BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Park JS, Svetkauskaite D, He Q, Kim J, Strassheim D, Ishizaka A, Abraham E. Involvement of Toll-like Receptors 2 and 4 in Cellular Activation by High Mobility Group Box 1 Protein. Journal of Biological Chemistry 2004;279:7370-7. [DOI: 10.1074/jbc.m306793200] [Cited by in Crossref: 1111] [Cited by in F6Publishing: 589] [Article Influence: 61.7] [Reference Citation Analysis]
Number Citing Articles
1 Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med. 2008;205:79-90. [PMID: 18195069 DOI: 10.1084/jem.20062027] [Cited by in Crossref: 240] [Cited by in F6Publishing: 217] [Article Influence: 17.1] [Reference Citation Analysis]
2 Kim HC, Oh H, You JS, Chung YE. Glycyrrhizin ameliorating sterile inflammation induced by low-dose radiation exposure. Sci Rep 2021;11:18356. [PMID: 34526618 DOI: 10.1038/s41598-021-97800-8] [Reference Citation Analysis]
3 Min H, Hong J, Cho IH, Jang YH, Lee H, Kim D, Yu SW, Lee S, Lee SJ. TLR2-induced astrocyte MMP9 activation compromises the blood brain barrier and exacerbates intracerebral hemorrhage in animal models. Mol Brain 2015;8:23. [PMID: 25879213 DOI: 10.1186/s13041-015-0116-z] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
4 Cheng Y, Wang D, Wang B, Li H, Xiong J, Xu S, Chen Q, Tao K, Yang X, Zhu Y, He S. HMGB1 translocation and release mediate cigarette smoke-induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway. Mol Biol Cell 2017;28:201-9. [PMID: 27807045 DOI: 10.1091/mbc.E16-02-0126] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
5 Lim H, Lee J, You B, Oh JH, Mok HJ, Kim YS, Yoon BE, Kim BG, Back SK, Park JS, Kim KP, Schnaar RL, Lee SJ. GT1b functions as a novel endogenous agonist of toll-like receptor 2 inducing neuropathic pain. EMBO J 2020;39:e102214. [PMID: 32030804 DOI: 10.15252/embj.2019102214] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
6 Fielding CA, Weekes MP, Nobre LV, Ruckova E, Wilkie GS, Paulo JA, Chang C, Suárez NM, Davies JA, Antrobus R, Stanton RJ, Aicheler RJ, Nichols H, Vojtesek B, Trowsdale J, Davison AJ, Gygi SP, Tomasec P, Lehner PJ, Wilkinson GW. Control of immune ligands by members of a cytomegalovirus gene expansion suppresses natural killer cell activation. Elife 2017;6:e22206. [PMID: 28186488 DOI: 10.7554/eLife.22206] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
7 Taniguchi N, Yoshida K, Ito T, Tsuda M, Mishima Y, Furumatsu T, Ronfani L, Abeyama K, Kawahara K, Komiya S, Maruyama I, Lotz M, Bianchi ME, Asahara H. Stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. Mol Cell Biol 2007;27:5650-63. [PMID: 17548469 DOI: 10.1128/MCB.00130-07] [Cited by in Crossref: 67] [Cited by in F6Publishing: 42] [Article Influence: 4.5] [Reference Citation Analysis]
8 Ye Z, Jia J, Lv Z, Zheng S. Identification of High-Mobility Group Box 1 (HMGB1) Expression as a Potential Predictor of Rejection and Poor Prognosis After Liver Transplantation. Ann Transplant 2021;26:e931625. [PMID: 34282108 DOI: 10.12659/AOT.931625] [Reference Citation Analysis]
9 Stadtmauer DJ, Wagner GP. Cooperative inflammation: The recruitment of inflammatory signaling in marsupial and eutherian pregnancy. J Reprod Immunol 2020;137:102626. [PMID: 31783286 DOI: 10.1016/j.jri.2019.102626] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
10 Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med. 2014;20:138-146. [PMID: 24531836 DOI: 10.2119/molmed.2013.00164] [Cited by in Crossref: 160] [Cited by in F6Publishing: 157] [Article Influence: 20.0] [Reference Citation Analysis]
11 Rayavara K, Kurosky A, Stafford SJ, Garg NJ, Brasier AR, Garofalo RP, Hosakote YM. Proinflammatory Effects of Respiratory Syncytial Virus-Induced Epithelial HMGB1 on Human Innate Immune Cell Activation. J Immunol 2018;201:2753-66. [PMID: 30275049 DOI: 10.4049/jimmunol.1800558] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
12 Ge X, Arriazu E, Magdaleno F, Antoine DJ, Dela Cruz R, Theise N, Nieto N. High Mobility Group Box-1 Drives Fibrosis Progression Signaling via the Receptor for Advanced Glycation End Products in Mice. Hepatology 2018;68:2380-404. [PMID: 29774570 DOI: 10.1002/hep.30093] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 9.3] [Reference Citation Analysis]
13 Takayama S, Kawanishi M, Yamauchi K, Tokumitsu D, Kojima H, Masutani T, Iddamalgoda A, Mitsunaga T, Tanaka H. Ellagitannins from Rosa roxburghii suppress poly(I:C)-induced IL-8 production in human keratinocytes. J Nat Med 2021;75:623-32. [PMID: 33830449 DOI: 10.1007/s11418-021-01509-x] [Reference Citation Analysis]
14 Takata K, Takada T, Ito A, Asai M, Tawa M, Saito Y, Ashihara E, Tomimoto H, Kitamura Y, Shimohama S. Microglial Amyloid-β1-40 Phagocytosis Dysfunction Is Caused by High-Mobility Group Box Protein-1: Implications for the Pathological Progression of Alzheimer's Disease. Int J Alzheimers Dis 2012;2012:685739. [PMID: 22645697 DOI: 10.1155/2012/685739] [Cited by in Crossref: 18] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
15 Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, Heuvelmans-Jacobs M, Akira S, Nicklin MJ, Ribeiro-Dias F, van den Berg WB. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest. 2008;118:205-216. [PMID: 18060042 DOI: 10.1172/jci32639] [Cited by in Crossref: 344] [Cited by in F6Publishing: 204] [Article Influence: 24.6] [Reference Citation Analysis]
16 Li LC, Gao J, Li J. Emerging role of HMGB1 in fibrotic diseases. J Cell Mol Med 2014;18:2331-9. [PMID: 25284457 DOI: 10.1111/jcmm.12419] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 6.8] [Reference Citation Analysis]
17 Aneja RK, Tsung A, Sjodin H, Gefter JV, Delude RL, Billiar TR, Fink MP. Preconditioning with high mobility group box 1 (HMGB1) induces lipopolysaccharide (LPS) tolerance. J Leukoc Biol 2008;84:1326-34. [PMID: 18687905 DOI: 10.1189/jlb.0108030] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 3.7] [Reference Citation Analysis]
18 Ibrahim SM, Al-Shorbagy MY, Abdallah DM, El-Abhar HS. Activation of α7 Nicotinic Acetylcholine Receptor Ameliorates Zymosan-Induced Acute Kidney Injury in BALB/c Mice. Sci Rep 2018;8:16814. [PMID: 30429582 DOI: 10.1038/s41598-018-35254-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
19 Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol. 2012;8:195-202. [PMID: 22293756 DOI: 10.1038/nrrheum.2011.222] [Cited by in Crossref: 427] [Cited by in F6Publishing: 425] [Article Influence: 42.7] [Reference Citation Analysis]
20 Wang R, Wu W, Li W, Huang S, Li Z, Liu R, Shan Z, Zhang C, Li W, Wang S. Activation of NLRP3 Inflammasome Promotes Foam Cell Formation in Vascular Smooth Muscle Cells and Atherogenesis Via HMGB1. J Am Heart Assoc 2018;7:e008596. [PMID: 30371306 DOI: 10.1161/JAHA.118.008596] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
21 Malarkey CS, Gustafson CE, Saifee JF, Torres RM, Churchill ME, Janoff EN. Mechanism of Mitochondrial Transcription Factor A Attenuation of CpG-Induced Antibody Production. PLoS One 2016;11:e0157157. [PMID: 27280778 DOI: 10.1371/journal.pone.0157157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
22 Ishii KJ, Coban C, Akira S. Manifold mechanisms of Toll-like receptor-ligand recognition. J Clin Immunol 2005;25:511-21. [PMID: 16380815 DOI: 10.1007/s10875-005-7829-1] [Cited by in Crossref: 74] [Cited by in F6Publishing: 70] [Article Influence: 5.7] [Reference Citation Analysis]
23 Ge WS, Wu JX, Fan JG, Wang YJ, Chen YW. Inhibition of high-mobility group box 1 expression by siRNA in rat hepatic stellate cells. World J Gastroenterol 2011; 17(36): 4090-4098 [PMID: 22039322 DOI: 10.3748/wjg.v17.i36.4090] [Cited by in CrossRef: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
24 Cheng A, Dong Y, Zhu F, Liu Y, Hou FF, Nie J. AGE-LDL activates Toll like receptor 4 pathway and promotes inflammatory cytokines production in renal tubular epithelial cells. Int J Biol Sci 2013;9:94-107. [PMID: 23355795 DOI: 10.7150/ijbs.5246] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
25 Caldeira C, Cunha C, Vaz AR, Falcão AS, Barateiro A, Seixas E, Fernandes A, Brites D. Key Aging-Associated Alterations in Primary Microglia Response to Beta-Amyloid Stimulation. Front Aging Neurosci 2017;9:277. [PMID: 28912710 DOI: 10.3389/fnagi.2017.00277] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 7.8] [Reference Citation Analysis]
26 Fukuzawa N, Petro M, Baldwin WM 3rd, Gudkov AV, Fairchild RL. A TLR5 agonist inhibits acute renal ischemic failure. J Immunol 2011;187:3831-9. [PMID: 21890657 DOI: 10.4049/jimmunol.1003238] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 2.7] [Reference Citation Analysis]
27 Li J, Wang X, Zhang F, Yin H. Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol Ther. 2013;138:441-451. [PMID: 23531543 DOI: 10.1016/j.pharmthera.2013.03.003] [Cited by in Crossref: 75] [Cited by in F6Publishing: 72] [Article Influence: 8.3] [Reference Citation Analysis]
28 Yang J, Chen L, Yang J, Ding J, Rong H, Dong W, Li X. High mobility group box-1 induces migration of vascular smooth muscle cells via TLR4-dependent PI3K/Akt pathway activation. Mol Biol Rep. 2012;39:3361-3367. [PMID: 21698364 DOI: 10.1007/s11033-011-1106-6] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 4.3] [Reference Citation Analysis]
29 Lotze MT, Deisseroth A, Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol 2007;124:1-4. [PMID: 17468050 DOI: 10.1016/j.clim.2007.02.006] [Cited by in Crossref: 75] [Cited by in F6Publishing: 74] [Article Influence: 5.0] [Reference Citation Analysis]
30 Hofner P. Mycobacterium bovis BCG induces high mobility group box 1 protein release from monocytic cells. Acta Microbiol Immunol Hung 2007;54:323-37. [PMID: 18088007 DOI: 10.1556/AMicr.54.2007.4.1] [Reference Citation Analysis]
31 Wolfson RK, Chiang ET, Garcia JG. HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc Res 2011;81:189-97. [PMID: 21146549 DOI: 10.1016/j.mvr.2010.11.010] [Cited by in Crossref: 139] [Cited by in F6Publishing: 134] [Article Influence: 11.6] [Reference Citation Analysis]
32 Liu Y, Yuan Y, Li Y, Zhang J, Xiao G, Vodovotz Y, Billiar TR, Wilson MA, Fan J. Interacting neuroendocrine and innate and acquired immune pathways regulate neutrophil mobilization from bone marrow following hemorrhagic shock. J Immunol 2009;182:572-80. [PMID: 19109190 DOI: 10.4049/jimmunol.182.1.572] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
33 Guo C, Yi H, Yu X, Hu F, Zuo D, Subjeck JR, Wang XY. Absence of scavenger receptor A promotes dendritic cell-mediated cross-presentation of cell-associated antigen and antitumor immune response. Immunol Cell Biol 2012;90:101-8. [PMID: 21383767 DOI: 10.1038/icb.2011.10] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
34 Hayase N, Doi K, Hiruma T, Matsuura R, Hamasaki Y, Noiri E, Nangaku M, Morimura N. Recombinant thrombomodulin prevents acute lung injury induced by renal ischemia-reperfusion injury. Sci Rep 2020;10:289. [PMID: 31937858 DOI: 10.1038/s41598-019-57205-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
35 Li G, Liang X, Lotze MT. HMGB1: The Central Cytokine for All Lymphoid Cells. Front Immunol. 2013;4:68. [PMID: 23519706 DOI: 10.3389/fimmu.2013.00068] [Cited by in Crossref: 67] [Cited by in F6Publishing: 96] [Article Influence: 7.4] [Reference Citation Analysis]
36 Romero R, Chaiworapongsa T, Savasan ZA, Hussein Y, Dong Z, Kusanovic JP, Kim CJ, Hassan SS. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med 2012;25:558-67. [PMID: 22578261 DOI: 10.3109/14767058.2011.599083] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 6.4] [Reference Citation Analysis]
37 Krüger B, Krick S, Dhillon N, Lerner SM, Ames S, Bromberg JS, Lin M, Walsh L, Vella J, Fischereder M. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci USA. 2009;106:3390-3395. [PMID: 19218437 DOI: 10.1073/pnas.0810169106] [Cited by in Crossref: 236] [Cited by in F6Publishing: 220] [Article Influence: 18.2] [Reference Citation Analysis]
38 Muniz-Bongers LR, McClain CB, Saxena M, Bongers G, Merad M, Bhardwaj N. MMP2 and TLRs modulate immune responses in the tumor microenvironment. JCI Insight 2021;6:144913. [PMID: 34032639 DOI: 10.1172/jci.insight.144913] [Reference Citation Analysis]
39 Ioannou K, Derhovanessian E, Tsakiri E, Samara P, Kalbacher H, Voelter W, Trougakos IP, Pawelec G, Tsitsilonis OE. Prothymosin α and a prothymosin α-derived peptide enhance T(H)1-type immune responses against defined HER-2/neu epitopes. BMC Immunol 2013;14:43. [PMID: 24053720 DOI: 10.1186/1471-2172-14-43] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
40 Su Z, Zhang P, Yu Y, Lu H, Liu Y, Ni P, Su X, Wang D, Liu Y, Wang J, Shen H, Xu W, Xu H. HMGB1 Facilitated Macrophage Reprogramming towards a Proinflammatory M1-like Phenotype in Experimental Autoimmune Myocarditis Development. Sci Rep 2016;6:21884. [PMID: 26899795 DOI: 10.1038/srep21884] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 7.8] [Reference Citation Analysis]
41 Weigt SS, Palchevskiy V, Belperio JA. Inflammasomes and IL-1 biology in the pathogenesis of allograft dysfunction. J Clin Invest 2017;127:2022-9. [PMID: 28569730 DOI: 10.1172/JCI93537] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 6.4] [Reference Citation Analysis]
42 Kawano M, Tanaka K, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S, Tsumura H. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett 2016;11:2169-75. [PMID: 26998143 DOI: 10.3892/ol.2016.4175] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
43 Tzeng HP, Fan J, Vallejo JG, Dong JW, Chen X, Houser SR, Mann DL. Negative inotropic effects of high-mobility group box 1 protein in isolated contracting cardiac myocytes. Am J Physiol Heart Circ Physiol 2008;294:H1490-6. [PMID: 18223193 DOI: 10.1152/ajpheart.00910.2007] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 3.0] [Reference Citation Analysis]
44 Ha T, Xia Y, Liu X, Lu C, Liu L, Kelley J, Kalbfleisch J, Kao RL, Williams DL, Li C. Glucan phosphate attenuates myocardial HMGB1 translocation in severe sepsis through inhibiting NF-κB activation. Am J Physiol Heart Circ Physiol 2011;301:H848-55. [PMID: 21642503 DOI: 10.1152/ajpheart.01007.2010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
45 Hansen LM, Gupta D, Joseph G, Weiss D, Taylor WR. The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Lab Invest 2017;97:34-42. [PMID: 27869797 DOI: 10.1038/labinvest.2016.113] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
46 Fan J. TLR Cross-Talk Mechanism of Hemorrhagic Shock-Primed Pulmonary Neutrophil Infiltration. Open Crit Care Med J 2010;2:1-8. [PMID: 20072711 DOI: 10.2174/1874828700902010001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 1.3] [Reference Citation Analysis]
47 Huang QQ, Birkett R, Koessler RE, Cuda CM, Haines GK 3rd, Jin JP, Perlman H, Pope RM. Fas signaling in macrophages promotes chronicity in K/BxN serum-induced arthritis. Arthritis Rheumatol 2014;66:68-77. [PMID: 24431281 DOI: 10.1002/art.38198] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
48 Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. J Neuroinflammation 2015;12:137. [PMID: 26224068 DOI: 10.1186/s12974-015-0360-2] [Cited by in Crossref: 84] [Cited by in F6Publishing: 82] [Article Influence: 12.0] [Reference Citation Analysis]
49 Prince JM, Levy RM, Bartels J, Baratt A, Kane JM 3rd, Lagoa C, Rubin J, Day J, Wei J, Fink MP, Goyert SM, Clermont G, Billiar TR, Vodovotz Y. In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol Med 2006;12:88-96. [PMID: 16953560 DOI: 10.2119/2006-00012.Prince] [Cited by in Crossref: 61] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
50 Li W, Ashok M, Li J, Yang H, Sama AE, Wang H. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS One 2007;2:e1153. [PMID: 17987129 DOI: 10.1371/journal.pone.0001153] [Cited by in Crossref: 94] [Cited by in F6Publishing: 93] [Article Influence: 6.3] [Reference Citation Analysis]
51 Efron PA, Matsumoto T, McAuliffe PF, Scumpia P, Ungaro R, Fujita S, Moldawer LL, Foley D, Hemming AW. Major hepatectomy induces phenotypic changes in circulating dendritic cells and monocytes. J Clin Immunol 2009;29:568-81. [PMID: 19387804 DOI: 10.1007/s10875-009-9291-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
52 Su Z, Yin J, Wang T, Sun Y, Ni P, Ma R, Zhu H, Zheng D, Shen H, Xu W, Xu H. Up-regulated HMGB1 in EAM directly led to collagen deposition by a PKCβ/Erk1/2-dependent pathway: cardiac fibroblast/myofibroblast might be another source of HMGB1. J Cell Mol Med 2014;18:1740-51. [PMID: 24912759 DOI: 10.1111/jcmm.12324] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
53 de Haan JJ, Smeets MB, Pasterkamp G, Arslan F. Danger signals in the initiation of the inflammatory response after myocardial infarction. Mediators Inflamm 2013;2013:206039. [PMID: 24363498 DOI: 10.1155/2013/206039] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 7.8] [Reference Citation Analysis]
54 Demuynck R, Efimova I, Naessens F, Krysko DV. Immunogenic ferroptosis and where to find it? J Immunother Cancer 2021;9:e003430. [PMID: 34903554 DOI: 10.1136/jitc-2021-003430] [Reference Citation Analysis]
55 Fagenson AM, Xu K, Saaoud F, Nanayakkara G, Jhala NC, Liu L, Drummer C, Sun Y, Lau KN, Di Carlo A, Jiang X, Wang H, Karhadkar SS, Yang X. Liver Ischemia Reperfusion Injury, Enhanced by Trained Immunity, Is Attenuated in Caspase 1/Caspase 11 Double Gene Knockout Mice. Pathogens 2020;9:E879. [PMID: 33114395 DOI: 10.3390/pathogens9110879] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
56 Alegre ML, Goldstein DR, Chong AS. Toll-like receptor signaling in transplantation. Curr Opin Organ Transplant 2008;13:358-65. [PMID: 18685330 DOI: 10.1097/MOT.0b013e3283061149] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
57 Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med. 2016;37:99-107. [PMID: 26719855 DOI: 10.3892/ijmm.2015.2410] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 6.3] [Reference Citation Analysis]
58 Zhu S, Li W, Ward MF, Sama AE, Wang H. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets 2010;9:60-72. [PMID: 19906009 DOI: 10.2174/187152810791292872] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
59 Ziegler G, Freyer D, Harhausen D, Khojasteh U, Nietfeld W, Trendelenburg G. Blocking TLR2 in vivo protects against accumulation of inflammatory cells and neuronal injury in experimental stroke. J Cereb Blood Flow Metab 2011;31:757-66. [PMID: 20842165 DOI: 10.1038/jcbfm.2010.161] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 4.6] [Reference Citation Analysis]
60 van Zoelen MA, Achouiti A, van der Poll T. The role of receptor for advanced glycation endproducts (RAGE) in infection. Crit Care 2011;15:208. [PMID: 21457506 DOI: 10.1186/cc9990] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
61 Hammaker D, Boyle DL, Firestein GS. Synoviocyte innate immune responses: TANK-binding kinase-1 as a potential therapeutic target in rheumatoid arthritis. Rheumatology (Oxford) 2012;51:610-8. [PMID: 21613249 DOI: 10.1093/rheumatology/ker154] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.2] [Reference Citation Analysis]
62 Jaiswal MK, Agrawal V, Pamarthy S, Katara GK, Kulshrestha A, Gilman-Sachs A, Beaman KD, Hirsch E. Notch Signaling in Inflammation-Induced Preterm Labor. Sci Rep 2015;5:15221. [PMID: 26472156 DOI: 10.1038/srep15221] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
63 Fujioka M, Nakano T, Hayakawa K, Irie K, Akitake Y, Sakamoto Y, Mishima K, Muroi C, Yonekawa Y, Banno F, Kokame K, Miyata T, Nishio K, Okuchi K, Iwasaki K, Fujiwara M, Siesjö BK. ADAMTS13 gene deletion enhances plasma high-mobility group box1 elevation and neuroinflammation in brain ischemia-reperfusion injury. Neurol Sci 2012;33:1107-15. [PMID: 22212812 DOI: 10.1007/s10072-011-0913-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
64 Saenz R, Messmer B, Futalan D, Tor Y, Larsson M, Daniels G, Esener S, Messmer D. Activity of the HMGB1-derived immunostimulatory peptide Hp91 resides in the helical C-terminal portion and is enhanced by dimerization. Mol Immunol 2014;57:191-9. [PMID: 24172222 DOI: 10.1016/j.molimm.2013.09.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
65 Yamamoto Y, Yamamoto H. RAGE-Mediated Inflammation, Type 2 Diabetes, and Diabetic Vascular Complication. Front Endocrinol (Lausanne) 2013;4:105. [PMID: 23970880 DOI: 10.3389/fendo.2013.00105] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 5.0] [Reference Citation Analysis]
66 Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5-16. [PMID: 25017883 DOI: 10.1016/j.expneurol.2014.01.001] [Cited by in Crossref: 206] [Cited by in F6Publishing: 191] [Article Influence: 25.8] [Reference Citation Analysis]
67 Yeh DW, Huang LR, Chen YW, Huang CF, Chuang TH. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. J Immunol Res 2016;2016:4368101. [PMID: 28116318 DOI: 10.1155/2016/4368101] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
68 Ito M, Hanaoka M, Droma Y, Kobayashi N, Yasuo M, Kitaguchi Y, Horiuchi T, Ikegawa K, Katsuyama Y, Kubo K, Ota M. The association of Toll-like receptor 4 gene polymorphisms with the development of emphysema in Japanese subjects: a case control study. BMC Res Notes 2012;5:36. [PMID: 22251849 DOI: 10.1186/1756-0500-5-36] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
69 Khan F, Niaz K, Maqbool F, Ismail Hassan F, Abdollahi M, Nagulapalli Venkata KC, Nabavi SM, Bishayee A. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. Nutrients 2016;8:E529. [PMID: 27589790 DOI: 10.3390/nu8090529] [Cited by in Crossref: 118] [Cited by in F6Publishing: 98] [Article Influence: 19.7] [Reference Citation Analysis]
