manfredi P, Zdorovenko E, Knirel YA, dal Peraro M, Cornelis GR, Zähringer U. The lipopolysaccharide from Capnocytophaga canimorsus reveals an unexpected role of the core-oligosaccharide in MD-2 binding. PLoS Pathog 2012;8:e1002667. [PMID: 22570611 DOI: 10.1371/journal.ppat.1002667] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
52 Loes AN, Bridgham JT, Harms MJ. Coevolution of the Toll-Like Receptor 4 Complex with Calgranulins and Lipopolysaccharide. Front Immunol 2018;9:304. [PMID: 29515592 DOI: 10.3389/fimmu.2018.00304] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
53 Muthu K, He LK, Szilagyi A, Strotmon P, Gamelli RL, Shankar R. ß-adrenergic stimulation increases macrophage CD14 expression and E. coli phagocytosis through PKA signaling mechanisms. J Leukoc Biol 2010;88:715-24. [PMID: 20643814 DOI: 10.1189/jlb.0410186] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
54 Medvedev AE, Piao W, Shoenfelt J, Rhee SH, Chen H, Basu S, Wahl LM, Fenton MJ, Vogel SN. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem. 2007;282:16042-16053. [PMID: 17392283 DOI: 10.1074/jbc.m606781200] [Cited by in Crossref: 136] [Cited by in F6Publishing: 84] [Article Influence: 9.7] [Reference Citation Analysis]
55 Resman N, Vasl J, Oblak A, Pristovsek P, Gioannini TL, Weiss JP, Jerala R. Essential roles of hydrophobic residues in both MD-2 and toll-like receptor 4 in activation by endotoxin. J Biol Chem 2009;284:15052-60. [PMID: 19321453 DOI: 10.1074/jbc.M901429200] [Cited by in Crossref: 77] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
56 Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191-1195. [PMID: 19252480 DOI: 10.1038/nature07830] [Cited by in Crossref: 1336] [Cited by in F6Publishing: 1218] [Article Influence: 111.3] [Reference Citation Analysis]
57 Scott MJ, Billiar TR. Beta2-integrin-induced p38 MAPK activation is a key mediator in the CD14/TLR4/MD2-dependent uptake of lipopolysaccharide by hepatocytes. J Biol Chem. 2008;283:29433-29446. [PMID: 18701460 DOI: 10.1074/jbc.m803905200] [Cited by in Crossref: 79] [Cited by in F6Publishing: 55] [Article Influence: 6.1] [Reference Citation Analysis]
58 Good DW, George T, Watts BA. Toll-like receptor 2 is required for LPS-induced Toll-like receptor 4 signaling and inhibition of ion transport in renal thick ascending limb. J Biol Chem. 2012;287:20208-20220. [PMID: 22523073 DOI: 10.1074/jbc.m111.336255] [Cited by in Crossref: 45] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
59 Hiscott J, Nguyen TL, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006;25:6844-67. [PMID: 17072332 DOI: 10.1038/sj.onc.1209941] [Cited by in Crossref: 182] [Cited by in F6Publishing: 176] [Article Influence: 12.1] [Reference Citation Analysis]