70 Bae JS, Rezaie AR. Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood 2011;118:3952-9. [PMID: 21849480 DOI: 10.1182/blood-2011-06-360701] [Cited by in Crossref: 125] [Cited by in F6Publishing: 113] [Article Influence: 11.4] [Reference Citation Analysis]
71 Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J Clin Invest 2008;118:183-94. [PMID: 18079965 DOI: 10.1172/JCI32703] [Cited by in Crossref: 263] [Cited by in F6Publishing: 146] [Article Influence: 18.8] [Reference Citation Analysis]
72 Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors--From microbial recognition to autoimmunity: A comprehensive review. Autoimmun Rev 2016;15:1-8. [PMID: 26299984 DOI: 10.1016/j.autrev.2015.08.009] [Cited by in Crossref: 160] [Cited by in F6Publishing: 138] [Article Influence: 22.9] [Reference Citation Analysis]
73 Dong H, Bullock TN. Metabolic influences that regulate dendritic cell function in tumors. Front Immunol 2014;5:24. [PMID: 24523723 DOI: 10.3389/fimmu.2014.00024] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 5.3] [Reference Citation Analysis]
74 Chen K, Liu M, Liu Y, Wang C, Yoshimura T, Gong W, Le Y, Tessarollo L, Wang JM. Signal relay by CC chemokine receptor 2 (CCR2) and formylpeptide receptor 2 (Fpr2) in the recruitment of monocyte-derived dendritic cells in allergic airway inflammation. J Biol Chem 2013;288:16262-73. [PMID: 23603910 DOI: 10.1074/jbc.M113.450635] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
75 Tang D, Kang R, Xiao W, Wang H, Calderwood SK, Xiao X. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol 2007;179:1236-44. [PMID: 17617616 DOI: 10.4049/jimmunol.179.2.1236] [Cited by in Crossref: 88] [Cited by in F6Publishing: 92] [Article Influence: 5.9] [Reference Citation Analysis]
76 Rose JA, Rabenold JJ, Parast MM, Milstone DS, Abrahams VM, Riley JK. Peptidoglycan induces necrosis and regulates cytokine production in murine trophoblast stem cells. Am J Reprod Immunol 2011;66:209-22. [PMID: 21385270 DOI: 10.1111/j.1600-0897.2011.00986.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
77 Robert SM, Sjodin H, Fink MP, Aneja RK. Preconditioning with high mobility group box 1 (HMGB1) induces lipoteichoic acid (LTA) tolerance. J Immunother 2010;33:663-71. [PMID: 20664360 DOI: 10.1097/CJI.0b013e3181dcd111] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
78 Ferrara JL, Smith CM, Sheets J, Reddy P, Serody JS. Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis. J Clin Invest 2017;127:2441-51. [PMID: 28581444 DOI: 10.1172/JCI90592] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 4.4] [Reference Citation Analysis]
79 Liu A, Dirsch O, Fang H, Sun J, Jin H, Dong W, Dahmen U. HMGB1 in ischemic and non-ischemic liver after selective warm ischemia/reperfusion in rat. Histochem Cell Biol 2011;135:443-52. [DOI: 10.1007/s00418-011-0802-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.2] [Reference Citation Analysis]
80 Balan I, Beattie MC, O'Buckley TK, Aurelian L, Morrow AL. Endogenous Neurosteroid (3α,5α)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci Rep 2019;9:1220. [PMID: 30718548 DOI: 10.1038/s41598-018-37409-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
81 Kim S, Karin M. Role of TLR2-dependent inflammation in metastatic progression. Ann N Y Acad Sci 2011;1217:191-206. [PMID: 21276007 DOI: 10.1111/j.1749-6632.2010.05882.x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 3.8] [Reference Citation Analysis]
82 Zhang W, Wang LW, Wang LK, Li X, Zhang H, Luo LP, Song JC, Gong ZJ. Betaine protects against high-fat-diet-induced liver injury by inhibition of high-mobility group box 1 and Toll-like receptor 4 expression in rats. Dig Dis Sci. 2013;58:3198-3206. [PMID: 23861108 DOI: 10.1007/s10620-013-2775-x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 5.7] [Reference Citation Analysis]
83 Zuckerman ST, Kao WJ. LC/MS identification of 12 intracellular cytoskeletal and inflammatory proteins from monocytes adherent on surface-adsorbed fibronectin-derived peptides. J Biomed Mater Res A 2008;85:513-29. [PMID: 17729253 DOI: 10.1002/jbm.a.31306] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
84 Hwang PF, Porterfield N, Pannell D, Davis TA, Elster EA. Trauma is danger. J Transl Med 2011;9:92. [PMID: 21676213 DOI: 10.1186/1479-5876-9-92] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.7] [Reference Citation Analysis]
85 Grover A, Troudt J, Foster C, Basaraba R, Izzo A. High mobility group box 1 acts as an adjuvant for tuberculosis subunit vaccines. Immunology 2014;142:111-23. [PMID: 24350616 DOI: 10.1111/imm.12236] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
86 Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021;22:7894. [PMID: 34360659 DOI: 10.3390/ijms22157894] [Reference Citation Analysis]
87 Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, Bianchi ME, Wang H, Chu WM. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 2007;110:1970-81. [PMID: 17548579 DOI: 10.1182/blood-2006-09-044776] [Cited by in Crossref: 322] [Cited by in F6Publishing: 316] [Article Influence: 21.5] [Reference Citation Analysis]
88 Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Müller S, Iannacone M, Traversari C, Bianchi ME, Manfredi AA. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 2004;5:825-30. [PMID: 15272298 DOI: 10.1038/sj.embor.7400205] [Cited by in Crossref: 434] [Cited by in F6Publishing: 422] [Article Influence: 24.1] [Reference Citation Analysis]
89 Hyun HW, Ko AR, Kang TC. Mitochondrial Translocation of High Mobility Group Box 1 Facilitates LIM Kinase 2-Mediated Programmed Necrotic Neuronal Death. Front Cell Neurosci 2016;10:99. [PMID: 27147971 DOI: 10.3389/fncel.2016.00099] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
90 Kvivik I, Grimstad T, Jonsson G, Kvaløy JT, Omdal R. Anti-HMGB1 auto-Abs influence fatigue in patients with Crohn's disease. Innate Immun 2021;27:286-93. [PMID: 33940970 DOI: 10.1177/17534259211014252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Yang D, Postnikov YV, Li Y, Tewary P, de la Rosa G, Wei F, Klinman D, Gioannini T, Weiss JP, Furusawa T, Bustin M, Oppenheim JJ. High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J Exp Med 2012;209:157-71. [PMID: 22184635 DOI: 10.1084/jem.20101354] [Cited by in Crossref: 80] [Cited by in F6Publishing: 75] [Article Influence: 7.3] [Reference Citation Analysis]
92 Fonken LK, Frank MG, Kitt MM, D'Angelo HM, Norden DM, Weber MD, Barrientos RM, Godbout JP, Watkins LR, Maier SF. The Alarmin HMGB1 Mediates Age-Induced Neuroinflammatory Priming. J Neurosci 2016;36:7946-56. [PMID: 27466339 DOI: 10.1523/JNEUROSCI.1161-16.2016] [Cited by in Crossref: 69] [Cited by in F6Publishing: 48] [Article Influence: 13.8] [Reference Citation Analysis]
93 Werthmöller N, Frey B, Wunderlich R, Fietkau R, Gaipl US. Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T-cell-dependent manner. Cell Death Dis 2015;6:e1761. [PMID: 25973681 DOI: 10.1038/cddis.2015.129] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 6.9] [Reference Citation Analysis]
94 Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020;9:E1664. [PMID: 32664328 DOI: 10.3390/cells9071664] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
95 Vourc'h M, Roquilly A, Asehnoune K. Trauma-Induced Damage-Associated Molecular Patterns-Mediated Remote Organ Injury and Immunosuppression in the Acutely Ill Patient. Front Immunol 2018;9:1330. [PMID: 29963048 DOI: 10.3389/fimmu.2018.01330] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 9.5] [Reference Citation Analysis]
96 Aucott H, Sowinska A, Harris HE, Lundback P. Ligation of free HMGB1 to TLR2 in the absence of ligand is negatively regulated by the C-terminal tail domain. Mol Med 2018;24:19. [PMID: 30134807 DOI: 10.1186/s10020-018-0021-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
97 Urbonaviciute V, Fürnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med. 2008;205:3007-3018. [PMID: 19064698 DOI: 10.1084/jem.20081165] [Cited by in Crossref: 359] [Cited by in F6Publishing: 366] [Article Influence: 25.6] [Reference Citation Analysis]
98 Akirav EM, Preston-Hurlburt P, Garyu J, Henegariu O, Clynes R, Schmidt AM, Herold KC. RAGE expression in human T cells: a link between environmental factors and adaptive immune responses. PLoS One. 2012;7:e34698. [PMID: 22509345 DOI: 10.1371/journal.pone.0034698] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 5.6] [Reference Citation Analysis]
99 Jiang L, Shao Y, Tian Y, Ouyang C, Wang X. Nuclear Alarmin Cytokines in Inflammation. J Immunol Res 2020;2020:7206451. [PMID: 33344656 DOI: 10.1155/2020/7206451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
100 Tun HW, Marlow LA, von Roemeling CA, Cooper SJ, Kreinest P, Wu K, Luxon BA, Sinha M, Anastasiadis PZ, Copland JA. Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One 2010;5:e10696. [PMID: 20502531 DOI: 10.1371/journal.pone.0010696] [Cited by in Crossref: 109] [Cited by in F6Publishing: 112] [Article Influence: 9.1] [Reference Citation Analysis]
101 Grinnan D, Farkas L. A Novel Peptide for Immunomodulation in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2019;199:1460-1. [PMID: 30973752 DOI: 10.1164/rccm.201902-0388ED] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
102 Hsu LW, Chen CL, Nakano T, Lai CY, Chiang KC, Lin YC, Kao YH, Chen SH, Goto T, Sung WC, Yang CH, Cheng YF, Jawan B, Chiu KW, Goto S. The role of a nuclear protein, histone H1, on signalling pathways for the maturation of dendritic cells. Clin Exp Immunol 2008;152:576-84. [PMID: 18435805 DOI: 10.1111/j.1365-2249.2008.03652.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
103 Davé SH, Tilstra JS, Matsuoka K, Li F, DeMarco RA, Beer-Stolz D, Sepulveda AR, Fink MP, Lotze MT, Plevy SE. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J Leukoc Biol. 2009;86:633-643. [PMID: 19454652 DOI: 10.1189/jlb.1008662] [Cited by in Crossref: 119] [Cited by in F6Publishing: 124] [Article Influence: 9.2] [Reference Citation Analysis]
104 Zhang Y, Zhao ZF, Han DW, Wang F, Xu RL, Liu MS. Rapamycin-induced inhibition of Janus kinase/signal transducer and activator of transcription pathway affects expression of high-mobility group box 1 in rats with acute liver injury. Shijie Huaren Xiaohua Zazhi 2006; 14(19): 1916-1920 [DOI: 10.11569/wcjd.v14.i19.1916] [Cited by in CrossRef: 1] [Article Influence: 0.1] [Reference Citation Analysis]
105 Yoshizaki A, Iwata Y, Komura K, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Tedder TF, Sato S. CD19 regulates skin and lung fibrosis via Toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol 2008;172:1650-63. [PMID: 18467694 DOI: 10.2353/ajpath.2008.071049] [Cited by in Crossref: 146] [Cited by in F6Publishing: 135] [Article Influence: 10.4] [Reference Citation Analysis]
106 Tong Y, Ding XB, Chen ZX, Jin SQ, Zhao X, Wang X, Mei SY, Jiang X, Wang L, Li Q. WISP1 mediates hepatic warm ischemia reperfusion injury via TLR4 signaling in mice. Sci Rep. 2016;6:20141. [PMID: 26821752 DOI: 10.1038/srep20141] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
107 Janko C, Filipović M, Munoz LE, Schorn C, Schett G, Ivanović-Burmazović I, Herrmann M. Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 2014;20:1075-85. [PMID: 23373897 DOI: 10.1089/ars.2013.5179] [Cited by in Crossref: 96] [Cited by in F6Publishing: 95] [Article Influence: 10.7] [Reference Citation Analysis]
108 Csak T, Velayudham A, Hritz I, Petrasek J, Levin I, Lippai D, Catalano D, Mandrekar P, Dolganiuc A, Kurt-Jones E, Szabo G. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am J Physiol Gastrointest Liver Physiol. 2011;300:G433-G441. [PMID: 21233280 DOI: 10.1152/ajpgi.00163.2009] [Cited by in Crossref: 152] [Cited by in F6Publishing: 156] [Article Influence: 13.8] [Reference Citation Analysis]
109 Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez-Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J Biol Chem 2014;289:2457-68. [PMID: 24307174 DOI: 10.1074/jbc.M113.521161] [Cited by in Crossref: 151] [Cited by in F6Publishing: 94] [Article Influence: 16.8] [Reference Citation Analysis]
110 Krysko DV, Kaczmarek A, Krysko O, Heyndrickx L, Woznicki J, Bogaert P, Cauwels A, Takahashi N, Magez S, Bachert C, Vandenabeele P. TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death Differ 2011;18:1316-25. [PMID: 21311566 DOI: 10.1038/cdd.2011.4] [Cited by in Crossref: 81] [Cited by in F6Publishing: 71] [Article Influence: 7.4] [Reference Citation Analysis]
111 Nunes PR, Romao-Veiga M, Matias ML, Ribeiro VR, de Oliveira L, Peracoli JC, Terezinha S Peracoli M. Vitamin D decreases expression of NLRP1 and NLRP3 ninflammasomes in placental explants from women with preeclampsia cultured with hydrogen peroxide. Hum Immunol 2021:S0198-8859(21)00247-0. [PMID: 34696918 DOI: 10.1016/j.humimm.2021.10.002] [Reference Citation Analysis]
112 Bevelander M, Mayette J, Whittaker LA, Paveglio SA, Jones CC, Robbins J, Hemenway D, Akira S, Uematsu S, Poynter ME. Nitrogen dioxide promotes allergic sensitization to inhaled antigen. J Immunol 2007;179:3680-8. [PMID: 17785804 DOI: 10.4049/jimmunol.179.6.3680] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 2.9] [Reference Citation Analysis]
113 de Abreu da Silva IC, Carneiro VC, Maciel Rde M, da Costa RF, Furtado DR, de Oliveira FM, da Silva-Neto MA, Rumjanek FD, Fantappié MR. CK2 phosphorylation of Schistosoma mansoni HMGB1 protein regulates its cellular traffic and secretion but not its DNA transactions. PLoS One 2011;6:e23572. [PMID: 21887276 DOI: 10.1371/journal.pone.0023572] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
114 Qing DY, Conegliano D, Shashaty MG, Seo J, Reilly JP, Worthen GS, Huh D, Meyer NJ, Mangalmurti NS. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. Am J Respir Crit Care Med 2014;190:1243-54. [PMID: 25329368 DOI: 10.1164/rccm.201406-1095OC] [Cited by in Crossref: 59] [Cited by in F6Publishing: 47] [Article Influence: 8.4] [Reference Citation Analysis]
115 Jiang H, Duan J, Xu K, Zhang W. Resveratrol protects against asthma-induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF-κB pathway. Exp Ther Med 2019;18:459-66. [PMID: 31258683 DOI: 10.3892/etm.2019.7594] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
116 Umahara T, Uchihara T, Hirao K, Shimizu S, Hashimoto T, Akimoto J, Kohno M, Hanyu H. Frontotemporal dementia-associated protein "phosphorylated TDP-43" localizes to atherosclerotic lesions of human carotid and main cerebral arteries. Histol Histopathol 2020;35:159-67. [PMID: 31259382 DOI: 10.14670/HH-18-140] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
117 Hermann JK, Capadona JR. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng 2018;46:341-67. [PMID: 30806249 DOI: 10.1615/CritRevBiomedEng.2018027166] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
118 Yang, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev 2017;280:41-56. [PMID: 29027222 DOI: 10.1111/imr.12577] [Cited by in Crossref: 130] [Cited by in F6Publishing: 129] [Article Influence: 32.5] [Reference Citation Analysis]
119 Wang H, Zhu S, Zhou R, Li W, Sama AE. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med 2008;10:e32. [PMID: 18980707 DOI: 10.1017/S1462399408000884] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 5.4] [Reference Citation Analysis]
120 Hofner P, Seprényi G, Miczák A, Buzás K, Gyulai Z, Medzihradszky KF, Rouhiainen A, Rauvala H, Mándi Y. High mobility group box 1 protein induction by Mycobacterium bovis BCG. Mediators Inflamm 2007;2007:53805. [PMID: 18288272 DOI: 10.1155/2007/53805] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.4] [Reference Citation Analysis]
121 Ma KC, Schenck EJ, Pabon MA, Choi AMK. The Role of Danger Signals in the Pathogenesis and Perpetuation of Critical Illness. Am J Respir Crit Care Med 2018;197:300-9. [PMID: 28977759 DOI: 10.1164/rccm.201612-2460PP] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
122 Mittal D, Saccheri F, Vénéreau E, Pusterla T, Bianchi ME, Rescigno M. TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J 2010;29:2242-52. [PMID: 20526283 DOI: 10.1038/emboj.2010.94] [Cited by in Crossref: 116] [Cited by in F6Publishing: 112] [Article Influence: 9.7] [Reference Citation Analysis]
123 Słotwiński R, Dąbrowska A, Lech G, Słodkowski M, Słotwińska SM. Gene expression disorders of innate antibacterial signaling pathway in pancreatic cancer patients: implications for leukocyte dysfunction and tumor progression. Cent Eur J Immunol 2014;39:498-507. [PMID: 26155170 DOI: 10.5114/ceji.2014.47736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
124 Min HJ, Ko EA, Wu J, Kim ES, Kwon MK, Kwak MS, Choi JE, Lee JE, Shin JS. Chaperone-like activity of high-mobility group box 1 protein and its role in reducing the formation of polyglutamine aggregates. J Immunol 2013;190:1797-806. [PMID: 23303669 DOI: 10.4049/jimmunol.1202472] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
125 Krieg SM, Voigt F, Knuefermann P, Kirschning CJ, Plesnila N, Ringel F. Decreased Secondary Lesion Growth and Attenuated Immune Response after Traumatic Brain Injury in Tlr2/4-/- Mice. Front Neurol 2017;8:455. [PMID: 28912751 DOI: 10.3389/fneur.2017.00455] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
126 Mkaddem SB, Bens M, Vandewalle A. Differential activation of Toll-like receptor-mediated apoptosis induced by hypoxia. Oncotarget 2010;1:741-50. [PMID: 21321383 DOI: 10.18632/oncotarget.101203] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
127 Weber MD, Frank MG, Sobesky JL, Watkins LR, Maier SF. Blocking toll-like receptor 2 and 4 signaling during a stressor prevents stress-induced priming of neuroinflammatory responses to a subsequent immune challenge. Brain Behav Immun 2013;32:112-21. [PMID: 23500798 DOI: 10.1016/j.bbi.2013.03.004] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 6.1] [Reference Citation Analysis]
128 Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut. 2009;58:704-720. [PMID: 19359436 DOI: 10.1136/gut.2008.156307] [Cited by in Crossref: 225] [Cited by in F6Publishing: 226] [Article Influence: 17.3] [Reference Citation Analysis]
129 Silvis MJM, Kaffka Genaamd Dengler SE, Odille CA, Mishra M, van der Kaaij NP, Doevendans PA, Sluijter JPG, de Kleijn DPV, de Jager SCA, Bosch L, van Hout GPJ. Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Front Immunol 2020;11:599511. [PMID: 33363540 DOI: 10.3389/fimmu.2020.599511] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
130 Malarkey CS, Churchill ME. The high mobility group box: The ultimate utility player of a cell. Trends Biochem Sci. 2012;37:553-562. [PMID: 23153957 DOI: 10.1016/j.tibs.2012.09.003] [Cited by in Crossref: 114] [Cited by in F6Publishing: 106] [Article Influence: 11.4] [Reference Citation Analysis]
131 Doi K. Role of kidney injury in sepsis. J Intensive Care 2016;4:17. [PMID: 27011788 DOI: 10.1186/s40560-016-0146-3] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
132 Mohanty SK, Donnelly B, Temple H, Ortiz-Perez A, Mowery S, Lobeck I, Dupree P, Poling HM, McNeal M, Mourya R, Jenkins T, Bansal R, Bezerra J, Tiao G. High Mobility Group Box 1 Release by Cholangiocytes Governs Biliary Atresia Pathogenesis and Correlates With Increases in Afflicted Infants. Hepatology 2021;74:864-78. [PMID: 33559243 DOI: 10.1002/hep.31745] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Kigerl KA, Lai W, Wallace LM, Yang H, Popovich PG. High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation. Brain Behav Immun 2018;72:22-33. [PMID: 29175543 DOI: 10.1016/j.bbi.2017.11.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
134 Yang H, Wang B, Wang T, Xu L, He C, Wen H, Yan J, Su H, Zhu X. Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS One 2014;9:e109980. [PMID: 25299052 DOI: 10.1371/journal.pone.0109980] [Cited by in Crossref: 73] [Cited by in F6Publishing: 70] [Article Influence: 9.1] [Reference Citation Analysis]
135 Yang QW, Wang JZ, Li JC, Zhou Y, Zhong Q, Lu FL, Xiang J. High-mobility group protein box-1 and its relevance to cerebral ischemia. J Cereb Blood Flow Metab 2010;30:243-54. [PMID: 19794402 DOI: 10.1038/jcbfm.2009.202] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 4.8] [Reference Citation Analysis]
136 Fink MP. Bench-to-bedside review: High-mobility group box 1 and critical illness. Crit Care 2007;11:229. [PMID: 17903310 DOI: 10.1186/cc6088] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 2.6] [Reference Citation Analysis]
137 Ross BX, Choi J, Yao J, Hager HM, Abcouwer SF, Zacks DN. Loss of High-Mobility Group Box 1 (HMGB1) Protein in Rods Accelerates Rod Photoreceptor Degeneration After Retinal Detachment. Invest Ophthalmol Vis Sci 2020;61:50. [PMID: 32460314 DOI: 10.1167/iovs.61.5.50] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
138 Hosakote YM, Brasier AR, Casola A, Garofalo RP, Kurosky A. Respiratory Syncytial Virus Infection Triggers Epithelial HMGB1 Release as a Damage-Associated Molecular Pattern Promoting a Monocytic Inflammatory Response. J Virol 2016;90:9618-31. [PMID: 27535058 DOI: 10.1128/JVI.01279-16] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
139 Lee W, Ku SK, Park EJ, Na DH, Kim KM, Bae JS. Exendin-4 inhibits HMGB1-induced inflammatory responses in HUVECs and in murine polymicrobial sepsis. Inflammation 2014;37:1876-88. [PMID: 24826914 DOI: 10.1007/s10753-014-9919-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
140 Gribar SC, Richardson WM, Sodhi CP, Hackam DJ. No longer an innocent bystander: epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med 2008;14:645-59. [PMID: 18584047 DOI: 10.2119/2008-00035.Gribar] [Cited by in Crossref: 117] [Cited by in F6Publishing: 62] [Article Influence: 8.4] [Reference Citation Analysis]
141 Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN Neurol 2012;2012:701950. [PMID: 23097717 DOI: 10.5402/2012/701950] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 4.7] [Reference Citation Analysis]
142 Cuzzone DA, Albano NJ, Aschen SZ, Ghanta S, Mehrara BJ. Decellularized Lymph Nodes as Scaffolds for Tissue Engineered Lymph Nodes. Lymphat Res Biol 2015;13:186-94. [PMID: 25144673 DOI: 10.1089/lrb.2013.0054] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
143 Norris PC, Dennis EA. A lipidomic perspective on inflammatory macrophage eicosanoid signaling. Adv Biol Regul 2014;54:99-110. [PMID: 24113376 DOI: 10.1016/j.jbior.2013.09.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 5.0] [Reference Citation Analysis]
144 Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, Johnson JL, Sauaia A, Silliman CC, Banerjee A, Abraham E. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock 2009;32:17-22. [PMID: 19533845 DOI: 10.1097/shk.0b013e3181997173] [Cited by in Crossref: 123] [Cited by in F6Publishing: 89] [Article Influence: 9.5] [Reference Citation Analysis]
145 Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 2010;16:413-9. [PMID: 20348922 DOI: 10.1038/nm.2127] [Cited by in Crossref: 553] [Cited by in F6Publishing: 532] [Article Influence: 46.1] [Reference Citation Analysis]
146 Hosmane S, Tegenge MA, Rajbhandari L, Uapinyoying P, Kumar NG, Thakor N, Venkatesan A. Toll/interleukin-1 receptor domain-containing adapter inducing interferon-β mediates microglial phagocytosis of degenerating axons. J Neurosci. 2012;32:7745-7757. [PMID: 22649252 DOI: 10.1523/JNEUROSCI.0203-12.2012] [Cited by in Crossref: 67] [Cited by in F6Publishing: 48] [Article Influence: 6.7] [Reference Citation Analysis]
147 Li J, Csakai A, Jin J, Zhang F, Yin H. Therapeutic Developments Targeting Toll-like Receptor-4-Mediated Neuroinflammation. ChemMedChem. 2016;11:154-165. [PMID: 26136385 DOI: 10.1002/cmdc.201500188] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 6.0] [Reference Citation Analysis]
148 Zhang QB, Jia QA, Wang H, Hu CX, Sun D, Jiang RD, Zhang ZL. High-mobility group protein box1 expression correlates with peritumoral macrophage infiltration and unfavorable prognosis in patients with hepatocellular carcinoma and cirrhosis. BMC Cancer 2016;16:880. [PMID: 27836008 DOI: 10.1186/s12885-016-2883-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
149 Feng PP, Deng P, Liu LH, Ai Q, Yin J, Liu Z, Wang GM. Electroacupuncture Alleviates Postoperative Cognitive Dysfunction in Aged Rats by Inhibiting Hippocampal Neuroinflammation Activated via Microglia/TLRs Pathway. Evid Based Complement Alternat Med 2017;2017:6421260. [PMID: 28684969 DOI: 10.1155/2017/6421260] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
150 Pascual M, Montesinos J, Montagud-Romero S, Forteza J, Rodríguez-Arias M, Miñarro J, Guerri C. TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders. J Neuroinflammation 2017;14:145. [PMID: 28738878 DOI: 10.1186/s12974-017-0918-2] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
151 Knapp DJ, Harper KM, Whitman BA, Zimomra Z, Breese GR. Stress and Withdrawal from Chronic Ethanol Induce Selective Changes in Neuroimmune mRNAs in Differing Brain Sites. Brain Sci 2016;6:E25. [PMID: 27472367 DOI: 10.3390/brainsci6030025] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
152 Riddell JR, Wang XY, Minderman H, Gollnick SO. Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J Immunol. 2010;184:1022-1030. [PMID: 20018613 DOI: 10.4049/jimmunol.0901945] [Cited by in Crossref: 151] [Cited by in F6Publishing: 144] [Article Influence: 11.6] [Reference Citation Analysis]
153 Yu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol. 2015;6:93. [PMID: 25904867 DOI: 10.3389/fphys.2015.00093] [Cited by in Crossref: 109] [Cited by in F6Publishing: 118] [Article Influence: 15.6] [Reference Citation Analysis]
154 Kamo N, Ke B, Ghaffari AA, Shen XD, Busuttil RW, Cheng G, Kupiec-Weglinski JW. ASC/caspase-1/IL-1β signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology 2013;58:351-62. [PMID: 23408710 DOI: 10.1002/hep.26320] [Cited by in Crossref: 115] [Cited by in F6Publishing: 113] [Article Influence: 12.8] [Reference Citation Analysis]
155 Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5:36-44. [PMID: 23774844 DOI: 10.4161/viru.25436] [Cited by in Crossref: 198] [Cited by in F6Publishing: 186] [Article Influence: 22.0] [Reference Citation Analysis]
156 Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Mao X. Glycyrrhizin inhibits porcine epidemic diarrhea virus infection and attenuates the proinflammatory responses by inhibition of high mobility group box-1 protein. Arch Virol 2017;162:1467-76. [PMID: 28175983 DOI: 10.1007/s00705-017-3259-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
157 Morrell ED, Kellum JA, Pastor-Soler NM, Hallows KR. Septic acute kidney injury: molecular mechanisms and the importance of stratification and targeting therapy. Crit Care 2014;18:501. [PMID: 25575158 DOI: 10.1186/s13054-014-0501-5] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
158 Sun L, Li M, Ma X, Feng H, Song J, Lv C, He Y. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner. J Neuroinflammation 2017;14:231. [PMID: 29178911 DOI: 10.1186/s12974-017-1008-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
159 Waki K, Yamada A. Blockade of high mobility group box 1 augments antitumor T-cell response induced by peptide vaccination as a co-adjuvant. Cancer Sci 2016;107:1721-9. [PMID: 27717108 DOI: 10.1111/cas.13084] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
160 Chen XL, Sun L, Guo F, Wang F, Liu S, Liang X, Wang RS, Wang YJ, Sun YX. High-mobility group box-1 induces proinflammatory cytokines production of Kupffer cells through TLRs-dependent signaling pathway after burn injury. PLoS One. 2012;7:e50668. [PMID: 23209806 DOI: 10.1371/journal.] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
161 Lv B, Wang H, Tang Y, Fan Z, Xiao X, Chen F. High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1. Thromb Haemost 2009;102:352-9. [PMID: 19652887 DOI: 10.1160/TH08-11-0759] [Cited by in Crossref: 38] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
162 Vliegenthart AD, Antoine DJ, Dear JW. Target biomarker profile for the clinical management of paracetamol overdose. Br J Clin Pharmacol 2015;80:351-62. [PMID: 26076366 DOI: 10.1111/bcp.12699] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
163 Melki MT, Saïdi H, Dufour A, Olivo-Marin JC, Gougeon ML. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1. PLoS Pathog 2010;6:e1000862. [PMID: 20419158 DOI: 10.1371/journal.ppat.1000862] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 4.0] [Reference Citation Analysis]
164 Lin L, Knowlton AA. Innate immunity and cardiomyocytes in ischemic heart disease. Life Sci 2014;100:1-8. [PMID: 24486305 DOI: 10.1016/j.lfs.2014.01.062] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 5.9] [Reference Citation Analysis]
165 Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 2012;32:2657-66. [PMID: 22357850 DOI: 10.1523/JNEUROSCI.4837-11.2012] [Cited by in Crossref: 109] [Cited by in F6Publishing: 83] [Article Influence: 10.9] [Reference Citation Analysis]
166 Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, Lu B, Chavan S, Rosas-Ballina M, Al-Abed Y. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci USA. 2010;107:11942-11947. [PMID: 20547845 DOI: 10.1073/pnas.1003893107] [Cited by in Crossref: 513] [Cited by in F6Publishing: 509] [Article Influence: 42.8] [Reference Citation Analysis]
167 Hu Z, Wang X, Gong L, Wu G, Peng X, Tang X. Role of high-mobility group box 1 protein in inflammatory bowel disease. Inflamm Res 2015;64:557-63. [PMID: 26077468 DOI: 10.1007/s00011-015-0841-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
168 Liu H, Innamarato PP, Kodumudi K, Weber A, Nemoto S, Robinson JL, Crago G, McCardle T, Royster E, Sarnaik AA, Pilon-Thomas S. Intralesional rose bengal in melanoma elicits tumor immunity via activation of dendritic cells by the release of high mobility group box 1. Oncotarget 2016;7:37893-905. [PMID: 27177220 DOI: 10.18632/oncotarget.9247] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
169 Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L, Klune JR, Zlotnicki J, Billiar T, Tsung A. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285:39888-39897. [PMID: 20937823 DOI: 10.1074/jbc.m110.128348] [Cited by in Crossref: 160] [Cited by in F6Publishing: 100] [Article Influence: 13.3] [Reference Citation Analysis]
170 Teng SX, Katz PS, Maxi JK, Mayeux JP, Gilpin NW, Molina PE. Alcohol exposure after mild focal traumatic brain injury impairs neurological recovery and exacerbates localized neuroinflammation. Brain Behav Immun 2015;45:145-56. [PMID: 25489880 DOI: 10.1016/j.bbi.2014.11.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
171 Ramasamy R, Yan SF, Schmidt AM. Stopping the primal RAGE reaction in myocardial infarction: capturing adaptive responses to heal the heart? Circulation. 2008;117:3165-3167. [PMID: 18574057 DOI: 10.1161/CIRCULATIONAHA.108.784397] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
172 Tynan GA, McNaughton A, Jarnicki A, Tsuji T, Lavelle EC. Polymyxin B inadequately quenches the effects of contaminating lipopolysaccharide on murine dendritic cells. PLoS One 2012;7:e37261. [PMID: 22624003 DOI: 10.1371/journal.pone.0037261] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
173 Deng H, Wang C, Chang DY, Hu N, Chen M, Zhao MH. High mobility group box-1 contributes to anti-myeloperoxidase antibody-induced glomerular endothelial cell injury through a moesin-dependent route. Arthritis Res Ther 2017;19:125. [PMID: 28587670 DOI: 10.1186/s13075-017-1339-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
174 Li X, Liu HC, Yao QY, Xu BL, Zhang SC, Tu CT. Quercetin Protects Mice from ConA-Induced Hepatitis by Inhibiting HMGB1-TLR Expression and Down-Regulating the Nuclear Factor Kappa B Pathway. Inflammation 2016;39:96-106. [PMID: 26267064 DOI: 10.1007/s10753-015-0227-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
175 Ogier-Denis E, Mkaddem SB, Vandewalle A. NOX enzymes and Toll-like receptor signaling. Semin Immunopathol. 2008;30:291-300. [PMID: 18493762 DOI: 10.1007/s00281-008-0120-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 70] [Article Influence: 5.2] [Reference Citation Analysis]
176 Wagner S, Ngezahayo A, Murua Escobar H, Nolte I. Role of miRNA let-7 and its major targets in prostate cancer. Biomed Res Int 2014;2014:376326. [PMID: 25276782 DOI: 10.1155/2014/376326] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 3.4] [Reference Citation Analysis]
177 Dragomir AC, Laskin JD, Laskin DL. Macrophage activation by factors released from acetaminophen-injured hepatocytes: potential role of HMGB1. Toxicol Appl Pharmacol. 2011;253:170-177. [PMID: 21513726 DOI: 10.1016/j.taap.2011.04.003] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 5.0] [Reference Citation Analysis]
178 Martinotti S, Patrone M, Ranzato E. Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. Immunotargets Ther. 2015;4:101-109. [PMID: 27471716 DOI: 10.2147/itt.s58064] [Cited by in Crossref: 24] [Cited by in F6Publishing: 48] [Article Influence: 3.4] [Reference Citation Analysis]
179 Li YT, Ye JZ, Lv LX, Xu H, Yang LY, Jiang XW, Wu WR, Shi D, Fang DQ, Bian XY, Wang KC, Wang QQ, Xie JJ, Lu YM, Li LJ. Pretreatment With Bacillus cereus Preserves Against D-Galactosamine-Induced Liver Injury in a Rat Model. Front Microbiol 2019;10:1751. [PMID: 31417535 DOI: 10.3389/fmicb.2019.01751] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
180 Wang W, Wu L, Li J, Ji J, Chen K, Yu Q, Li S, Feng J, Liu T, Zhang J, Chen J, Zhou Y, Mao Y, Wang F, Dai W, Fan X, Guo C, Wu J. Alleviation of Hepatic Ischemia Reperfusion Injury by Oleanolic Acid Pretreating via Reducing HMGB1 Release and Inhibiting Apoptosis and Autophagy. Mediators Inflamm. 2019;2019:3240713. [PMID: 31316298 DOI: 10.1155/2019/3240713] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
181 Beaman KD, Jaiswal MK, Dambaeva S, Gilman-Sachs A. Future directions of clinical laboratory evaluation of pregnancy. Cell Mol Immunol 2014;11:582-8. [PMID: 25042633 DOI: 10.1038/cmi.2014.62] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
182 Tada Y, Koarada S, Morito F, Mitamura M, Inoue H, Suematsu R, Ohta A, Miyake K, Nagasawa K. Toll-like receptor homolog RP105 modulates the antigen-presenting cell function and regulates the development of collagen-induced arthritis. Arthritis Res Ther. 2008;10:R121. [PMID: 18847495 DOI: 10.1186/ar2529] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.2] [Reference Citation Analysis]
183 Borde C, Barnay-Verdier S, Gaillard C, Hocini H, Maréchal V, Gozlan J. Stepwise release of biologically active HMGB1 during HSV-2 infection. PLoS One 2011;6:e16145. [PMID: 21283827 DOI: 10.1371/journal.pone.0016145] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
184 Sharma J, Li Q, Mishra BB, Georges MJ, Teale JM. Vaccination with an attenuated strain of Francisella novicida prevents T-cell depletion and protects mice infected with the wild-type strain from severe sepsis. Infect Immun 2009;77:4314-26. [PMID: 19635830 DOI: 10.1128/IAI.00654-09] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
185 Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006;6:823-35. [PMID: 17063184 DOI: 10.1038/nri1957] [Cited by in Crossref: 763] [Cited by in F6Publishing: 724] [Article Influence: 47.7] [Reference Citation Analysis]
186 Guiteras R, Flaquer M, Cruzado JM. Macrophage in chronic kidney disease. Clin Kidney J 2016;9:765-71. [PMID: 27994852 DOI: 10.1093/ckj/sfw096] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 9.7] [Reference Citation Analysis]
187 Elfeky M, Kaede R, Okamatsu-Ogura Y, Kimura K. Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells. Mediators Inflamm 2016;2016:5701959. [PMID: 27313399 DOI: 10.1155/2016/5701959] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
188 Vogel S, Chatterjee M, Metzger K, Borst O, Geisler T, Seizer P, Müller I, Mack A, Schumann S, Bühring HJ, Lang F, Sorg RV, Langer H, Gawaz M. Activated platelets interfere with recruitment of mesenchymal stem cells to apoptotic cardiac cells via high mobility group box 1/Toll-like receptor 4-mediated down-regulation of hepatocyte growth factor receptor MET. J Biol Chem 2014;289:11068-82. [PMID: 24567328 DOI: 10.1074/jbc.M113.530287] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
189 Bhagwani A, Thompson AAR, Farkas L. When Innate Immunity Meets Angiogenesis-The Role of Toll-Like Receptors in Endothelial Cells and Pulmonary Hypertension. Front Med (Lausanne) 2020;7:352. [PMID: 32850883 DOI: 10.3389/fmed.2020.00352] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
190 Hong J, Cho IH, Kwak KI, Suh EC, Seo J, Min HJ, Choi SY, Kim CH, Park SH, Jo EK, Lee S, Lee KE, Lee SJ. Microglial Toll-like receptor 2 contributes to kainic acid-induced glial activation and hippocampal neuronal cell death. J Biol Chem 2010;285:39447-57. [PMID: 20923777 DOI: 10.1074/jbc.M110.132522] [Cited by in Crossref: 47] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
191 Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139-162. [PMID: 21219181 DOI: 10.1146/annurev-immunol-030409-101323] [Cited by in Crossref: 881] [Cited by in F6Publishing: 852] [Article Influence: 80.1] [Reference Citation Analysis]
192 Li Y, Xiang M, Yuan Y, Xiao G, Zhang J, Jiang Y, Vodovotz Y, Billiar TR, Wilson MA, Fan J. Hemorrhagic shock augments lung endothelial cell activation: role of temporal alterations of TLR4 and TLR2. Am J Physiol Regul Integr Comp Physiol 2009;297:R1670-80. [PMID: 19828841 DOI: 10.1152/ajpregu.00445.2009] [Cited by in Crossref: 50] [Cited by in F6Publishing: 56] [Article Influence: 3.8] [Reference Citation Analysis]
193 Robinson AP, Caldis MW, Harp CT, Goings GE, Miller SD. High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis. J Autoimmun 2013;43:32-43. [PMID: 23514872 DOI: 10.1016/j.jaut.2013.02.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 4.2] [Reference Citation Analysis]
194 Clynes R, Herold K, Schmidt AM. RAGE: exacting a toll on the host in response to polymicrobial sepsis and Listeria monocytogenes. Crit Care 2007;11:183. [PMID: 18190725 DOI: 10.1186/cc6193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
195 Zhou H, Ji X, Wu Y, Xuan J, Qi Z, Shen L, Lan L, Li Q, Yin Z, Li Z, Zhao Z. A dual-role of Gu-4 in suppressing HMGB1 secretion and blocking HMGB1 pro-inflammatory activity during inflammation. PLoS One 2014;9:e89634. [PMID: 24603876 DOI: 10.1371/journal.pone.0089634] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
196 Wang M, Gauthier A, Daley L, Dial K, Wu J, Woo J, Lin M, Ashby C, Mantell LL. The Role of HMGB1, a Nuclear Damage-Associated Molecular Pattern Molecule, in the Pathogenesis of Lung Diseases. Antioxid Redox Signal 2019;31:954-93. [PMID: 31184204 DOI: 10.1089/ars.2019.7818] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
197 Xiang M, Fan J, Fan J. Association of Toll-like receptor signaling and reactive oxygen species: a potential therapeutic target for posttrauma acute lung injury. Mediators Inflamm 2010;2010:916425. [PMID: 20706658 DOI: 10.1155/2010/916425] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 3.4] [Reference Citation Analysis]
198 Wolff CH. Innate immunity and the pathogenicity of inhaled microbial particles. Int J Biol Sci 2011;7:261-8. [PMID: 21448336 DOI: 10.7150/ijbs.7.261] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
199 Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med. 2008;14:476-484. [PMID: 18431461 DOI: 10.2119/2008-00034.klune] [Cited by in Crossref: 509] [Cited by in F6Publishing: 304] [Article Influence: 36.4] [Reference Citation Analysis]
200 Herum KM, Lunde IG, McCulloch AD, Christensen G. The Soft- and Hard-Heartedness of Cardiac Fibroblasts: Mechanotransduction Signaling Pathways in Fibrosis of the Heart. J Clin Med 2017;6:E53. [PMID: 28534817 DOI: 10.3390/jcm6050053] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 13.6] [Reference Citation Analysis]
201 Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, Bianchi ME. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol. 2007;179:33-40. [PMID: 17923528 DOI: 10.1083/jcb.200704015] [Cited by in Crossref: 196] [Cited by in F6Publishing: 194] [Article Influence: 14.0] [Reference Citation Analysis]
202 Zhao H, Alam A, Soo AP, George AJT, Ma D. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond. EBioMedicine 2018;28:31-42. [PMID: 29398595 DOI: 10.1016/j.ebiom.2018.01.025] [Cited by in Crossref: 73] [Cited by in F6Publishing: 62] [Article Influence: 18.3] [Reference Citation Analysis]
203 Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol 2015;6:14. [PMID: 25674088 DOI: 10.3389/fimmu.2015.00014] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
204 Song HH, Song TC, Yang T, Sun CS, He BQ, Li H, Wang YJ, Li Y, Wu H, Hu YM, Wang YJ. High mobility group box 1 mediates inflammatory response of astrocytes via cyclooxygenase 2/prostaglandin E2 signaling following spinal cord injury. Neural Regen Res 2021;16:1848-55. [PMID: 33510092 DOI: 10.4103/1673-5374.303039] [Reference Citation Analysis]
205 Maher JJ. DAMPs ramp up drug toxicity. J Clin Invest 2009;119:246-9. [PMID: 19244605 DOI: 10.1172/jci38178] [Cited by in Crossref: 9] [Cited by in F6Publishing: 27] [Article Influence: 0.7] [Reference Citation Analysis]
206 Bae JS. Effects of lower concentration thrombin on high-mobility group box 1 protein-mediated inflammatory responses. Inflammation 2012;35:1078-86. [PMID: 22139321 DOI: 10.1007/s10753-011-9414-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
207 Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes 2015; 6(4): 598-612 [PMID: 25987957 DOI: 10.4239/wjd.v6.i4.598] [Cited by in CrossRef: 163] [Cited by in F6Publishing: 153] [Article Influence: 23.3] [Reference Citation Analysis]
208 Wagner G, Lehmann C, Bode C, Miosge N, Schubert A. High Mobility Group Box 1 Protein in Osteoarthritic Knee Tissue and Chondrogenic Progenitor Cells: An Ex Vivo and In Vitro Study. Cartilage 2021;12:484-95. [PMID: 30912672 DOI: 10.1177/1947603519835897] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
209 Daniele SG, Trummer G, Hossmann KA, Vrselja Z, Benk C, Gobeske KT, Damjanovic D, Andrijevic D, Pooth JS, Dellal D, Beyersdorf F, Sestan N. Brain vulnerability and viability after ischaemia. Nat Rev Neurosci 2021;22:553-72. [PMID: 34290397 DOI: 10.1038/s41583-021-00488-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
210 Adelaja A, Hoffmann A. Signaling Crosstalk Mechanisms That May Fine-Tune Pathogen-Responsive NFκB. Front Immunol 2019;10:433. [PMID: 31312197 DOI: 10.3389/fimmu.2019.00433] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
211 Xu Q, Bo L, Hu J, Geng J, Chen Y, Li X, Chen F, Song J. High mobility group box 1 was associated with thrombosis in patients with atrial fibrillation. Medicine (Baltimore) 2018;97:e0132. [PMID: 29595637 DOI: 10.1097/MD.0000000000010132] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
212 Sundberg E, Grundtman C, Af Klint E, Lindberg J, Ernestam S, Ulfgren AK, Harris HE, Andersson U. Systemic TNF blockade does not modulate synovial expression of the pro-inflammatory mediator HMGB1 in rheumatoid arthritis patients--a prospective clinical study. Arthritis Res Ther 2008;10:R33. [PMID: 18346273 DOI: 10.1186/ar2387] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 1.7] [Reference Citation Analysis]
213 Li W, Sama AE, Wang H. Role of HMGB1 in cardiovascular diseases. Curr Opin Pharmacol 2006;6:130-5. [PMID: 16487750 DOI: 10.1016/j.coph.2005.10.010] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 5.1] [Reference Citation Analysis]
214 Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL, Park JS, Lee JK. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 2006;26:6413-21. [PMID: 16775128 DOI: 10.1523/JNEUROSCI.3815-05.2006] [Cited by in Crossref: 394] [Cited by in F6Publishing: 203] [Article Influence: 24.6] [Reference Citation Analysis]
215 Rabadi MM, Ghaly T, Goligorksy MS, Ratliff BB. HMGB1 in renal ischemic injury. Am J Physiol Renal Physiol 2012;303:F873-85. [PMID: 22759395 DOI: 10.1152/ajprenal.00092.2012] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 6.0] [Reference Citation Analysis]
216 Linares I, Farrokhi K, Echeverri J, Kaths JM, Kollmann D, Hamar M, Urbanellis P, Ganesh S, Adeyi OA, Yip P, Selzner M, Selzner N. PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model. PLoS One 2018;13:e0195212. [PMID: 29617419 DOI: 10.1371/journal.pone.0195212] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
217 Lin Q, Fan C, Skinner JT, Hunter EN, Macdonald AA, Illei PB, Yamaji-Kegan K, Johns RA. RELMα Licenses Macrophages for Damage-Associated Molecular Pattern Activation to Instigate Pulmonary Vascular Remodeling. J Immunol 2019;203:2862-71. [PMID: 31611261 DOI: 10.4049/jimmunol.1900535] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
218 Ardoin SP, Pisetsky DS. The role of cell death in the pathogenesis of autoimmune disease: HMGB1 and microparticles as intercellular mediators of inflammation. Mod Rheumatol 2008;18:319-26. [PMID: 18418695 DOI: 10.1007/s10165-008-0054-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 0.6] [Reference Citation Analysis]
219 Shimizu H, Sakamoto S, Isshiki T, Furuya K, Kurosaki A, Homma S. Association of serum high-mobility group box protein 1 level with outcomes of acute exacerbation of idiopathic pulmonary fibrosis and fibrosing nonspecific interstitial pneumonia. PLoS One 2018;13:e0196558. [PMID: 29795561 DOI: 10.1371/journal.pone.0196558] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
220 Di Virgilio F, Giuliani AL. Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus? Biomed J 2016;39:326-38. [PMID: 27884379 DOI: 10.1016/j.bj.2016.08.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
221 Shirato K, Kizaki T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon 2021;7:e06187. [PMID: 33644468 DOI: 10.1016/j.heliyon.2021.e06187] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 28.0] [Reference Citation Analysis]
222 Challa S, Chan FK. Going up in flames: necrotic cell injury and inflammatory diseases. Cell Mol Life Sci 2010;67:3241-53. [PMID: 20532807 DOI: 10.1007/s00018-010-0413-8] [Cited by in Crossref: 66] [Cited by in F6Publishing: 57] [Article Influence: 5.5] [Reference Citation Analysis]
223 Ma TT, Wang H, Wang C, Chang DY, Zhao MH, Chen M. Urinary levels of high mobility group box-1 are associated with disease activity in antineutrophil cytoplasmic autoantibody-associated vasculitis. PLoS One 2015;10:e0123586. [PMID: 25884225 DOI: 10.1371/journal.pone.0123586] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
224 Barreiro-Alonso A, Lamas-Maceiras M, Rodríguez-Belmonte E, Vizoso-Vázquez Á, Quindós M, Cerdán ME. High Mobility Group B Proteins, Their Partners, and Other Redox Sensors in Ovarian and Prostate Cancer. Oxid Med Cell Longev 2016;2016:5845061. [PMID: 26682011 DOI: 10.1155/2016/5845061] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
225 Williams CD, Farhood A, Jaeschke H. Role of caspase-1 and interleukin-1beta in acetaminophen-induced hepatic inflammation and liver injury. Toxicol Appl Pharmacol. 2010;247:169-178. [PMID: 20637792 DOI: 10.1016/j.taap.2010.07.004] [Cited by in Crossref: 104] [Cited by in F6Publishing: 105] [Article Influence: 8.7] [Reference Citation Analysis]
226 Muthumani G, Laddy DJ, Sundaram SG, Fagone P, Shedlock DJ, Kannan S, Wu L, Chung CW, Lankaraman KM, Burns J, Muthumani K, Weiner DB. Co-immunization with an optimized plasmid-encoded immune stimulatory interleukin, high-mobility group box 1 protein, results in enhanced interferon-gamma secretion by antigen-specific CD8 T cells. Immunology 2009;128:e612-20. [PMID: 19740322 DOI: 10.1111/j.1365-2567.2009.03044.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.2] [Reference Citation Analysis]
227 Li J, Yang F, Wei F, Ren X. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget 2017;8:66656-67. [PMID: 29029545 DOI: 10.18632/oncotarget.19105] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
228 Kaczorowski DJ, Nakao A, Vallabhaneni R, Mollen KP, Sugimoto R, Kohmoto J, Zuckerbraun BS, McCurry KR, Billiar TR. Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation 2009;87:1455-63. [PMID: 19461481 DOI: 10.1097/TP.0b013e3181a36e5e] [Cited by in Crossref: 75] [Cited by in F6Publishing: 44] [Article Influence: 5.8] [Reference Citation Analysis]
229 Salomão N, Rabelo K, Basílio-de-Oliveira C, Basílio-de-Oliveira R, Geraldo L, Lima F, Dos Santos F, Nuovo G, Oliveira ERA, Paes M. Fatal Dengue Cases Reveal Brain Injury and Viral Replication in Brain-Resident Cells Associated with the Local Production of Pro-Inflammatory Mediators. Viruses 2020;12:E603. [PMID: 32486462 DOI: 10.3390/v12060603] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
230 Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, Edwards MR, Michelsen KS, Kroeger KM, Liu C. HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med. 2009;6:e10. [PMID: 19143470 DOI: 10.1371/journal.pmed.1000010] [Cited by in Crossref: 216] [Cited by in F6Publishing: 234] [Article Influence: 16.6] [Reference Citation Analysis]
231 Ballinger MN, Newstead MW, Zeng X, Bhan U, Horowitz JC, Moore BB, Pinsky DJ, Flavell RA, Standiford TJ. TLR signaling prevents hyperoxia-induced lung injury by protecting the alveolar epithelium from oxidant-mediated death. J Immunol 2012;189:356-64. [PMID: 22661086 DOI: 10.4049/jimmunol.1103124] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
232 Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008;8:279-289. [PMID: 18340345 DOI: 10.1038/nri2215] [Cited by in Crossref: 1134] [Cited by in F6Publishing: 1067] [Article Influence: 81.0] [Reference Citation Analysis]
233 Jiang W, Wang Z, Li X, Li J, Huang Y, Fan X, Duan Y. Reduced high-mobility group box 1 expression induced by RNA interference inhibits the bioactivity of hepatocellular carcinoma cell line HCCLM3. Dig Dis Sci. 2012;57:92-98. [PMID: 22038506 DOI: 10.1007/s10620-011-1944-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
234 Ma CY, Jiao YL, Zhang J, Yang QR, Zhang ZF, Shen YJ, Chen ZJ, Zhao YR. Elevated plasma level of HMGB1 is associated with disease activity and combined alterations with IFN-α and TNF-α in systemic lupus erythematosus. Rheumatol Int 2012;32:395-402. [PMID: 21120500 DOI: 10.1007/s00296-010-1636-6] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 5.8] [Reference Citation Analysis]
235 Harris HE, Raucci A. Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep 2006;7:774-8. [PMID: 16858429 DOI: 10.1038/sj.embor.7400759] [Cited by in Crossref: 185] [Cited by in F6Publishing: 180] [Article Influence: 11.6] [Reference Citation Analysis]
236 Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA. TLRs in pulmonary diseases. Life Sci 2019;233:116671. [PMID: 31336122 DOI: 10.1016/j.lfs.2019.116671] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
237 Kim SY, Son M, Lee SE, Park IH, Kwak MS, Han M, Lee HS, Kim ES, Kim JY, Lee JE, Choi JE, Diamond B, Shin JS. High-Mobility Group Box 1-Induced Complement Activation Causes Sterile Inflammation. Front Immunol 2018;9:705. [PMID: 29696019 DOI: 10.3389/fimmu.2018.00705] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
238 Kikuchi K, Tancharoen S, Ito T, Morimoto-Yamashita Y, Miura N, Kawahara K, Maruyama I, Murai Y, Tanaka E. Potential of the angiotensin receptor blockers (ARBs) telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke. Int J Mol Sci 2013;14:18899-924. [PMID: 24065095 DOI: 10.3390/ijms140918899] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
239 Yang SK, Wang YC, Chao CC, Chuang YJ, Lan CY, Chen BS. Dynamic cross-talk analysis among TNF-R, TLR-4 and IL-1R signalings in TNFalpha-induced inflammatory responses. BMC Med Genomics 2010;3:19. [PMID: 20497537 DOI: 10.1186/1755-8794-3-19] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
240 Lafferty EI, Qureshi ST, Schnare M. The role of toll-like receptors in acute and chronic lung inflammation. J Inflamm (Lond) 2010;7:57. [PMID: 21108806 DOI: 10.1186/1476-9255-7-57] [Cited by in Crossref: 70] [Cited by in F6Publishing: 61] [Article Influence: 5.8] [Reference Citation Analysis]
241 Yan SF, Naka Y, Hudson BI, Herold K, Yan SD, Ramasamy R, Schmidt AM. The ligand/RAGE axis: lighting the fuse and igniting vascular stress. Curr Atheroscler Rep 2006;8:232-9. [PMID: 16640960 DOI: 10.1007/s11883-006-0078-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
242 Bauer EM, Shapiro R, Zheng H, Ahmad F, Ishizawar D, Comhair SA, Erzurum SC, Billiar TR, Bauer PM. High mobility group box 1 contributes to the pathogenesis of experimental pulmonary hypertension via activation of Toll-like receptor 4. Mol Med 2013;18:1509-18. [PMID: 23269975 DOI: 10.2119/molmed.2012.00283] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 7.8] [Reference Citation Analysis]
243 Bolourani S, Brenner M, Wang P. The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl) 2021. [PMID: 34258628 DOI: 10.1007/s00109-021-02113-y] [Reference Citation Analysis]
244 Oliveira ERA, Póvoa TF, Nuovo GJ, Allonso D, Salomão NG, Basílio-de-Oliveira CA, Geraldo LHM, Fonseca CG, Lima FRS, Mohana-Borges R, Paes MV. Dengue fatal cases present virus-specific HMGB1 response in peripheral organs. Sci Rep 2017;7:16011. [PMID: 29167501 DOI: 10.1038/s41598-017-16197-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
245 Chen L, Zhao Y, Lai D, Zhang P, Yang Y, Li Y, Fei K, Jiang G, Fan J. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis 2018;9:597. [PMID: 29789550 DOI: 10.1038/s41419-018-0538-5] [Cited by in Crossref: 29] [Cited by in F6Publishing: 37] [Article Influence: 7.3] [Reference Citation Analysis]
246 Zhang W, Tian J, Hao Q. HMGB1 combining with tumor-associated macrophages enhanced lymphangiogenesis in human epithelial ovarian cancer. Tumour Biol 2014;35:2175-86. [PMID: 24146279 DOI: 10.1007/s13277-013-1288-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
247 Lee CH, Yoon SJ, Lee SM. Chlorogenic acid attenuates high mobility group box 1 (HMGB1) and enhances host defense mechanisms in murine sepsis. Mol Med. 2012;18:1437-1448. [PMID: 23168580 DOI: 10.2119/molmed.2012.00279] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
248 Chi Z, Wang Z, Liang Q, Zhu Y, du Q. Induction of cytokine production in cholesteatoma keratinocytes by extracellular high-mobility group box chromosomal protein 1 combined with DNA released by apoptotic cholesteatoma keratinocytes. Mol Cell Biochem 2015;400:189-200. [PMID: 25416861 DOI: 10.1007/s11010-014-2275-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
249 Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021;13:281. [PMID: 33466626 DOI: 10.3390/cancers13020281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
250 Nunes KP, de Oliveira AA, Mowry FE, Biancardi VC. Targeting toll-like receptor 4 signalling pathways: can therapeutics pay the toll for hypertension? Br J Pharmacol 2019;176:1864-79. [PMID: 29981161 DOI: 10.1111/bph.14438] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
251 Silva E, Arcaroli J, He Q, Svetkauskaite D, Coldren C, Nick JA, Poch K, Park JS, Banerjee A, Abraham E. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Med. 2007;33:1829-1839. [PMID: 17581740 DOI: 10.1007/s00134-] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
252 Entezari M, Weiss DJ, Sitapara R, Whittaker L, Wargo MJ, Li J, Wang H, Yang H, Sharma L, Phan BD. Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against Pseudomonas Aeruginosa pneumonia in cystic fibrosis. Mol Med. 2012;18:477-485. [PMID: 22314397 DOI: 10.2119/molmed.2012.00024] [Cited by in Crossref: 59] [Cited by in F6Publishing: 68] [Article Influence: 5.9] [Reference Citation Analysis]
253 Choi JY, Cui Y, Chowdhury ST, Kim BG. High-mobility group box-1 as an autocrine trophic factor in white matter stroke. Proc Natl Acad Sci U S A 2017;114:E4987-95. [PMID: 28584116 DOI: 10.1073/pnas.1702035114] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
254 Tripathi A, Shrinet K, Kumar A. HMGB1 protein as a novel target for cancer. Toxicol Rep 2019;6:253-61. [PMID: 30911468 DOI: 10.1016/j.toxrep.2019.03.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
255 Dong Y, Gu Y, Huan Y, Wang Y, Liu Y, Liu M, Ding F, Gu X, Wang Y. HMGB1 protein does not mediate the inflammatory response in spontaneous spinal cord regeneration: a hint for CNS regeneration. J Biol Chem 2013;288:18204-18. [PMID: 23649623 DOI: 10.1074/jbc.M113.463810] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
256 Luo X, Chen J, Ruan J, Chen Y, Mo X, Xie J, Lv G. Krüppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression. Mediators Inflamm 2016;2016:1062586. [PMID: 27413250 DOI: 10.1155/2016/1062586] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
257 Zhang W, Sun J, Shen X, Xue Y, Yuan S, Wang X. Effect of PA-MSAH preprocessing on the expression of TLR-4-NF-κB pathway and inflammatory factors in the intestinal tract of rats with septic shock. Exp Ther Med 2019;17:2567-74. [PMID: 30906447 DOI: 10.3892/etm.2019.7247] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
258 Tsoyi K, Jang HJ, Nizamutdinova IT, Kim YM, Lee YS, Kim HJ, Seo HG, Lee JH, Chang KC. Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice. Br J Pharmacol 2011;162:1498-508. [PMID: 21091653 DOI: 10.1111/j.1476-5381.2010.01126.x] [Cited by in Crossref: 111] [Cited by in F6Publishing: 108] [Article Influence: 10.1] [Reference Citation Analysis]
259 Breese GR, Knapp DJ. Persistent adaptation by chronic alcohol is facilitated by neuroimmune activation linked to stress and CRF. Alcohol 2016;52:9-23. [PMID: 27139233 DOI: 10.1016/j.alcohol.2016.01.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
260 Hatterer E, Shang L, Simonet P, Herren S, Daubeuf B, Teixeira S, Reilly J, Elson G, Nelson R, Gabay C, Sokolove J, McInnes IB, Kosco-Vilbois M, Ferlin W, Monnet E, De Min C. A specific anti-citrullinated protein antibody profile identifies a group of rheumatoid arthritis patients with a toll-like receptor 4-mediated disease. Arthritis Res Ther 2016;18:224. [PMID: 27716430 DOI: 10.1186/s13075-016-1128-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
261 Mersmann J, Iskandar F, Latsch K, Habeck K, Sprunck V, Zimmermann R, Schumann RR, Zacharowski K, Koch A. Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent. Mediators Inflamm. 2013;2013:174168. [PMID: 24371373 DOI: 10.1155/2013/174168] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
262 Su FF, Shi MQ, Guo WG, Liu XT, Wang HT, Lu ZF, Zheng QS. High-mobility group box 1 induces calcineurin-mediated cell hypertrophy in neonatal rat ventricular myocytes. Mediators Inflamm 2012;2012:805149. [PMID: 22778498 DOI: 10.1155/2012/805149] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
263 Matsuoka N, Itoh T, Watarai H, Sekine-Kondo E, Nagata N, Okamoto K, Mera T, Yamamoto H, Yamada S, Maruyama I, Taniguchi M, Yasunami Y. High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. J Clin Invest 2010;120:735-43. [PMID: 20124731 DOI: 10.1172/JCI41360] [Cited by in Crossref: 104] [Cited by in F6Publishing: 51] [Article Influence: 8.7] [Reference Citation Analysis]
264 Panzarini E, Inguscio V, Dini L. Immunogenic cell death: can it be exploited in PhotoDynamic Therapy for cancer? Biomed Res Int 2013;2013:482160. [PMID: 23509727 DOI: 10.1155/2013/482160] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 6.0] [Reference Citation Analysis]
265 Koedel U, Merbt UM, Schmidt C, Angele B, Popp B, Wagner H, Pfister HW, Kirschning CJ. Acute brain injury triggers MyD88-dependent, TLR2/4-independent inflammatory responses. Am J Pathol 2007;171:200-13. [PMID: 17591966 DOI: 10.2353/ajpath.2007.060821] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 3.5] [Reference Citation Analysis]
266 Ku SK, Kim JA, Bae JS. Vascular barrier protective effects of piperlonguminine in vitro and in vivo. Inflamm Res. 2014;63:369-379. [PMID: 24468889 DOI: 10.1007/s00011-014-0708-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
267 Sloane JA, Blitz D, Margolin Z, Vartanian T. A clear and present danger: endogenous ligands of Toll-like receptors. Neuromolecular Med 2010;12:149-63. [PMID: 19830599 DOI: 10.1007/s12017-009-8094-x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 63] [Article Influence: 5.4] [Reference Citation Analysis]
268 Hagiwara S, Iwasaka H, Kusaka J, Asai N, Uchida T, Noguchi T. Total parenteral-nutrition-mediated dendritic-cell activation and infiltration into the small intestine in a rat model. J Anesth 2011;25:57-64. [PMID: 21057821 DOI: 10.1007/s00540-010-1037-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
269 Vanden Berg-Foels WS. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. Tissue Eng Part B Rev 2014;20:28-39. [PMID: 23678952 DOI: 10.1089/ten.TEB.2013.0100] [Cited by in Crossref: 88] [Cited by in F6Publishing: 86] [Article Influence: 9.8] [Reference Citation Analysis]
270 Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA, Hausenloy DJ. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther 2018;186:73-87. [PMID: 29330085 DOI: 10.1016/j.pharmthera.2018.01.001] [Cited by in Crossref: 206] [Cited by in F6Publishing: 195] [Article Influence: 51.5] [Reference Citation Analysis]
271 Velegraki M, Koutala H, Tsatsanis C, Papadaki HA. Increased levels of the high mobility group box 1 protein sustain the inflammatory bone marrow microenvironment in patients with chronic idiopathic neutropenia via activation of toll-like receptor 4. J Clin Immunol 2012;32:312-22. [PMID: 22127462 DOI: 10.1007/s10875-011-9620-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
272 Yoshizaki A, Komura K, Iwata Y, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Sato S. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: association with disease severity. J Clin Immunol 2009;29:180-9. [PMID: 18825489 DOI: 10.1007/s10875-008-9252-x] [Cited by in Crossref: 74] [Cited by in F6Publishing: 73] [Article Influence: 5.3] [Reference Citation Analysis]
273 Sahakian L, Filippone RT, Stavely R, Robinson AM, Yan XS, Abalo R, Eri R, Bornstein JC, Kelley MR, Nurgali K. Inhibition of APE1/Ref-1 Redox Signaling Alleviates Intestinal Dysfunction and Damage to Myenteric Neurons in a Mouse Model of Spontaneous Chronic Colitis. Inflamm Bowel Dis 2021;27:388-406. [PMID: 32618996 DOI: 10.1093/ibd/izaa161] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
274 Liu Y, Chen GY, Zheng P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol 2009;30:557-61. [PMID: 19786366 DOI: 10.1016/j.it.2009.09.006] [Cited by in Crossref: 81] [Cited by in F6Publishing: 81] [Article Influence: 6.2] [Reference Citation Analysis]
275 Lacagnina MJ, Watkins LR, Grace PM. Toll-like receptors and their role in persistent pain. Pharmacol Ther 2018;184:145-58. [PMID: 28987324 DOI: 10.1016/j.pharmthera.2017.10.006] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 15.0] [Reference Citation Analysis]
276 Qian W, Gao L, Chen C, Tan Y, Zhou Y, Li Z. Involvement of Toll-like receptor 4 in vinorelbine-induced vascular endothelial injury. Exp Ther Med 2015;10:62-6. [PMID: 26170913 DOI: 10.3892/etm.2015.2494] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
277 van Zoelen MA, Yang H, Florquin S, Meijers JC, Akira S, Arnold B, Nawroth PP, Bierhaus A, Tracey KJ, van der Poll T. Role of toll-like receptors 2 and 4, and the receptor for advanced glycation end products in high-mobility group box 1-induced inflammation in vivo. Shock 2009;31:280-4. [PMID: 19218854 DOI: 10.1097/SHK.0b013e318186262d] [Cited by in Crossref: 192] [Cited by in F6Publishing: 118] [Article Influence: 14.8] [Reference Citation Analysis]
278 Wainwright DA, Xin J, Mesnard NA, Sanders VM, Jones KJ. Toll-like receptor 2 and facial motoneuron survival after facial nerve axotomy. Neurosci Lett 2010;471:10-4. [PMID: 20056129 DOI: 10.1016/j.neulet.2009.12.076] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
279 Wang L, Botchway BOA, Liu X. The Repression of the HMGB1-TLR4-NF-κB Signaling Pathway by Safflower Yellow May Improve Spinal Cord Injury. Front Neurosci 2021;15:803885. [PMID: 35002613 DOI: 10.3389/fnins.2021.803885] [Reference Citation Analysis]
280 Gregory CD, Devitt A. The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology 2004;113:1-14. [PMID: 15312130 DOI: 10.1111/j.1365-2567.2004.01959.x] [Cited by in Crossref: 185] [Cited by in F6Publishing: 180] [Article Influence: 10.3] [Reference Citation Analysis]
281 Mazarati A, Maroso M, Iori V, Vezzani A, Carli M. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for Advanced Glycation End Products. Exp Neurol 2011;232:143-8. [PMID: 21884699 DOI: 10.1016/j.expneurol.2011.08.012] [Cited by in Crossref: 123] [Cited by in F6Publishing: 119] [Article Influence: 11.2] [Reference Citation Analysis]
282 Qiang X, Yang WL, Wu R, Zhou M, Jacob A, Dong W, Kuncewitch M, Ji Y, Yang H, Wang H, Fujita J, Nicastro J, Coppa GF, Tracey KJ, Wang P. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med 2013;19:1489-95. [PMID: 24097189 DOI: 10.1038/nm.3368] [Cited by in Crossref: 185] [Cited by in F6Publishing: 181] [Article Influence: 20.6] [Reference Citation Analysis]
283 Zhang Y, Xia Y, Ni S, Gu Z, Liu H. Transplantation of umbilical cord mesenchymal stem cells alleviates pneumonitis of MRL/lpr mice. J Thorac Dis 2014;6:109-17. [PMID: 24605224 DOI: 10.3978/j.issn.2072-1439.2013.12.48] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
284 Lutterloh EC, Opal SM, Pittman DD, Keith JC Jr, Tan XY, Clancy BM, Palmer H, Milarski K, Sun Y, Palardy JE, Parejo NA, Kessimian N. Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit Care 2007;11:R122. [PMID: 18042296 DOI: 10.1186/cc6184] [Cited by in Crossref: 111] [Cited by in F6Publishing: 108] [Article Influence: 7.9] [Reference Citation Analysis]
285 Pullerits R, Jonsson IM, Kollias G, Tarkowski A. Induction of arthritis by high mobility group box chromosomal protein 1 is independent of tumour necrosis factor signalling. Arthritis Res Ther 2008;10:R72. [PMID: 18582368 DOI: 10.1186/ar2445] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
286 Vogel S, Thein SL. Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br J Haematol 2018;180:761-7. [PMID: 29383704 DOI: 10.1111/bjh.15117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
287 Manganelli V, Capozzi A, Truglia S, Alessandri C, Lococo E, Garofalo T, De Carolis C, Conti F, Valesini G, Sorice M, Longo A, Misasi R. Elevated Serum Level of HMGB1 in Patients with the Antiphospholipid Syndrome. J Immunol Res 2017;2017:4570715. [PMID: 29410969 DOI: 10.1155/2017/4570715] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
288 Deng Y, Yang Z, Gao Y, Xu H, Zheng B, Jiang M, Xu J, He Z, Wang X. Toll-like receptor 4 mediates acute lung injury induced by high mobility group box-1. PLoS One 2013;8:e64375. [PMID: 23691208 DOI: 10.1371/journal.pone.0064375] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 5.2] [Reference Citation Analysis]
289 Srikrishna G, Freeze HH. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 2009;11:615-28. [PMID: 19568407 DOI: 10.1593/neo.09284] [Cited by in Crossref: 178] [Cited by in F6Publishing: 176] [Article Influence: 13.7] [Reference Citation Analysis]
290 Li H, Qiu D, Yang H, Yuan Y, Wu L, Chu L, Zhan B, Wang X, Sun Y, Xu W, Yang X. Therapeutic Efficacy of Excretory-Secretory Products of Trichinella spiralis Adult Worms on Sepsis-Induced Acute Lung Injury in a Mouse Model. Front Cell Infect Microbiol 2021;11:653843. [PMID: 33842398 DOI: 10.3389/fcimb.2021.653843] [Reference Citation Analysis]
291 Hu XM, Li ZX, Lin RH, Shan JQ, Yu QW, Wang RX, Liao LS, Yan WT, Wang Z, Shang L, Huang Y, Zhang Q, Xiong K. Guidelines for Regulated Cell Death Assays: A Systematic Summary, A Categorical Comparison, A Prospective. Front Cell Dev Biol 2021;9:634690. [PMID: 33748119 DOI: 10.3389/fcell.2021.634690] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
292 Antoine DJ, Williams DP, Kipar A, Laverty H, Park BK. Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity. Mol Med. 2010;16:479-490. [PMID: 20811657 DOI: 10.2119/molmed.2010.00126] [Cited by in Crossref: 83] [Cited by in F6Publishing: 76] [Article Influence: 6.9] [Reference Citation Analysis]
293 Gao R, Zhang Y, Kang Y, Xu W, Jiang L, Guo T, Huan C. Glycyrrhizin Inhibits PEDV Infection and Proinflammatory Cytokine Secretion via the HMGB1/TLR4-MAPK p38 Pathway. Int J Mol Sci 2020;21:E2961. [PMID: 32340172 DOI: 10.3390/ijms21082961] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
294 McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC. Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol 2014;306:H184-96. [PMID: 24163075 DOI: 10.1152/ajpheart.00328.2013] [Cited by in Crossref: 112] [Cited by in F6Publishing: 107] [Article Influence: 12.4] [Reference Citation Analysis]
295 Cunha C, Gomes C, Vaz AR, Brites D. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization. Mediators Inflamm 2016;2016:6986175. [PMID: 28096568 DOI: 10.1155/2016/6986175] [Cited by in Crossref: 79] [Cited by in F6Publishing: 74] [Article Influence: 13.2] [Reference Citation Analysis]
296 Tang J, Zhuang S. Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin Sci (Lond) 2019;133:597-609. [PMID: 30804072 DOI: 10.1042/CS20180465] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
297 Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118:1952-1961. [PMID: 21673343 DOI: 10.1182/blood-2011-03-343061] [Cited by in Crossref: 435] [Cited by in F6Publishing: 427] [Article Influence: 39.5] [Reference Citation Analysis]
298 Ying S, Xiao X, Chen T, Lou J. PPAR Ligands Function as Suppressors That Target Biological Actions of HMGB1. PPAR Res 2016;2016:2612743. [PMID: 27563308 DOI: 10.1155/2016/2612743] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
299 Goto H, Ledford JG, Mukherjee S, Noble PW, Williams KL, Wright JR. The role of surfactant protein A in bleomycin-induced acute lung injury. Am J Respir Crit Care Med 2010;181:1336-44. [PMID: 20167853 DOI: 10.1164/rccm.200907-1002OC] [Cited by in Crossref: 56] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
300 Yan SF, Barile GR, D'Agati V, Du Yan S, Ramasamy R, Schmidt AM. The biology of RAGE and its ligands: uncovering mechanisms at the heart of diabetes and its complications. Curr Diab Rep 2007;7:146-53. [PMID: 17425919 DOI: 10.1007/s11892-007-0024-4] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 2.5] [Reference Citation Analysis]
301 Fullard N, O'Reilly S. Role of innate immune system in systemic sclerosis. Semin Immunopathol 2015;37:511-7. [PMID: 26159672 DOI: 10.1007/s00281-015-0503-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
302 Müller-Redetzky HC, Suttorp N, Witzenrath M. Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell Tissue Res 2014;355:657-73. [PMID: 24599335 DOI: 10.1007/s00441-014-1821-0] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 5.5] [Reference Citation Analysis]
303 Boyapati RK, Rossi AG, Satsangi J, Ho GT. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol. 2016;9:567-582. [PMID: 26931062 DOI: 10.1038/mi.2016.14] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 10.2] [Reference Citation Analysis]
304 Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR, Billiar TR. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med. 2007;204:2913-2923. [PMID: 17984303 DOI: 10.1084/jem.20070247] [Cited by in Crossref: 423] [Cited by in F6Publishing: 421] [Article Influence: 28.2] [Reference Citation Analysis]
305 Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair. 2010;3:21. [PMID: 20964825 DOI: 10.1186/1755-1536-3-21] [Cited by in Crossref: 172] [Cited by in F6Publishing: 164] [Article Influence: 14.3] [Reference Citation Analysis]
306 Zhou Z, Han JY, Xi CX, Xie JX, Feng X, Wang CY, Mei L, Xiong WC. HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. J Bone Miner Res 2008;23:1084-96. [PMID: 18302500 DOI: 10.1359/jbmr.080234] [Cited by in Crossref: 101] [Cited by in F6Publishing: 92] [Article Influence: 7.2] [Reference Citation Analysis]
307 Das N, Dewan V, Grace PM, Gunn RJ, Tamura R, Tzarum N, Watkins LR, Wilson IA, Yin H. HMGB1 Activates Proinflammatory Signaling via TLR5 Leading to Allodynia. Cell Rep 2016;17:1128-40. [PMID: 27760316 DOI: 10.1016/j.celrep.2016.09.076] [Cited by in Crossref: 71] [Cited by in F6Publishing: 71] [Article Influence: 14.2] [Reference Citation Analysis]
308 Chen M, Liu Y, Varley P, Chang Y, He XX, Huang H, Tang D, Lotze MT, Lin J, Tsung A. High-Mobility Group Box 1 Promotes Hepatocellular Carcinoma Progression through miR-21-Mediated Matrix Metalloproteinase Activity. Cancer Res. 2015;75:1645-1656. [PMID: 25720799 DOI: 10.1158/0008-5472.can-14-2147] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 7.6] [Reference Citation Analysis]
309 Alegre ML, Chong A. Toll-like receptors (TLRs) in transplantation. Front Biosci (Elite Ed) 2009;1:36-43. [PMID: 19482622 DOI: 10.2741/E4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.1] [Reference Citation Analysis]
310 Yoo H, Ku SK, Han MS, Kim KM, Bae JS. Anti-septic effects of fisetin in vitro and in vivo. Inflammation 2014;37:1560-74. [PMID: 24706001 DOI: 10.1007/s10753-014-9883-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
311 Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nat Rev Cardiol 2011;8:292-300. [PMID: 21448140 DOI: 10.1038/nrcardio.2011.38] [Cited by in Crossref: 212] [Cited by in F6Publishing: 209] [Article Influence: 19.3] [Reference Citation Analysis]
312 Ye X, Chopp M, Liu X, Zacharek A, Cui X, Yan T, Roberts C, Chen J. Niaspan reduces high-mobility group box 1/receptor for advanced glycation endproducts after stroke in type-1 diabetic rats. Neuroscience 2011;190:339-45. [PMID: 21683770 DOI: 10.1016/j.neuroscience.2011.06.004] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 4.6] [Reference Citation Analysis]
313 Huang QQ, Pope RM. The role of glycoprotein 96 in the persistent inflammation of rheumatoid arthritis. Arch Biochem Biophys 2013;530:1-6. [PMID: 23257071 DOI: 10.1016/j.abb.2012.12.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
314 Chen C, Feng Y, Zou L, Wang L, Chen HH, Cai JY, Xu JM, Sosnovik DE, Chao W. Role of extracellular RNA and TLR3-Trif signaling in myocardial ischemia-reperfusion injury. J Am Heart Assoc 2014;3:e000683. [PMID: 24390148 DOI: 10.1161/JAHA.113.000683] [Cited by in Crossref: 89] [Cited by in F6Publishing: 49] [Article Influence: 11.1] [Reference Citation Analysis]
315 Pène F, Courtine E, Ouaaz F, Zuber B, Sauneuf B, Sirgo G, Rousseau C, Toubiana J, Balloy V, Chignard M, Mira JP, Chiche JD. Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells. Infect Immun 2009;77:5651-8. [PMID: 19805530 DOI: 10.1128/IAI.00238-09] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
316 Xiang M, Yin L, Li Y, Xiao G, Vodovotz Y, Billiar TR, Wilson MA, Fan J. Hemorrhagic shock activates lung endothelial reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase via neutrophil NADPH oxidase. Am J Respir Cell Mol Biol 2011;44:333-40. [PMID: 20418360 DOI: 10.1165/rcmb.2009-0408OC] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
317 Wyganowska-Swiatkowska M, Nohawica M, Grocholewicz K, Nowak G. Influence of Herbal Medicines on HMGB1 Release, SARS-CoV-2 Viral Attachment, Acute Respiratory Failure, and Sepsis. A Literature Review. Int J Mol Sci 2020;21:E4639. [PMID: 32629817 DOI: 10.3390/ijms21134639] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
318 Zhu XD, Chen JS, Zhou F, Liu QC, Chen G, Zhang JM. Relationship between plasma high mobility group box-1 protein levels and clinical outcomes of aneurysmal subarachnoid hemorrhage. J Neuroinflammation 2012;9:194. [PMID: 22883976 DOI: 10.1186/1742-2094-9-194] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.4] [Reference Citation Analysis]
319 Wang H, Ward MF, Fan XG, Sama AE, Li W. Potential role of high mobility group box 1 in viral infectious diseases. Viral Immunol. 2006;19:3-9. [PMID: 16553546 DOI: 10.1089/vim.2006.19.3] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 3.5] [Reference Citation Analysis]
320 Zhu Y, Qu J. Toll like receptors and inflammatory factors in sepsis and differential expression related to age: . Chinese Medical Journal 2007;120:56-61. [DOI: 10.1097/00029330-200701010-00011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
321 Walko TD 3rd, Bola RA, Hong JD, Au AK, Bell MJ, Kochanek PM, Clark RS, Aneja RK. Cerebrospinal fluid mitochondrial DNA: a novel DAMP in pediatric traumatic brain injury. Shock 2014;41:499-503. [PMID: 24667615 DOI: 10.1097/SHK.0000000000000160] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
322 Yang R, Harada T, Mollen KP, Prince JM, Levy RM, Englert JA, Gallowitsch-Puerta M, Yang L, Yang H, Tracey KJ, Harbrecht BG, Billiar TR, Fink MP. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med 2006;12:105-14. [PMID: 16953558 DOI: 10.2119/2006-00010.Yang] [Cited by in Crossref: 162] [Cited by in F6Publishing: 110] [Article Influence: 10.1] [Reference Citation Analysis]
323 Hernández-Pando R, Barrios-Payán J, Mata-Espinosa D, Marquina-Castillo B, Hernández-Ramírez D, Bottasso OA, Bini EI. The Role of High Mobility Group Box 1 Protein (HMGB1) in the Immunopathology of Experimental Pulmonary Tuberculosis. PLoS One 2015;10:e0133200. [PMID: 26201072 DOI: 10.1371/journal.pone.0133200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
324 Ono S, Tsujimoto H, Hiraki S, Kinoshita M, Hase K. Preoperative Toll-like receptor expression in monocytes is associated with host immunological responses following gastrointestinal surgery. World J Surg 2011;35:365-71. [PMID: 21046380 DOI: 10.1007/s00268-010-0839-z] [Reference Citation Analysis]
325 Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 2005;201:1135-1143. [PMID: 15795240 DOI: 10.1084/jem.20042614] [Cited by in Crossref: 814] [Cited by in F6Publishing: 806] [Article Influence: 47.9] [Reference Citation Analysis]
326 Manganelli V, Truglia S, Capozzi A, Alessandri C, Riitano G, Spinelli FR, Ceccarelli F, Mancuso S, Garofalo T, Longo A, Valesini G, Sorice M, Conti F, Misasi R. Alarmin HMGB1 and Soluble RAGE as New Tools to Evaluate the Risk Stratification in Patients With the Antiphospholipid Syndrome. Front Immunol 2019;10:460. [PMID: 30923525 DOI: 10.3389/fimmu.2019.00460] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
327 Ouyang Y, Guo J, Lin C, Lin J, Cao Y, Zhang Y, Wu Y, Chen S, Wang J, Chen L, Friedman SL. Transcriptomic analysis of the effects of Toll-like receptor 4 and its ligands on the gene expression network of hepatic stellate cells. Fibrogenesis Tissue Repair 2016;9:2. [PMID: 26900402 DOI: 10.1186/s13069-016-0039-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
328 Frasca L, Lande R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin Exp Immunol 2020;201:14-24. [PMID: 32048277 DOI: 10.1111/cei.13426] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
329 Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958-969. [PMID: 19029990 DOI: 10.1038/nri2448] [Cited by in Crossref: 5085] [Cited by in F6Publishing: 4991] [Article Influence: 363.2] [Reference Citation Analysis]
330 Aneja RK, Alcamo AM, Cummings J, Vagni V, Feldman K, Wang Q, Dixon CE, Billiar TR, Kochanek PM. Lack of Benefit on Brain Edema, Blood-Brain Barrier Permeability, or Cognitive Outcome in Global Inducible High Mobility Group Box 1 Knockout Mice Despite Tissue Sparing after Experimental Traumatic Brain Injury. J Neurotrauma 2019;36:360-9. [PMID: 30045665 DOI: 10.1089/neu.2018.5664] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
331 Nishikido T, Oyama J, Shiraki A, Komoda H, Node K. Deletion of Apoptosis Inhibitor of Macrophage (AIM)/CD5L Attenuates the Inflammatory Response and Infarct Size in Acute Myocardial Infarction. J Am Heart Assoc 2016;5:e002863. [PMID: 27045005 DOI: 10.1161/JAHA.115.002863] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
332 Wang H, Ward MF, Sama AE. Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock. 2009;32:348-357. [PMID: 19333143 DOI: 10.1097/SHK.0b013e3181a551bd] [Cited by in Crossref: 87] [Cited by in F6Publishing: 50] [Article Influence: 7.3] [Reference Citation Analysis]
333 Saenz R, Souza Cda S, Huang CT, Larsson M, Esener S, Messmer D. HMGB1-derived peptide acts as adjuvant inducing immune responses to peptide and protein antigen. Vaccine 2010;28:7556-62. [PMID: 20800114 DOI: 10.1016/j.vaccine.2010.08.054] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.4] [Reference Citation Analysis]
334 He S, Cheng J, Sun L, Wang Y, Wang C, Liu X, Zhang Z, Zhao M, Luo Y, Tian L, Li C, Huang Q. HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death Dis 2018;9:648. [PMID: 29844348 DOI: 10.1038/s41419-018-0626-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
335 Tanaka N, Ikari J, Anazawa R, Suzuki M, Katsumata Y, Shimada A, Suzuki E, Matsuura Y, Kawata N, Tada Y, Tatsumi K. S100A12 inhibits fibroblast migration via the receptor for advanced glycation end products and p38 MAPK signaling. In Vitro Cell Dev Biol Anim 2019;55:656-64. [PMID: 31297698 DOI: 10.1007/s11626-019-00384-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
336 Sternberg Z, Sternberg D, Chichelli T, Drake A, Patel N, Kolb C, Chadha K, Yu J, Hojnacki D. High-mobility group box 1 in multiple sclerosis. Immunol Res 2016;64:385-91. [PMID: 26100980 DOI: 10.1007/s12026-015-8673-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
337 Silva E, Arcaroli J, He Q, Svetkauskaite D, Coldren C, Nick JA, Poch K, Park JS, Banerjee A, Abraham E. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Med 2007;33:1829-39. [PMID: 17581740 DOI: 10.1007/s00134-007-0748-2] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 4.0] [Reference Citation Analysis]
338 Wang Y, Jiang Z, Yan J, Ying S. HMGB1 as a Potential Biomarker and Therapeutic Target for Malignant Mesothelioma. Dis Markers 2019;2019:4183157. [PMID: 30891101 DOI: 10.1155/2019/4183157] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
339 Pilzweger C, Holdenrieder S. Circulating HMGB1 and RAGE as Clinical Biomarkers in Malignant and Autoimmune Diseases. Diagnostics (Basel) 2015;5:219-53. [PMID: 26854151 DOI: 10.3390/diagnostics5020219] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
340 Yang Z, Mosser DM, Zhang X. Activation of the MAPK, ERK, following Leishmania amazonensis infection of macrophages. J Immunol 2007;178:1077-85. [PMID: 17202371 DOI: 10.4049/jimmunol.178.2.1077] [Cited by in Crossref: 93] [Cited by in F6Publishing: 90] [Article Influence: 6.2] [Reference Citation Analysis]
341 Volz HC, Laohachewin D, Schellberg D, Wienbrandt AR, Nelles M, Zugck C, Kaya Z, Katus HA, Andrassy M. HMGB1 is an independent predictor of death and heart transplantation in heart failure. Clin Res Cardiol 2012;101:427-35. [PMID: 22231645 DOI: 10.1007/s00392-011-0409-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
342 Santos-Sierra S. Targeting Toll-like Receptor (TLR) Pathways in Inflammatory Arthritis: Two Better Than One? Biomolecules 2021;11:1291. [PMID: 34572504 DOI: 10.3390/biom11091291] [Reference Citation Analysis]
343 Desai O, Winkler J, Minasyan M, Herzog EL. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2018;5:43. [PMID: 29616220 DOI: 10.3389/fmed.2018.00043] [Cited by in Crossref: 86] [Cited by in F6Publishing: 79] [Article Influence: 21.5] [Reference Citation Analysis]
344 Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799:149-156. [PMID: 19948257 DOI: 10.1016/j.bbagrm.2009.11. 019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
345 Ramsgaard L, Englert JM, Manni ML, Milutinovic PS, Gefter J, Tobolewski J, Crum L, Coudriet GM, Piganelli J, Zamora R, Vodovotz Y, Enghild JJ, Oury TD. Lack of the receptor for advanced glycation end-products attenuates E. coli pneumonia in mice. PLoS One 2011;6:e20132. [PMID: 21629785 DOI: 10.1371/journal.pone.0020132] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
346 Mandke P, Vasquez KM. Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair (Amst) 2019;83:102701. [PMID: 31563843 DOI: 10.1016/j.dnarep.2019.102701] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
347 Raucci A, Di Maggio S, Scavello F, D'Ambrosio A, Bianchi ME, Capogrossi MC. The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol Life Sci. 2019;76:211-229. [PMID: 30306212 DOI: 10.1007/s00018-018-2930-9] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
348 Lawrimore CJ, Crews FT. Ethanol, TLR3, and TLR4 Agonists Have Unique Innate Immune Responses in Neuron-Like SH-SY5Y and Microglia-Like BV2. Alcohol Clin Exp Res 2017;41:939-54. [PMID: 28273337 DOI: 10.1111/acer.13368] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 8.6] [Reference Citation Analysis]
349 Lin L, Park S, Lakatta EG. RAGE signaling in inflammation and arterial aging. Front Biosci (Landmark Ed) 2009;14:1403-13. [PMID: 19273137 DOI: 10.2741/3315] [Cited by in Crossref: 106] [Cited by in F6Publishing: 103] [Article Influence: 8.2] [Reference Citation Analysis]
350 Lee LC, Chen CM, Wang PR, Su MT, Lee-Chen GJ, Chang CY. Role of high mobility group box 1 (HMGB1) in SCA17 pathogenesis. PLoS One 2014;9:e115809. [PMID: 25549101 DOI: 10.1371/journal.pone.0115809] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
351 Liu X, Wang X, Duan X, Poorun D, Xu J, Zhang S, Gan L, He M, Zhu K, Ming Z, Hu F, Chen H. Lipoxin A4 and its analog suppress inflammation by modulating HMGB1 translocation and expression in psoriasis. Sci Rep 2017;7:7100. [PMID: 28769106 DOI: 10.1038/s41598-017-07485-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
352 Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 2013;5:77-94. [PMID: 23641259 DOI: 10.1177/1759720X12467868] [Cited by in Crossref: 450] [Cited by in F6Publishing: 252] [Article Influence: 50.0] [Reference Citation Analysis]
353 Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9:57-63. [PMID: 19052556 DOI: 10.1038/nrc2541] [Cited by in Crossref: 586] [Cited by in F6Publishing: 564] [Article Influence: 41.9] [Reference Citation Analysis]
354 Pulskens WP, Rampanelli E, Teske GJ, Butter LM, Claessen N, Luirink IK, van der Poll T, Florquin S, Leemans JC. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 2010;21:1299-308. [PMID: 20595685 DOI: 10.1681/ASN.2009070722] [Cited by in Crossref: 96] [Cited by in F6Publishing: 64] [Article Influence: 8.0] [Reference Citation Analysis]
355 Rabadi MM, Kuo MC, Ghaly T, Rabadi SM, Weber M, Goligorsky MS, Ratliff BB. Interaction between uric acid and HMGB1 translocation and release from endothelial cells. Am J Physiol Renal Physiol. 2012;302:F730-F741. [PMID: 22189943 DOI: 10.1152/ajprenal.00520.2011] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 3.9] [Reference Citation Analysis]
356 Wang X, Ji J, Zhang H, Fan Z, Zhang L, Shi L, Zhou F, Chen WR, Wang H, Wang X. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. Oncotarget 2015;6:44688-702. [PMID: 26625309 DOI: 10.18632/oncotarget.5975] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 6.5] [Reference Citation Analysis]
357 Waki K, Kawano K, Tsuda N, Ushijima K, Itoh K, Yamada A. Plasma Levels of High-Mobility Group Box 1 during Peptide Vaccination in Patients with Recurrent Ovarian Cancer. J Immunol Res 2017;2017:1423683. [PMID: 28536706 DOI: 10.1155/2017/1423683] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
358 Oblak A, Jerala R. Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol 2011;2011:609579. [PMID: 22110526 DOI: 10.1155/2011/609579] [Cited by in Crossref: 90] [Cited by in F6Publishing: 84] [Article Influence: 8.2] [Reference Citation Analysis]
359 Stark K, Philippi V, Stockhausen S, Busse J, Antonelli A, Miller M, Schubert I, Hoseinpour P, Chandraratne S, von Brühl ML, Gaertner F, Lorenz M, Agresti A, Coletti R, Antoine DJ, Heermann R, Jung K, Reese S, Laitinen I, Schwaiger M, Walch A, Sperandio M, Nawroth PP, Reinhardt C, Jäckel S, Bianchi ME, Massberg S. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016;128:2435-49. [PMID: 27574188 DOI: 10.1182/blood-2016-04-710632] [Cited by in Crossref: 117] [Cited by in F6Publishing: 112] [Article Influence: 19.5] [Reference Citation Analysis]
360 Gibot S, Massin F, Cravoisy A, Barraud D, Nace L, Levy B, Bollaert PE. High-mobility group box 1 protein plasma concentrations during septic shock. Intensive Care Med. 2007;33:1347-1353. [PMID: 17525840 DOI: 10.1007/s00134-007-0691-2] [Cited by in Crossref: 112] [Cited by in F6Publishing: 110] [Article Influence: 7.5] [Reference Citation Analysis]
361 Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99-126. [PMID: 18039143 DOI: 10.1146/annurev.pathmechdis.3.121806.151456] [Cited by in Crossref: 514] [Cited by in F6Publishing: 485] [Article Influence: 36.7] [Reference Citation Analysis]
362 Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res 2016;119:91-112. [PMID: 27340270 DOI: 10.1161/CIRCRESAHA.116.303577] [Cited by in Crossref: 654] [Cited by in F6Publishing: 423] [Article Influence: 130.8] [Reference Citation Analysis]
363 Mcdonald KA, Huang H, Tohme S, Loughran P, Ferrero K, Billiar T, Tsung A. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol Med. 2014;20:639-648. [PMID: 25375408 DOI: 10.2119/molmed.2014.00076] [Cited by in Crossref: 36] [Cited by in F6Publishing: 44] [Article Influence: 5.1] [Reference Citation Analysis]
364 Kennedy A, Fearon U, Veale DJ, Godson C. Macrophages in synovial inflammation. Front Immunol. 2011;2:52. [PMID: 22566842 DOI: 10.3389/fimmu.2011.00052] [Cited by in Crossref: 80] [Cited by in F6Publishing: 80] [Article Influence: 7.3] [Reference Citation Analysis]
365 Huang QQ, Koessler RE, Birkett R, Dorfleutner A, Perlman H, Haines GK 3rd, Stehlik C, Nicchitta CV, Pope RM. Glycoprotein 96 perpetuates the persistent inflammation of rheumatoid arthritis. Arthritis Rheum 2012;64:3638-48. [PMID: 22777994 DOI: 10.1002/art.34610] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
366 Matin N, Tabatabaie O, Falsaperla R, Lubrano R, Pavone P, Mahmood F, Gullotta M, Serra A, Di Mauro P, Cocuzza S, Vitaliti G. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum Vaccin Immunother 2015;11:2021-9. [PMID: 26260962 DOI: 10.1080/21645515.2015.1034921] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 5.5] [Reference Citation Analysis]
367 Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J, Schäffer TE, Bohn E, Frick JS, Borst O, Münzer P, Walker B, Markel J, Csanyi G, Pagano PJ, Loughran P, Jessup ME, Watkins SC, Bullock GC, Sperry JL, Zuckerbraun BS, Billiar TR, Lotze MT, Gawaz M, Neal MD. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015;125:4638-54. [PMID: 26551681 DOI: 10.1172/JCI81660] [Cited by in Crossref: 133] [Cited by in F6Publishing: 86] [Article Influence: 19.0] [Reference Citation Analysis]
368 Velegraki M, Papakonstanti E, Mavroudi I, Psyllaki M, Tsatsanis C, Oulas A, Iliopoulos I, Katonis P, Papadaki HA. Impaired clearance of apoptotic cells leads to HMGB1 release in the bone marrow of patients with myelodysplastic syndromes and induces TLR4-mediated cytokine production. Haematologica 2013;98:1206-15. [PMID: 23403315 DOI: 10.3324/haematol.2012.064642] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
369 Shoda LK, Battista C, Siler SQ, Pisetsky DS, Watkins PB, Howell BA. Mechanistic Modelling of Drug-Induced Liver Injury: Investigating the Role of Innate Immune Responses. Gene Regul Syst Bio 2017;11:1177625017696074. [PMID: 28615926 DOI: 10.1177/1177625017696074] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
370 Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8:776-787. [PMID: 18802444 DOI: 10.1038/nri2402] [Cited by in Crossref: 731] [Cited by in F6Publishing: 718] [Article Influence: 52.2] [Reference Citation Analysis]
371 Wu L, Yang L. The function and mechanism of HMGB1 in lung cancer and its potential therapeutic implications. Oncol Lett 2018;15:6799-805. [PMID: 29725415 DOI: 10.3892/ol.2018.8215] [Cited by in Crossref: 8] [Cited by in F6Publishing: 30] [Article Influence: 2.0] [Reference Citation Analysis]
372 Papadaki M, Rinotas V, Violitzi F, Thireou T, Panayotou G, Samiotaki M, Douni E. New Insights for RANKL as a Proinflammatory Modulator in Modeled Inflammatory Arthritis. Front Immunol 2019;10:97. [PMID: 30804932 DOI: 10.3389/fimmu.2019.00097] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
373 Zampell JC, Elhadad S, Avraham T, Weitman E, Aschen S, Yan A, Mehrara BJ. Toll-like receptor deficiency worsens inflammation and lymphedema after lymphatic injury. Am J Physiol Cell Physiol 2012;302:C709-19. [PMID: 22049214 DOI: 10.1152/ajpcell.00284.2011] [Cited by in Crossref: 28] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
374 Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med. 2016;37:99-107. [PMID: 26719855 DOI: 10.3892/ijmm.2016.2707] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
375 Zhang Z, Amorosa LF, Coyle SM, Macor MA, Lubitz SE, Carson JL, Birnbaum MJ, Lee LY, Haimovich B. Proteolytic Cleavage of AMPKα and Intracellular MMP9 Expression Are Both Required for TLR4-Mediated mTORC1 Activation and HIF-1α Expression in Leukocytes. J Immunol 2015;195:2452-60. [PMID: 26232429 DOI: 10.4049/jimmunol.1500944] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
376 Li P, Jie Y, YuGen S, Yu W, Yan S. High mobility group box-1 in hypothalamic paraventricular nuclei attenuates sympathetic tone in rats at post-myocardial infarction. Cardiol J 2019;26:555-63. [PMID: 30338842 DOI: 10.5603/CJ.a2018.0117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
377 Li Y, Wang P, Zhao J, Li H, Liu D, Zhu W. HMGB1 attenuates TGF-β-induced epithelial-mesenchymal transition of FaDu hypopharyngeal carcinoma cells through regulation of RAGE expression. Mol Cell Biochem 2017;431:1-10. [PMID: 28285361 DOI: 10.1007/s11010-017-2968-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
378 Holmlund U, Wähämaa H, Bachmayer N, Bremme K, Sverremark-Ekström E, Palmblad K. The novel inflammatory cytokine high mobility group box protein 1 (HMGB1) is expressed by human term placenta. Immunology 2007;122:430-7. [PMID: 17617154 DOI: 10.1111/j.1365-2567.2007.02662.x] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 4.0] [Reference Citation Analysis]
379 Zuurbier CJ, Abbate A, Cabrera-Fuentes HA, Cohen MV, Collino M, De Kleijn DPV, Downey JM, Pagliaro P, Preissner KT, Takahashi M, Davidson SM. Innate immunity as a target for acute cardioprotection. Cardiovasc Res 2019;115:1131-42. [PMID: 30576455 DOI: 10.1093/cvr/cvy304] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 27.0] [Reference Citation Analysis]
380 Radin JN, González-Rivera C, Ivie SE, McClain MS, Cover TL. Helicobacter pylori VacA induces programmed necrosis in gastric epithelial cells. Infect Immun 2011;79:2535-43. [PMID: 21482684 DOI: 10.1128/IAI.01370-10] [Cited by in Crossref: 74] [Cited by in F6Publishing: 46] [Article Influence: 6.7] [Reference Citation Analysis]
381 Yang D, Tewary P, de la Rosa G, Wei F, Oppenheim JJ. The alarmin functions of high-mobility group proteins. Biochim Biophys Acta 2010;1799:157-63. [PMID: 20123077 DOI: 10.1016/j.bbagrm.2009.11.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
382 Li J, Bao G, Wang H. Time to Develop Therapeutic Antibodies Against Harmless Proteins Colluding with Sepsis Mediators? Immunotargets Ther 2020;9:157-66. [PMID: 33117741 DOI: 10.2147/ITT.S262605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
383 Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120:457-471. [PMID: 20093776 DOI: 10.1172/jci40483] [Cited by in Crossref: 165] [Cited by in F6Publishing: 396] [Article Influence: 13.8] [Reference Citation Analysis]
384 Xue J, Habtezion A. Carbon monoxide-based therapy ameliorates acute pancreatitis via TLR4 inhibition. J Clin Invest. 2014;124:437-447. [PMID: 24334457 DOI: 10.1172/jci71362] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 5.2] [Reference Citation Analysis]
385 Liu B, Gan X, Zhao Y, Yu H, Gao J, Yu H. Inhibition of HMGB1 Promotes Osseointegration under Hyperglycemic Condition through Improvement of BMSC Dysfunction. Oxid Med Cell Longev 2019;2019:1703709. [PMID: 31929852 DOI: 10.1155/2019/1703709] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
386 Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F. Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis. Int J Mol Sci 2020;21:E6150. [PMID: 32858930 DOI: 10.3390/ijms21176150] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
387 O'Reilly S, Cant R, Ciechomska M, Finnigan J, Oakley F, Hambleton S, van Laar JM. Serum amyloid A induces interleukin-6 in dermal fibroblasts via Toll-like receptor 2, interleukin-1 receptor-associated kinase 4 and nuclear factor-κB. Immunology 2014;143:331-40. [PMID: 24476318 DOI: 10.1111/imm.12260] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 5.5] [Reference Citation Analysis]
388 Schaper F, Westra J, Bijl M. Recent developments in the role of high-mobility group box 1 in systemic lupus erythematosus. Mol Med 2014;20:72-9. [PMID: 24531837 DOI: 10.2119/molmed.2014.00019] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
389 Hayakawa K, Arai K, Lo EH. Role of ERK map kinase and CRM1 in IL-1beta-stimulated release of HMGB1 from cortical astrocytes. Glia 2010;58:1007-15. [PMID: 20222144 DOI: 10.1002/glia.20982] [Cited by in Crossref: 11] [Cited by in F6Publishing: 33] [Article Influence: 0.9] [Reference Citation Analysis]
390 Lema C, Reins RY, Redfern RL. High-Mobility Group Box 1 in Dry Eye Inflammation. Invest Ophthalmol Vis Sci 2018;59:1741-50. [PMID: 29610858 DOI: 10.1167/iovs.17-23363] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
391 Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, Ballantyne CM, Gahmberg CG, Bianchi ME, Nawroth PP, Chavakis T. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 2007;26:1129-39. [PMID: 17268551 DOI: 10.1038/sj.emboj.7601552] [Cited by in Crossref: 242] [Cited by in F6Publishing: 243] [Article Influence: 16.1] [Reference Citation Analysis]
392 Cole JE, Georgiou E, Monaco C. The expression and functions of toll-like receptors in atherosclerosis. Mediators Inflamm. 2010;2010:393946. [PMID: 20652007 DOI: 10.1155/2010/393946] [Cited by in Crossref: 86] [Cited by in F6Publishing: 96] [Article Influence: 7.2] [Reference Citation Analysis]
393 Lee JH, Yoon EJ, Seo J, Kavoussi A, Chung YE, Chung SP, Park I, Kim CH, You JS. Hypothermia inhibits the propagation of acute ischemic injury by inhibiting HMGB1. Mol Brain 2016;9:81. [PMID: 27544687 DOI: 10.1186/s13041-016-0260-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
394 Lin Q, Yang XP, Fang D, Ren X, Zhou H, Fang J, Liu X, Zhou S, Wen F, Yao X, Wang JM, Su SB. High-mobility group box-1 mediates toll-like receptor 4-dependent angiogenesis. Arterioscler Thromb Vasc Biol 2011;31:1024-32. [PMID: 21372296 DOI: 10.1161/ATVBAHA.111.224048] [Cited by in Crossref: 69] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
395 Han D, Fang Y, Tan X, Jiang H, Gong X, Wang X, Hong W, Tu J, Wei W. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. J Cell Mol Med 2020;24:9518-32. [PMID: 32686306 DOI: 10.1111/jcmm.15669] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
396 Bauer EM, Chanthaphavong RS, Sodhi CP, Hackam DJ, Billiar TR, Bauer PM. Genetic deletion of toll-like receptor 4 on platelets attenuates experimental pulmonary hypertension. Circ Res 2014;114:1596-600. [PMID: 24637196 DOI: 10.1161/CIRCRESAHA.114.303662] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 4.9] [Reference Citation Analysis]
397 Sawa H, Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Nakajima T, Kuroda Y. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis. World J Gastroenterol 2006; 12(47): 7666-7670 [PMID: 17171797 DOI: 10.3748/wjg.v12.i47.7666] [Cited by in CrossRef: 103] [Cited by in F6Publishing: 105] [Article Influence: 6.4] [Reference Citation Analysis]
398 Hubert P, Roncarati P, Demoulin S, Pilard C, Ancion M, Reynders C, Lerho T, Bruyere D, Lebeau A, Radermecker C, Meunier M, Nokin MJ, Hendrick E, Peulen O, Delvenne P, Herfs M. Extracellular HMGB1 blockade inhibits tumor growth through profoundly remodeling immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. J Immunother Cancer 2021;9:e001966. [PMID: 33712445 DOI: 10.1136/jitc-2020-001966] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
399 Gao E, Jiang Y, Li Z, Xue D, Zhang W. Association between high mobility group box1 protein expression and cell death in acute pancreatitis. Mol Med Rep. 2017;15:4021-4026. [PMID: 28440506 DOI: 10.3892/mmr.2017.6496] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
400 Zullo J, Matsumoto K, Xavier S, Ratliff B, Goligorsky MS. The cell secretome, a mediator of cell-to-cell communication. Prostaglandins Other Lipid Mediat 2015;120:17-20. [PMID: 25936481 DOI: 10.1016/j.prostaglandins.2015.03.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
401 Hirsova P, Ibrahim SH, Gores GJ, Malhi H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: Relevance to NASH pathogenesis. J Lipid Res. 2016;57:1758-1770. [PMID: 27049024 DOI: 10.1194/jlr.r066357] [Cited by in Crossref: 112] [Cited by in F6Publishing: 72] [Article Influence: 18.7] [Reference Citation Analysis]
402 Wu YW, Tang W, Zuo JP. Toll-like receptors: potential targets for lupus treatment. Acta Pharmacol Sin 2015;36:1395-407. [PMID: 26592511 DOI: 10.1038/aps.2015.91] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 12.3] [Reference Citation Analysis]
403 Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, Wagner AH, Larmann J. Vascular Signaling in Allogenic Solid Organ Transplantation - The Role of Endothelial Cells. Front Physiol 2020;11:443. [PMID: 32457653 DOI: 10.3389/fphys.2020.00443] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
404 Peng HH, Liu YJ, Ojcius DM, Lee CM, Chen RH, Huang PR, Martel J, Young JD. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci Rep 2017;7:16628. [PMID: 29192209 DOI: 10.1038/s41598-017-16778-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]
405 Willingham SB, Bergstralh DT, O'Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M, Hoffman HM, Ting JP. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2007;2:147-59. [PMID: 18005730 DOI: 10.1016/j.chom.2007.07.009] [Cited by in Crossref: 225] [Cited by in F6Publishing: 208] [Article Influence: 15.0] [Reference Citation Analysis]
406 Lee SY, Ju MK, Jeon HM, Jeong EK, Lee YJ, Kim CH, Park HG, Han SI, Kang HS. Regulation of Tumor Progression by Programmed Necrosis. Oxid Med Cell Longev 2018;2018:3537471. [PMID: 29636841 DOI: 10.1155/2018/3537471] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 12.3] [Reference Citation Analysis]
407 Zampell JC, Yan A, Avraham T, Andrade V, Malliaris S, Aschen S, Rockson SG, Mehrara BJ. Temporal and spatial patterns of endogenous danger signal expression after wound healing and in response to lymphedema. Am J Physiol Cell Physiol 2011;300:C1107-21. [PMID: 21248077 DOI: 10.1152/ajpcell.00378.2010] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 3.5] [Reference Citation Analysis]
408 Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I, Pass HI, Gaudino G, Carbone M, Yang H. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res 2012;72:3290-301. [PMID: 22552293 DOI: 10.1158/0008-5472.CAN-11-3481] [Cited by in Crossref: 155] [Cited by in F6Publishing: 104] [Article Influence: 15.5] [Reference Citation Analysis]
409 Kim WK, Kwon Y, Park M, Yun S, Kwon JY, Kim H. Identification of specifically activated angiogenic molecules in HMGB-1-induced angiogenesis. BMB Rep 2017;50:590-5. [PMID: 29065965 DOI: 10.5483/bmbrep.2017.50.11.129] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
410 Bopp C, Bierhaus A, Hofer S, Bouchon A, Nawroth PP, Martin E, Weigand MA. Bench-to-bedside review: The inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit Care 2008;12:201. [PMID: 18226173 DOI: 10.1186/cc6164] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 5.8] [Reference Citation Analysis]
411 Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Liao Y, Liu QF, Tong GZ, Ding C, Fan HJ, Wu JQ, Mao X. Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-β. Oncotarget 2016;7:75064-80. [PMID: 27634894 DOI: 10.18632/oncotarget.11991] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
412 Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799:149-156. [PMID: 19948257 DOI: 10.1016/j.bbagrm.2009.11.019] [Cited by in Crossref: 224] [Cited by in F6Publishing: 231] [Article Influence: 17.2] [Reference Citation Analysis]
413 Zhang H, Lu X, Liu Z, Du K. Rosuvastatin reduces the pro-inflammatory effects of adriamycin on the expression of HMGB1 and RAGE in rats. Int J Mol Med 2018;42:3415-23. [PMID: 30320373 DOI: 10.3892/ijmm.2018.3928] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
414 Hernández ÁP, Juanes-Velasco P, Landeira-Viñuela A, Bareke H, Montalvillo E, Góngora R, Fuentes M. Restoring the Immunity in the Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-Therapies. Cancers (Basel) 2021;13:2821. [PMID: 34198850 DOI: 10.3390/cancers13112821] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
415 Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 2010;14:2592-2603. [PMID: 20629986 DOI: 10.1111/j.1582-4934.2010.01127.x] [Cited by in Crossref: 313] [Cited by in F6Publishing: 301] [Article Influence: 28.5] [Reference Citation Analysis]
416 Bigorgne AE, Crispe IN. TLRs in Hepatic Cellular Crosstalk. Gastroenterol Res Pract. 2010;2010. [PMID: 20862346 DOI: 10.1155/2010/618260] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
417 Good DW, George T, Watts BA 3rd. High-mobility group box 1 inhibits HCO(3)(-) absorption in medullary thick ascending limb through a basolateral receptor for advanced glycation end products pathway. Am J Physiol Renal Physiol 2015;309:F720-30. [PMID: 26180239 DOI: 10.1152/ajprenal.00227.2015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
418 Yamashiro K, Ideguchi H, Aoyagi H, Yoshihara-Hirata C, Hirai A, Suzuki-Kyoshima R, Zhang Y, Wake H, Nishibori M, Yamamoto T, Takashiba S. High Mobility Group Box 1 Expression in Oral Inflammation and Regeneration. Front Immunol 2020;11:1461. [PMID: 32760399 DOI: 10.3389/fimmu.2020.01461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
419 Liu A, Zhu W, Sun L, Han G, Liu H, Chen Z, Zhuang L, Jiang W, Xue X. Ginsenoside Rb1 administration attenuates focal cerebral ischemic reperfusion injury through inhibition of HMGB1 and inflammation signals. Exp Ther Med 2018;16:3020-6. [PMID: 30214520 DOI: 10.3892/etm.2018.6523] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
420 Sekimoto R, Fukuda S, Maeda N, Tsushima Y, Matsuda K, Mori T, Nakatsuji H, Nishizawa H, Kishida K, Kikuta J, Maijima Y, Funahashi T, Ishii M, Shimomura I. Visualized macrophage dynamics and significance of S100A8 in obese fat. Proc Natl Acad Sci U S A 2015;112:E2058-66. [PMID: 25848057 DOI: 10.1073/pnas.1409480112] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
421 Denning NL, Aziz M, Murao A, Gurien SD, Ochani M, Prince JM, Wang P. Extracellular CIRP as an endogenous TREM-1 ligand to fuel inflammation in sepsis. JCI Insight 2020;5:134172. [PMID: 32027618 DOI: 10.1172/jci.insight.134172] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
422 Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger--damage control by the immune system. J Leukoc Biol 2012;92:539-51. [PMID: 22654121 DOI: 10.1189/jlb.0212072] [Cited by in Crossref: 87] [Cited by in F6Publishing: 85] [Article Influence: 8.7] [Reference Citation Analysis]
423 Sedghi S, Kutscher HL, Davidson BA, Knight PR. Volatile Anesthetics and Immunity. Immunol Invest 2017;46:793-804. [PMID: 29058547 DOI: 10.1080/08820139.2017.1373905] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
424 Lai CY, Su YW, Lin KI, Hsu LC, Chuang TH. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation. J Immunol Res 2017;2017:7807313. [PMID: 28894754 DOI: 10.1155/2017/7807313] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
425 Peng J, Jiang J, Wang H, Feng X, Dong X. miR‑199a‑3p suppresses cervical epithelial cell inflammation by inhibiting the HMGB1/TLR4/NF‑κB pathway in preterm birth. Mol Med Rep 2020;22:926-38. [PMID: 32468045 DOI: 10.3892/mmr.2020.11184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
426 Oshima K, Haeger SM, Hippensteel JA, Herson PS, Schmidt EP. More than a biomarker: the systemic consequences of heparan sulfate fragments released during endothelial surface layer degradation (2017 Grover Conference Series). Pulm Circ 2018;8:2045893217745786. [PMID: 29199903 DOI: 10.1177/2045893217745786] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
427 Bellussi LM, Cocca S, Passali GC, Passali D. HMGB1 in the Pathogenesis of Nasal Inflammatory Diseases and its Inhibition as New Therapeutic Approach: A Review from the Literature. Int Arch Otorhinolaryngol 2017;21:390-8. [PMID: 29018504 DOI: 10.1055/s-0036-1597665] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
428 Frisardi V, Matrone C, Street ME. Metabolic Syndrome and Autophagy: Focus on HMGB1 Protein. Front Cell Dev Biol 2021;9:654913. [PMID: 33912566 DOI: 10.3389/fcell.2021.654913] [Reference Citation Analysis]
429 Vicentino ARR, Carneiro VC, Allonso D, Guilherme RF, Benjamim CF, Dos Santos HAM, Xavier F, Pyrrho ADS, Gomes JAS, Fonseca MC, de Oliveira RC, Pereira TA, Ladislau L, Lambertucci JR, Fantappié MR. Emerging Role of HMGB1 in the Pathogenesis of Schistosomiasis Liver Fibrosis. Front Immunol 2018;9:1979. [PMID: 30258438 DOI: 10.3389/fimmu.2018.01979] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
430 Muzio M, Fonte E, Caligaris-Cappio F. Toll-like Receptors in Chronic Lymphocytic Leukemia. Mediterr J Hematol Infect Dis 2012;4:e2012055. [PMID: 22973499 DOI: 10.4084/MJHID.2012.055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
431 Li LF, Yang CT, Huang CC, Liu YY, Kao KC, Lin HC. Low-molecular-weight heparin reduces hyperoxia-augmented ventilator-induced lung injury via serine/threonine kinase-protein kinase B. Respir Res 2011;12:90. [PMID: 21726460 DOI: 10.1186/1465-9921-12-90] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
432 Zhu CS, Wang W, Qiang X, Chen W, Lan X, Li J, Wang H. Endogenous Regulation and Pharmacological Modulation of Sepsis-Induced HMGB1 Release and Action: An Updated Review. Cells 2021;10:2220. [PMID: 34571869 DOI: 10.3390/cells10092220] [Reference Citation Analysis]
433 Zhang Y, Igwe OJ. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochem Pharmacol 2018;147:104-18. [PMID: 29175419 DOI: 10.1016/j.bcp.2017.11.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
434 Tripisciano C, Eichhorn T, Harm S, Weber V. Adsorption of the inflammatory mediator high-mobility group box 1 by polymers with different charge and porosity. Biomed Res Int 2014;2014:238160. [PMID: 25243124 DOI: 10.1155/2014/238160] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
435 Song J, Lee WT, Park KA, Lee JE. Receptor for advanced glycation end products (RAGE) and its ligands: focus on spinal cord injury. Int J Mol Sci 2014;15:13172-91. [PMID: 25068700 DOI: 10.3390/ijms150813172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
436 Peng J. The Pharmacological Targets and Clinical Evidence of Natural Products With Anti-hepatic Inflammatory Properties. Front Pharmacol 2018;9:455. [PMID: 29922155 DOI: 10.3389/fphar.2018.00455] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
437 Allam R, Scherbaum CR, Darisipudi MN, Mulay SR, Hägele H, Lichtnekert J, Hagemann JH, Rupanagudi KV, Ryu M, Schwarzenberger C, Hohenstein B, Hugo C, Uhl B, Reichel CA, Krombach F, Monestier M, Liapis H, Moreth K, Schaefer L, Anders HJ. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol 2012;23:1375-88. [PMID: 22677551 DOI: 10.1681/ASN.2011111077] [Cited by in Crossref: 254] [Cited by in F6Publishing: 165] [Article Influence: 25.4] [Reference Citation Analysis]
438 Ferguson TA, Choi J, Green DR. Armed response: how dying cells influence T-cell functions. Immunol Rev. 2011;241:77-88. [PMID: 21488891 DOI: 10.1111/j.1600-065x.2011.01006.x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
439 Manigrasso MB, Juranek J, Ramasamy R, Schmidt AM. Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol Metab 2014;25:15-22. [PMID: 24011512 DOI: 10.1016/j.tem.2013.08.002] [Cited by in Crossref: 113] [Cited by in F6Publishing: 111] [Article Influence: 12.6] [Reference Citation Analysis]
440 Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, Duncan JA, Ting JP. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol 2009;183:2008-15. [PMID: 19587006 DOI: 10.4049/jimmunol.0900138] [Cited by in Crossref: 226] [Cited by in F6Publishing: 226] [Article Influence: 17.4] [Reference Citation Analysis]
441 Quave CB, Nieto SJ, Haile CN, Kosten TA. Immune receptor toll-like receptor 4 contributes to stress-induced affective responses in a sex-specific manner. Brain Behav Immun Health 2021;14:100248. [PMID: 34589759 DOI: 10.1016/j.bbih.2021.100248] [Reference Citation Analysis]
442 Steer SA, Scarim AL, Chambers KT, Corbett JA. Interleukin-1 stimulates beta-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 2006;3:e17. [PMID: 16354107 DOI: 10.1371/journal.pmed.0030017] [Cited by in Crossref: 88] [Cited by in F6Publishing: 92] [Article Influence: 5.2] [Reference Citation Analysis]
443 Lamkanfi M, Sarkar A, Vande Walle L, Vitari AC, Amer AO, Wewers MD, Tracey KJ, Kanneganti TD, Dixit VM. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol. 2010;185:4385-4392. [PMID: 20802146 DOI: 10.4049/jimmunol.1000803] [Cited by in Crossref: 298] [Cited by in F6Publishing: 295] [Article Influence: 24.8] [Reference Citation Analysis]
444 Prantner D, Nallar S, Vogel SN. The role of RAGE in host pathology and crosstalk between RAGE and TLR4 in innate immune signal transduction pathways. FASEB J 2020;34:15659-74. [PMID: 33131091 DOI: 10.1096/fj.202002136R] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
445 Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, Ren B. The Role of HMGB1 in the Pathogenesis of Type 2 Diabetes. J Diabetes Res 2016;2016:2543268. [PMID: 28101517 DOI: 10.1155/2016/2543268] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
446 Chen J, Hartono JR, John R, Bennett M, Zhou XJ, Wang Y, Wu Q, Winterberg PD, Nagami GT, Lu CY. Early interleukin 6 production by leukocytes during ischemic acute kidney injury is regulated by TLR4. Kidney Int 2011;80:504-15. [PMID: 21633411 DOI: 10.1038/ki.2011.140] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 3.8] [Reference Citation Analysis]
447 Lin Q, Fan C, Gomez-Arroyo J, Van Raemdonck K, Meuchel LW, Skinner JT, Everett AD, Fang X, Macdonald AA, Yamaji-Kegan K, Johns RA. HIMF (Hypoxia-Induced Mitogenic Factor) Signaling Mediates the HMGB1 (High Mobility Group Box 1)-Dependent Endothelial and Smooth Muscle Cell Crosstalk in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019;39:2505-19. [PMID: 31597444 DOI: 10.1161/ATVBAHA.119.312907] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
448 Wang TH, Xiong LL, Yang SF, You C, Xia QJ, Xu Y, Zhang P, Wang SF, Liu J. LPS Pretreatment Provides Neuroprotective Roles in Rats with Subarachnoid Hemorrhage by Downregulating MMP9 and Caspase3 Associated with TLR4 Signaling Activation. Mol Neurobiol 2017;54:7746-60. [PMID: 27844284 DOI: 10.1007/s12035-016-0259-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
449 Alven A, Lema C, Redfern RL. Impact of Low Humidity on Damage-associated Molecular Patterns at the Ocular Surface during Dry Eye Disease. Optom Vis Sci 2021;98:1231-8. [PMID: 34510151 DOI: 10.1097/OPX.0000000000001802] [Reference Citation Analysis]
450 Qing X, Pitashny M, Thomas DB, Barrat FJ, Hogarth MP, Putterman C. Pathogenic anti-DNA antibodies modulate gene expression in mesangial cells: involvement of HMGB1 in anti-DNA antibody-induced renal injury. Immunol Lett 2008;121:61-73. [PMID: 18822317 DOI: 10.1016/j.imlet.2008.08.007] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 4.7] [Reference Citation Analysis]
451 Abdulmahdi W, Patel D, Rabadi MM, Azar T, Jules E, Lipphardt M, Hashemiyoon R, Ratliff BB. HMGB1 redox during sepsis. Redox Biol. 2017;13:600-607. [PMID: 28806702 DOI: 10.1016/j.redox.2017.08.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
452 Słotwiński R, Słotwińska SM. Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer. Cent Eur J Immunol 2016;41:404-18. [PMID: 28450804 DOI: 10.5114/ceji.2016.65140] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
453 Pallottie A, Ratnayake A, Ni L, Acioglu C, Li L, Mirabelli E, Heary RF, Elkabes S. A toll-like receptor 9 antagonist restores below-level glial glutamate transporter expression in the dorsal horn following spinal cord injury. Sci Rep 2018;8:8723. [PMID: 29880832 DOI: 10.1038/s41598-018-26915-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
454 Vande Walle L, Kanneganti TD, Lamkanfi M. HMGB1 release by inflammasomes. Virulence 2011;2:162-5. [PMID: 21422809 DOI: 10.4161/viru.2.2.15480] [Cited by in Crossref: 74] [Cited by in F6Publishing: 73] [Article Influence: 6.7] [Reference Citation Analysis]
455 Wang F, Lu Z, Hawkes M, Yang H, Kain KC, Liles WC. Fas (CD95) induces rapid, TLR4/IRAK4-dependent release of pro-inflammatory HMGB1 from macrophages. J Inflamm (Lond) 2010;7:30. [PMID: 20565784 DOI: 10.1186/1476-9255-7-30] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.2] [Reference Citation Analysis]
456 Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res Ther 2011;13:R71. [PMID: 21548924 DOI: 10.1186/ar3332] [Cited by in Crossref: 107] [Cited by in F6Publishing: 102] [Article Influence: 9.7] [Reference Citation Analysis]
457 Słotwiński R, Sarnecka A, Dąbrowska A, Kosałka K, Wachowska E, Bałan BJ, Jankowska M, Korta T, Niewiński G, Kański A, Mikaszewska-Sokolewicz M, Omidi M, Majewska K, Słotwińska SM. Innate immunity gene expression changes in critically ill patients with sepsis and disease-related malnutrition. Cent Eur J Immunol 2015;40:311-24. [PMID: 26648775 DOI: 10.5114/ceji.2015.54593] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
458 Banerjee S, Friggeri A, Liu G, Abraham E. The C-terminal acidic tail is responsible for the inhibitory effects of HMGB1 on efferocytosis. J Leukoc Biol 2010;88:973-9. [PMID: 20682624 DOI: 10.1189/jlb.0510262] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 3.1] [Reference Citation Analysis]
459 Alquraini A, Garguilo S, D'Souza G, Zhang LX, Schmidt TA, Jay GD, Elsaid KA. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther 2015;17:353. [PMID: 26643105 DOI: 10.1186/s13075-015-0877-x] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 7.7] [Reference Citation Analysis]
460 Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15:635-645. [PMID: 22560216 DOI: 10.1016/j.cmet.2012.04.001] [Cited by in Crossref: 491] [Cited by in F6Publishing: 473] [Article Influence: 49.1] [Reference Citation Analysis]
461 Pandey S, Singh S, Anang V, Bhatt AN, Natarajan K, Dwarakanath BS. Pattern Recognition Receptors in Cancer Progression and Metastasis. Cancer Growth Metastasis 2015;8:25-34. [PMID: 26279628 DOI: 10.4137/CGM.S24314] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 5.9] [Reference Citation Analysis]
462 Toubai T, Mathewson ND, Magenau J, Reddy P. Danger Signals and Graft-versus-host Disease: Current Understanding and Future Perspectives. Front Immunol 2016;7:539. [PMID: 27965667 DOI: 10.3389/fimmu.2016.00539] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
463 Chen XL, Sun L, Guo F, Wang F, Liu S, Liang X, Wang RS, Wang YJ, Sun YX. High-mobility group box-1 induces proinflammatory cytokines production of Kupffer cells through TLRs-dependent signaling pathway after burn injury. PLoS One 2012;7:e50668. [PMID: 23209806 DOI: 10.1371/journal.pone.0050668] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
464 Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 2011;70:646-56. [PMID: 22028224 DOI: 10.1002/ana.22528] [Cited by in Crossref: 109] [Cited by in F6Publishing: 97] [Article Influence: 10.9] [Reference Citation Analysis]
465 Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol 2020. [PMID: 32740860 DOI: 10.1007/s12016-020-08804-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 35] [Article Influence: 12.5] [Reference Citation Analysis]
466 Thomas LM, Salter RD. Activation of macrophages by P2X7-induced microvesicles from myeloid cells is mediated by phospholipids and is partially dependent on TLR4. J Immunol 2010;185:3740-9. [PMID: 20709956 DOI: 10.4049/jimmunol.1001231] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 3.8] [Reference Citation Analysis]
467 Stridh L, Smith PL, Naylor AS, Wang X, Mallard C. Regulation of toll-like receptor 1 and -2 in neonatal mice brains after hypoxia-ischemia. J Neuroinflammation 2011;8:45. [PMID: 21569241 DOI: 10.1186/1742-2094-8-45] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 4.4] [Reference Citation Analysis]
468 Parajuli B, Sonobe Y, Kawanokuchi J, Doi Y, Noda M, Takeuchi H, Mizuno T, Suzumura A. GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J Neuroinflammation. 2012;9:268. [PMID: 23234315 DOI: 10.1186/1742-2094-9-268] [Cited by in Crossref: 81] [Cited by in F6Publishing: 85] [Article Influence: 8.1] [Reference Citation Analysis]
469 Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol. 2007;147:199-207. [PMID: 17223959 DOI: 10.1111/j.1365-2249.2006.03203.x] [Cited by in Crossref: 120] [Cited by in F6Publishing: 109] [Article Influence: 8.0] [Reference Citation Analysis]
470 Chirico V, Lacquaniti A, Salpietro V, Munafò C, Calabrò MP, Buemi M, Arrigo T, Salpietro C. High-mobility group box 1 (HMGB1) in childhood: from bench to bedside. Eur J Pediatr. 2014;173:1123-1136. [PMID: 24809802 DOI: 10.1007/s00431-014-2327-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
471 Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010;2010. [PMID: 20706656 DOI: 10.1155/2010/672395] [Cited by in Crossref: 496] [Cited by in F6Publishing: 515] [Article Influence: 41.3] [Reference Citation Analysis]
472 Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009;29:13435-44. [PMID: 19864556 DOI: 10.1523/JNEUROSCI.3257-09.2009] [Cited by in Crossref: 1287] [Cited by in F6Publishing: 837] [Article Influence: 99.0] [Reference Citation Analysis]
473 Han L, Zhang M, Wang M, Jia J, Zhao M, Fan Y, Li X. High Mobility Group Box-1 Promotes Inflammation-Induced Lymphangiogenesis via Toll-Like Receptor 4-Dependent Signalling Pathway. PLoS One 2016;11:e0154187. [PMID: 27100831 DOI: 10.1371/journal.pone.0154187] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
474 Feng Y, Chao W. Toll-like receptors and myocardial inflammation. Int J Inflam 2011;2011:170352. [PMID: 21977329 DOI: 10.4061/2011/170352] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 4.0] [Reference Citation Analysis]
475 Lewis BW, Patial S, Saini Y. Immunopathology of Airway Surface Liquid Dehydration Disease. J Immunol Res 2019;2019:2180409. [PMID: 31396541 DOI: 10.1155/2019/2180409] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
476 Liou TG, Adler FR, Keogh RH, Li Y, Jensen JL, Walsh W, Packer K, Clark T, Carveth H, Chen J, Rogers SL, Lane C, Moore J, Sturrock A, Paine R 3rd, Cox DR, Hoidal JR. Sputum biomarkers and the prediction of clinical outcomes in patients with cystic fibrosis. PLoS One 2012;7:e42748. [PMID: 22916155 DOI: 10.1371/journal.pone.0042748] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 4.0] [Reference Citation Analysis]
477 Ahmed A, Redmond HP, Wang JH. Links between Toll-like receptor 4 and breast cancer. Oncoimmunology 2013;2:e22945. [PMID: 23526132 DOI: 10.4161/onci.22945] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
478 Yang X, Guo Z, Cao F, Teng Z, Huang Z, Sun X. Rs41291957 polymorphism in the promoter region of microRNA‑143 serves as a prognostic biomarker for patients with intracranial hemorrhage. Mol Med Rep 2021;23:295. [PMID: 33649782 DOI: 10.3892/mmr.2021.11928] [Reference Citation Analysis]
479 Liu X, Cao H, Li J, Wang B, Zhang P, Dong Zhang X, Liu Z, Yuan H, Zhan Z. Autophagy induced by DAMPs facilitates the inflammation response in lungs undergoing ischemia-reperfusion injury through promoting TRAF6 ubiquitination. Cell Death Differ 2017;24:683-93. [PMID: 28157209 DOI: 10.1038/cdd.2017.1] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 9.4] [Reference Citation Analysis]
480 Shakespear MR, Hohenhaus DM, Kelly GM, Kamal NA, Gupta P, Labzin LI, Schroder K, Garceau V, Barbero S, Iyer A, Hume DA, Reid RC, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages. J Biol Chem 2013;288:25362-74. [PMID: 23853092 DOI: 10.1074/jbc.M113.496281] [Cited by in Crossref: 54] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
481 Sparatore B, Patrone M, Passalacqua M, Pedrazzi M, Ledda S, Pontremoli S, Melloni E. Activation of A431 human carcinoma cell motility by extracellular high-mobility group box 1 protein and epidermal growth factor stimuli. Biochem J 2005;389:215-21. [PMID: 15733057 DOI: 10.1042/BJ20050053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
482 Hayward JH, Lee SJ. A Decade of Research on TLR2 Discovering Its Pivotal Role in Glial Activation and Neuroinflammation in Neurodegenerative Diseases. Exp Neurobiol. 2014;23:138-147. [PMID: 24963278 DOI: 10.5607/en.2014.23.2.138] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 5.4] [Reference Citation Analysis]
483 Christo SN, Diener KR, Bachhuka A, Vasilev K, Hayball JD. Innate Immunity and Biomaterials at the Nexus: Friends or Foes. Biomed Res Int 2015;2015:342304. [PMID: 26247017 DOI: 10.1155/2015/342304] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 8.9] [Reference Citation Analysis]
484 Kaczorowski DJ, Scott MJ, Pibris JP, Afrazi A, Nakao A, Edmonds RD, Kim S, Kwak JH, Liu Y, Fan J, Billiar TR. Mammalian DNA is an endogenous danger signal that stimulates local synthesis and release of complement factor B. Mol Med 2012;18:851-60. [PMID: 22526919 DOI: 10.2119/molmed.2012.00011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
485 Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol. 2013;4:138. [PMID: 23772226 DOI: 10.3389/fimmu.2013.00138] [Cited by in Crossref: 103] [Cited by in F6Publishing: 85] [Article Influence: 11.4] [Reference Citation Analysis]
486 Creagh-Brown BC, Quinlan GJ, Evans TW, Burke-Gaffney A. The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction: an important therapeutic target? Intensive Care Med 2010;36:1644-56. [PMID: 20631986 DOI: 10.1007/s00134-010-1952-z] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 4.3] [Reference Citation Analysis]
487 Coleman LG Jr, Crews FT. Innate Immune Signaling and Alcohol Use Disorders. Handb Exp Pharmacol 2018;248:369-96. [PMID: 29500721 DOI: 10.1007/164_2018_92] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 11.7] [Reference Citation Analysis]
488 Chen Y, Akirav EM, Chen W, Henegariu O, Moser B, Desai D, Shen JM, Webster JC, Andrews RC, Mjalli AM, Rothlein R, Schmidt AM, Clynes R, Herold KC. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol 2008;181:4272-8. [PMID: 18768885 DOI: 10.4049/jimmunol.181.6.4272] [Cited by in Crossref: 90] [Cited by in F6Publishing: 90] [Article Influence: 6.4] [Reference Citation Analysis]
489 Kudo D, Toyama M, Aoyagi T, Akahori Y, Yamamoto H, Ishii K, Kanno E, Maruyama R, Kaku M, Kushimoto S, Kawakami K. Involvement of high mobility group box 1 and the therapeutic effect of recombinant thrombomodulin in a mouse model of severe acute respiratory distress syndrome. Clin Exp Immunol 2013;173:276-87. [PMID: 23607598 DOI: 10.1111/cei.12106] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
490 Alcamo AM, Pang D, Bashir DA, Carcillo JA, Nguyen TC, Aneja RK. Role of Damage-Associated Molecular Patterns and Uncontrolled Inflammation in Pediatric Sepsis-Induced Multiple Organ Dysfunction Syndrome. J Pediatr Intensive Care 2019;8:25-31. [PMID: 31073505 DOI: 10.1055/s-0038-1675639] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
491 Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G, Nawroth PP, Bierhaus A. The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci. 2008;28:12023-12031. [PMID: 19005067 DOI: 10.1523/JNEUROSCI.2435-08.2008] [Cited by in Crossref: 271] [Cited by in F6Publishing: 153] [Article Influence: 20.8] [Reference Citation Analysis]
492 Zhao G, Fu C, Wang L, Zhu L, Yan Y, Xiang Y, Zheng F, Gong F, Chen S, Chen G. Down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 translocation and release and protects against liver ischemia-reperfusion injury. Sci Rep 2017;7:46272. [PMID: 28382970 DOI: 10.1038/srep46272] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
493 Komori T. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes. Int J Mol Sci 2016;17:E2045. [PMID: 27929439 DOI: 10.3390/ijms17122045] [Cited by in Crossref: 55] [Cited by in F6Publishing: 46] [Article Influence: 9.2] [Reference Citation Analysis]
494 Ishikawa G, Liu A, Herzog EL. Evolving Perspectives on Innate Immune Mechanisms of IPF. Front Mol Biosci 2021;8:676569. [PMID: 34434962 DOI: 10.3389/fmolb.2021.676569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
495 Tsai CS, Lin FY, Liu YC, Lin YW, Tsai YT, Huang CY, Lin SJ, Li CY, Lin CY, Tseng HT, Shih CM. Transferring Plasmon Effect on a Biological System: Expression of Biological Polymers in Chronic Rejection and Inflammatory Rat Model. Polymers (Basel) 2021;13:1827. [PMID: 34072966 DOI: 10.3390/polym13111827] [Reference Citation Analysis]
496 Kawabe T, Sher A. Memory-phenotype CD4 + T cells: a naturally arising T lymphocyte population possessing innate immune function. Int Immunol 2021:dxab108. [PMID: 34897483 DOI: 10.1093/intimm/dxab108] [Reference Citation Analysis]
497 Xiang M, Shi X, Li Y, Xu J, Yin L, Xiao G, Scott MJ, Billiar TR, Wilson MA, Fan J. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J Immunol 2011;187:4809-17. [PMID: 21940680 DOI: 10.4049/jimmunol.1102093] [Cited by in Crossref: 98] [Cited by in F6Publishing: 106] [Article Influence: 8.9] [Reference Citation Analysis]
498 Lu M, Yu S, Xu W, Gao B, Xiong S. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response. J Immunol Res 2015;2015:946748. [PMID: 26078984 DOI: 10.1155/2015/946748] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
499 Ditsworth D, Zong WX, Thompson CB. Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 2007;282:17845-54. [PMID: 17430886 DOI: 10.1074/jbc.M701465200] [Cited by in Crossref: 134] [Cited by in F6Publishing: 82] [Article Influence: 8.9] [Reference Citation Analysis]
500 Akamatsu Y, Pagan VA, Hanafy KA. The role of TLR4 and HO-1 in neuroinflammation after subarachnoid hemorrhage. J Neurosci Res 2020;98:549-56. [PMID: 31468571 DOI: 10.1002/jnr.24515] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
501 Ma J, Chen C, Barth AS, Cheadle C, Guan X, Gao L. Lysosome and Cytoskeleton Pathways Are Robustly Enriched in the Blood of Septic Patients: A Meta-Analysis of Transcriptomic Data. Mediators Inflamm 2015;2015:984825. [PMID: 26063982 DOI: 10.1155/2015/984825] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
502 Vetreno RP, Crews FT. Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and Toll-like receptors in the adult prefrontal cortex. Neuroscience 2012;226:475-88. [PMID: 22986167 DOI: 10.1016/j.neuroscience.2012.08.046] [Cited by in Crossref: 110] [Cited by in F6Publishing: 110] [Article Influence: 11.0] [Reference Citation Analysis]
503 Zaher TE, Miller EJ, Morrow DM, Javdan M, Mantell LL. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 2007;42:897-908. [PMID: 17349918 DOI: 10.1016/j.freeradbiomed.2007.01.021] [Cited by in Crossref: 103] [Cited by in F6Publishing: 98] [Article Influence: 6.9] [Reference Citation Analysis]
504 Huang QQ, Pope RM. The role of toll-like receptors in rheumatoid arthritis. Curr Rheumatol Rep 2009;11:357-64. [PMID: 19772831 DOI: 10.1007/s11926-009-0051-z] [Cited by in Crossref: 143] [Cited by in F6Publishing: 147] [Article Influence: 11.0] [Reference Citation Analysis]
505 Bauer EM, Shapiro R, Billiar TR, Bauer PM. High mobility group Box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4- and interferon response factor 3-dependent mechanism(s). J Biol Chem 2013;288:1365-73. [PMID: 23148224 DOI: 10.1074/jbc.M112.434142] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
506 McClure R, Massari P. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens. Front Immunol. 2014;5:386. [PMID: 25161655 DOI: 10.3389/fimmu.2014.00386] [Cited by in Crossref: 127] [Cited by in F6Publishing: 120] [Article Influence: 15.9] [Reference Citation Analysis]
507 de Oliveira Gomes CG, de Andrade MVM, Guedes LR, Rocha HC, Guimarães RG, Carvalho FAC, Vilela EG. Evaluation of the Biomarkers HMGB1 and IL-6 as Predictors of Mortality in Cirrhotic Patients with Acute Kidney Injury. Mediators Inflamm 2020;2020:2867241. [PMID: 33061824 DOI: 10.1155/2020/2867241] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
508 Voynow JA, Zheng S, Kummarapurugu AB. Glycosaminoglycans as Multifunctional Anti-Elastase and Anti-Inflammatory Drugs in Cystic Fibrosis Lung Disease. Front Pharmacol 2020;11:1011. [PMID: 32733248 DOI: 10.3389/fphar.2020.01011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
509 Goulopoulou S, McCarthy CG, Webb RC. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev 2016;68:142-67. [PMID: 26721702 DOI: 10.1124/pr.114.010090] [Cited by in Crossref: 108] [Cited by in F6Publishing: 101] [Article Influence: 18.0] [Reference Citation Analysis]
510 Ren WH, Zhang LM, Liu HQ, Gao L, Chen C, Qiang C, Wang XL, Liu CY, Li SM, Huang C, Qi H, Zhi KQ. Protein overexpression of CIRP and TLR4 in oral squamous cell carcinoma: an immunohistochemical and clinical correlation analysis. Med Oncol 2014;31:120. [PMID: 25027624 DOI: 10.1007/s12032-014-0120-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
511 Iwatake A, Murakami A, Ebihara N. The expression of matrix metalloproteinases and their inhibitors in corneal fibroblasts by alarmins from necrotic corneal epithelial cells. Jpn J Ophthalmol 2018;62:92-100. [PMID: 29094325 DOI: 10.1007/s10384-017-0541-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
512 Rowe SM, Jackson PL, Liu G, Hardison M, Livraghi A, Solomon GM, McQuaid DB, Noerager BD, Gaggar A, Clancy JP, O'Neal W, Sorscher EJ, Abraham E, Blalock JE. Potential role of high-mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med 2008;178:822-31. [PMID: 18658107 DOI: 10.1164/rccm.200712-1894OC] [Cited by in Crossref: 76] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
513 Ye Y, Zeng Z, Jin T, Zhang H, Xiong X, Gu L. The Role of High Mobility Group Box 1 in Ischemic Stroke. Front Cell Neurosci 2019;13:127. [PMID: 31001089 DOI: 10.3389/fncel.2019.00127] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
514 Luo Y, Li J, Wang B, Zhang Q, Bian Y, Wang R. Protective effect of glycyrrhizin on osteoarthritis cartilage degeneration and inflammation response in a rat model. J Bioenerg Biomembr 2021;53:285-93. [PMID: 33725224 DOI: 10.1007/s10863-021-09889-1] [Reference Citation Analysis]
515 Lu Y, Bhushan S, Tchatalbachev S, Marconi M, Bergmann M, Weidner W, Chakraborty T, Meinhardt A. Necrosis is the dominant cell death pathway in uropathogenic Escherichia coli elicited epididymo-orchitis and is responsible for damage of rat testis. PLoS One 2013;8:e52919. [PMID: 23301002 DOI: 10.1371/journal.pone.0052919] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 4.2] [Reference Citation Analysis]
516 Coveney AP, Wang W, Kelly J, Liu JH, Blankson S, Wu QD, Redmond HP, Wang JH. Myeloid-related protein 8 induces self-tolerance and cross-tolerance to bacterial infection via TLR4- and TLR2-mediated signal pathways. Sci Rep 2015;5:13694. [PMID: 26329314 DOI: 10.1038/srep13694] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
517 Liang Y, Hou C, Kong J, Wen H, Zheng X, Wu L, Huang H, Chen Y. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem 2015;405:63-71. [PMID: 25862459 DOI: 10.1007/s11010-015-2396-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
518 Chen L, Guo S, Ranzer MJ, DiPietro LA. Toll-like receptor 4 has an essential role in early skin wound healing. J Invest Dermatol 2013;133:258-67. [PMID: 22951730 DOI: 10.1038/jid.2012.267] [Cited by in Crossref: 99] [Cited by in F6Publishing: 94] [Article Influence: 9.9] [Reference Citation Analysis]
519 Cho IH, Hong J, Suh EC, Kim JH, Lee H, Lee JE, Lee S, Kim CH, Kim DW, Jo EK, Lee KE, Karin M, Lee SJ. Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 2008;131:3019-33. [PMID: 18819987 DOI: 10.1093/brain/awn230] [Cited by in Crossref: 113] [Cited by in F6Publishing: 116] [Article Influence: 8.1] [Reference Citation Analysis]
520 Bamboat ZM, Balachandran VP, Ocuin LM, Obaid H, Plitas G, DeMatteo RP. Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injury. Hepatology. 2010;51:621-632. [PMID: 19902481 DOI: 10.1002/hep.23365] [Cited by in Crossref: 144] [Cited by in F6Publishing: 139] [Article Influence: 12.0] [Reference Citation Analysis]
521 Daringer NM, Schwarz KA, Leonard JN. Contributions of unique intracellular domains to switchlike biosensing by Toll-like receptor 4. J Biol Chem 2015;290:8764-77. [PMID: 25694428 DOI: 10.1074/jbc.M114.610063] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
522 Pourrajab F, Yazdi MB, Zarch MB, Zarch MB, Hekmatimoghaddam S. Cross talk of the first-line defense TLRs with PI3K/Akt pathway, in preconditioning therapeutic approach. Mol Cell Ther. 2015;3:4. [PMID: 26056605 DOI: 10.1186/s40591-015-0041-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
523 Castillo EJ, Messer JG, Abraham AM, Jiron JM, Alekseyenko AV, Israel R, Thomas S, Gonzalez-Perez GM, Croft S, Gohel A, Bhattacharyya I, Yarrow JF, Novince CM, Kimmel DB, Aguirre JI. Preventing or controlling periodontitis reduces the occurrence of osteonecrosis of the jaw (ONJ) in rice rats (Oryzomys palustris). Bone 2021;145:115866. [PMID: 33515777 DOI: 10.1016/j.bone.2021.115866] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
524 Masai K, Kuroda K, Isooka N, Kikuoka R, Murakami S, Kamimai S, Wang D, Liu K, Miyazaki I, Nishibori M, Asanuma M. Neuroprotective Effects of Anti-high Mobility Group Box-1 Monoclonal Antibody Against Methamphetamine-Induced Dopaminergic Neurotoxicity. Neurotox Res 2021;39:1511-23. [PMID: 34417986 DOI: 10.1007/s12640-021-00402-5] [Reference Citation Analysis]
525 Jaiswal MK, Agrawal V, Mallers T, Gilman-Sachs A, Hirsch E, Beaman KD. Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor. J Immunol 2013;191:5702-13. [PMID: 24163412 DOI: 10.4049/jimmunol.1301604] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 5.8] [Reference Citation Analysis]
526 Kikuchi K, Uchikado H, Miura N, Morimoto Y, Ito T, Tancharoen S, Miyata K, Sakamoto R, Kikuchi C, Iida N, Shiomi N, Kuramoto T, Miyagi N, Kawahara KI. HMGB1 as a therapeutic target in spinal cord injury: A hypothesis for novel therapy development. Exp Ther Med 2011;2:767-70. [PMID: 22977572 DOI: 10.3892/etm.2011.310] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
527 Yi MC, Khosla C. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment. Annu Rev Chem Biomol Eng 2016;7:197-222. [PMID: 27023663 DOI: 10.1146/annurev-chembioeng-080615-033553] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
528 Vogel S, Börger V, Peters C, Förster M, Liebfried P, Metzger K, Meisel R, Däubener W, Trapp T, Fischer JC, Gawaz M, Sorg RV. Necrotic cell-derived high mobility group box 1 attracts antigen-presenting cells but inhibits hepatocyte growth factor-mediated tropism of mesenchymal stem cells for apoptotic cell death. Cell Death Differ 2015;22:1219-30. [PMID: 25571972 DOI: 10.1038/cdd.2014.225] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
529 Kuroiwa Y, Takakusagi Y, Kusayanagi T, Kuramochi K, Imai T, Hirayama T, Ito I, Yoshida M, Sakaguchi K, Sugawara F. Identification and characterization of the direct interaction between methotrexate (MTX) and high-mobility group box 1 (HMGB1) protein. PLoS One 2013;8:e63073. [PMID: 23658798 DOI: 10.1371/journal.pone.0063073] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
530 Lee SM, Kim P, You J, Kim EH. Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses 2021;13:2340. [PMID: 34960608 DOI: 10.3390/v13122340] [Reference Citation Analysis]
531 Kornblit B, Enevold C, Wang T, Spellman S, Haagenson M, Lee SJ, Müller K. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2015;21:259-65. [PMID: 25464115 DOI: 10.1016/j.bbmt.2014.09.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
532 Aguirre JI, Castillo EJ, Kimmel DB. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021;153:116168. [PMID: 34487892 DOI: 10.1016/j.bone.2021.116168] [Reference Citation Analysis]
533 Fukazawa K, Lee HT. Updates on Hepato-Renal Syndrome. J Anesth Clin Res. 2013;4:352. [PMID: 24459604 DOI: 10.4172/2155-6148.1000352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 0.2] [Reference Citation Analysis]
534 Brennan GP, Garcia-Curran MM, Patterson KP, Luo R, Baram TZ. Multiple Disruptions of Glial-Neuronal Networks in Epileptogenesis That Follows Prolonged Febrile Seizures. Front Neurol 2021;12:615802. [PMID: 33679583 DOI: 10.3389/fneur.2021.615802] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
535 Devarapu SK, Anders HJ. Toll-like receptors in lupus nephritis. J Biomed Sci 2018;25:35. [PMID: 29650017 DOI: 10.1186/s12929-018-0436-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
536 Thomas PL, Nangami G, Rana T, Evans A, Williams SD, Crowell D, Shanker A, Sakwe AM, Ochieng J. The rapid endocytic uptake of fetuin-A by adherent tumor cells is mediated by Toll-like receptor 4 (TLR4). FEBS Open Bio 2020;10:2722-32. [PMID: 33073533 DOI: 10.1002/2211-5463.13008] [Reference Citation Analysis]
537 Min H, Choi B, Jang YH, Cho IH, Lee SJ. Heme molecule functions as an endogenous agonist of astrocyte TLR2 to contribute to secondary brain damage after intracerebral hemorrhage. Mol Brain 2017;10:27. [PMID: 28646881 DOI: 10.1186/s13041-017-0305-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
538 Tang D, Kang R, Xiao W, Zhang H, Lotze MT, Wang H, Xiao X. Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am J Respir Cell Mol Biol 2009;41:651-60. [PMID: 19265175 DOI: 10.1165/rcmb.2008-0119OC] [Cited by in Crossref: 81] [Cited by in F6Publishing: 45] [Article Influence: 6.2] [Reference Citation Analysis]
539 Song X, Zhang H, Zhao Y, Lin Y, Tang Q, Zhou X, Zhong X. HMGB1 Activates Myeloid Dendritic Cells by Up-Regulating mTOR Pathway in Systemic Lupus Erythematosus. Front Med (Lausanne) 2021;8:636188. [PMID: 34164408 DOI: 10.3389/fmed.2021.636188] [Reference Citation Analysis]
540 Zettel K, Korff S, Zamora R, Morelli AE, Darwiche S, Loughran PA, Elson G, Shang L, Salgado-Pires S, Scott MJ, Vodovotz Y, Billiar TR. Toll-Like Receptor 4 on both Myeloid Cells and Dendritic Cells Is Required for Systemic Inflammation and Organ Damage after Hemorrhagic Shock with Tissue Trauma in Mice. Front Immunol 2017;8:1672. [PMID: 29234326 DOI: 10.3389/fimmu.2017.01672] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
541 Rosenberger K, Dembny P, Derkow K, Engel O, Krüger C, Wolf SA, Kettenmann H, Schott E, Meisel A, Lehnardt S. Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Mol Neurodegener 2015;10:5. [PMID: 25887709 DOI: 10.1186/s13024-015-0003-1] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
542 Bae JS, Rezaie AR. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Rep 2013;46:544-9. [PMID: 24152910 DOI: 10.5483/bmbrep.2013.46.11.056] [Cited by in Crossref: 35] [Cited by in F6Publishing: 12] [Article Influence: 4.4] [Reference Citation Analysis]
543 Yang EJ, Ku SK, Lee W, Song KS, Bae JS. Inhibitory effects of polyozellin from Polyozellus multiplex on HMGB1-mediated septic responses. Inflamm Res 2015;64:733-46. [PMID: 26206236 DOI: 10.1007/s00011-015-0856-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
544 Carniglia L, Ramírez D, Durand D, Saba J, Caruso C, Lasaga M. [Nle4, D-Phe7]-α-MSH Inhibits Toll-Like Receptor (TLR)2- and TLR4-Induced Microglial Activation and Promotes a M2-Like Phenotype. PLoS One 2016;11:e0158564. [PMID: 27359332 DOI: 10.1371/journal.pone.0158564] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
545 Weber B, Lackner I, Baur M, Fois G, Gebhard F, Marzi I, Schrezenmeier H, Relja B, Kalbitz M. Effects of Circulating HMGB-1 and Histones on Cardiomyocytes-Hemadsorption of These DAMPs as Therapeutic Strategy after Multiple Trauma. J Clin Med 2020;9:E1421. [PMID: 32403440 DOI: 10.3390/jcm9051421] [Reference Citation Analysis]
546 Piao W, Song C, Chen H, Diaz MA, Wahl LM, Fitzgerald KA, Li L, Medvedev AE. Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-beta-dependent pathways and increases expression of negative regulators of TLR signaling. J Leukoc Biol. 2009;86:863-875. [PMID: 19656901 DOI: 10.1189/jlb.0309189] [Cited by in Crossref: 94] [Cited by in F6Publishing: 94] [Article Influence: 7.2] [Reference Citation Analysis]
547 Krüger B, Yin N, Zhang N, Yadav A, Coward W, Lal G, Zang W, S Heeger P, Bromberg JS, Murphy B, Schröppel B. Islet-expressed TLR2 and TLR4 sense injury and mediate early graft failure after transplantation. Eur J Immunol 2010;40:2914-24. [PMID: 20809521 DOI: 10.1002/eji.201040601] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 3.7] [Reference Citation Analysis]
548 Bystrom P, Foley N, Toledo-Pereyra L, Quesnelle K. Ischemic preconditioning modulates ROS to confer protection in liver ischemia and reperfusion. EXCLI J 2017;16:483-96. [PMID: 28694752 DOI: 10.17179/excli2017-166] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
549 Tang D, Kang R, Zeh HJ, Lotze MT. High-mobility group box 1 and cancer. Biochim Biophys Acta. 2010;1799:131-140. [PMID: 20123075 DOI: 10.1016/j.bbagrm.2009.11.014] [Cited by in Crossref: 334] [Cited by in F6Publishing: 345] [Article Influence: 27.8] [Reference Citation Analysis]
550 Oyama Y, Hashiguchi T, Taniguchi N, Tancharoen S, Uchimura T, Biswas KK, Kawahara K, Nitanda T, Umekita Y, Lotz M, Maruyama I. High-mobility group box-1 protein promotes granulomatous nephritis in adenine-induced nephropathy. Lab Invest 2010;90:853-66. [PMID: 20231821 DOI: 10.1038/labinvest.2010.64] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.0] [Reference Citation Analysis]
551 Mullick AE, Tobias PS, Curtiss LK. Toll-like receptors and atherosclerosis: key contributors in disease and health? Immunol Res 2006;34:193-209. [PMID: 16891671 DOI: 10.1385/IR:34:3:193] [Cited by in Crossref: 54] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
552 Gao S, Wake H, Sakaguchi M, Wang D, Takahashi Y, Teshigawara K, Zhong H, Mori S, Liu K, Takahashi H, Nishibori M. Histidine-Rich Glycoprotein Inhibits High-Mobility Group Box-1-Mediated Pathways in Vascular Endothelial Cells through CLEC-1A. iScience 2020;23:101180. [PMID: 32498020 DOI: 10.1016/j.isci.2020.101180] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
553 El Gazzar M, Yoza BK, Chen X, Garcia BA, Young NL, McCall CE. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol. 2009;29:1959-1971. [PMID: 19158276 DOI: 10.1128/mcb.01862-08] [Cited by in Crossref: 103] [Cited by in F6Publishing: 68] [Article Influence: 7.9] [Reference Citation Analysis]
554 Waller K, James C, de Jong A, Blackmore L, Ma Y, Stagg A, Kelsell D, O'Dwyer M, Hutchins R, Alazawi W. ADAM17-Mediated Reduction in CD14++CD16+ Monocytes ex vivo and Reduction in Intermediate Monocytes With Immune Paresis in Acute Pancreatitis and Acute Alcoholic Hepatitis. Front Immunol 2019;10:1902. [PMID: 31507587 DOI: 10.3389/fimmu.2019.01902] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
555 Jaeschke H, Adelusi OB, Akakpo JY, Nguyen NT, Sanchez-guerrero G, Umbaugh DS, Ding W, Ramachandran A. Recommendations for the use of the acetaminophen hepatotoxicity model for mechanistic studies and how to avoid common pitfalls. Acta Pharmaceutica Sinica B 2021;11:3740-55. [DOI: 10.1016/j.apsb.2021.09.023] [Reference Citation Analysis]
556 Saenz R, Futalan D, Leutenez L, Eekhout F, Fecteau JF, Sundelius S, Sundqvist S, Larsson M, Hayashi T, Minev B, Carson D, Esener S, Messmer B, Messmer D. TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J Transl Med. 2014;12:211. [PMID: 25123824 DOI: 10.1186/1479-5876-12-211] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 5.9] [Reference Citation Analysis]
557 Chen X, Zhang L, Zhang IY, Liang J, Wang H, Ouyang M, Wu S, da Fonseca ACC, Weng L, Yamamoto Y, Yamamoto H, Natarajan R, Badie B. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res 2014;74:7285-97. [PMID: 25326491 DOI: 10.1158/0008-5472.CAN-14-1240] [Cited by in Crossref: 65] [Cited by in F6Publishing: 53] [Article Influence: 8.1] [Reference Citation Analysis]
558 Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int J Mol Sci 2021;22:5132. [PMID: 34066240 DOI: 10.3390/ijms22105132] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
559 Zhang JJ, Peng K, Zhang J, Meng XW, Ji FH. Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway. PLoS One 2017;12:e0172006. [PMID: 28222157 DOI: 10.1371/journal.pone.0172006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
560 Yang Z, Deng Y, Su D, Tian J, Gao Y, He Z, Wang X. TLR4 as receptor for HMGB1-mediated acute lung injury after liver ischemia/reperfusion injury. Lab Invest. 2013;93:792-800. [PMID: 23628899 DOI: 10.1038/labinvest.2013.66] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 5.7] [Reference Citation Analysis]
561 Sugita A, Kinoshita K, Sakurai A, Chiba N, Yamaguchi J, Kuwana T, Sawada N, Hori S. Systemic impact on secondary brain aggravation due to ischemia/reperfusion injury in post-cardiac arrest syndrome: a prospective observational study using high-mobility group box 1 protein. Crit Care 2017;21:247. [PMID: 28950909 DOI: 10.1186/s13054-017-1828-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
562 Gullo F, Amadeo A, Donvito G, Lecchi M, Costa B, Constanti A, Wanke E. Atypical "seizure-like" activity in cortical reverberating networks in vitro can be caused by LPS-induced inflammation: a multi-electrode array study from a hundred neurons. Front Cell Neurosci 2014;8:361. [PMID: 25404893 DOI: 10.3389/fncel.2014.00361] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
563 Tian Y, Chen R, Su Z. HMGB1 is a Potential and Challenging Therapeutic Target for Parkinson's Disease. Cell Mol Neurobiol 2021. [PMID: 34797463 DOI: 10.1007/s10571-021-01170-8] [Reference Citation Analysis]
564 Yoo H, Ku SK, Baek YD, Bae JS. Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm Res 2014;63:197-206. [PMID: 24292859 DOI: 10.1007/s00011-013-0689-x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 5.2] [Reference Citation Analysis]
565 Wakabayashi A, Shimizu M, Shinya E, Takahashi H. HMGB1 released from intestinal epithelia damaged by cholera toxin adjuvant contributes to activation of mucosal dendritic cells and induction of intestinal cytotoxic T lymphocytes and IgA. Cell Death Dis 2018;9:631. [PMID: 29795370 DOI: 10.1038/s41419-018-0665-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
566 van den Bosch MHJ. Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin Exp Immunol 2019;195:153-66. [PMID: 30421798 DOI: 10.1111/cei.13237] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
567 Lawrimore CJ, Coleman LG, Zou J, Crews FT. Ethanol Induction of Innate Immune Signals Across BV2 Microglia and SH-SY5Y Neuroblastoma Involves Induction of IL-4 and IL-13. Brain Sci 2019;9:E228. [PMID: 31510019 DOI: 10.3390/brainsci9090228] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
568 Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis. Expert Opin Ther Targets 2014;18:257-68. [PMID: 24392842 DOI: 10.1517/14728222.2014.863876] [Cited by in Crossref: 78] [Cited by in F6Publishing: 74] [Article Influence: 9.8] [Reference Citation Analysis]
569 Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: Toll-like receptors. Free Radic Biol Med. 2010;48:1121-1132. [PMID: 20083193 DOI: 10.1016/j.freeradbiomed.2010.01.006] [Cited by in Crossref: 329] [Cited by in F6Publishing: 326] [Article Influence: 27.4] [Reference Citation Analysis]
570 Böhm MR, Schallenberg M, Brockhaus K, Melkonyan H, Thanos S. The pro-inflammatory role of high-mobility group box 1 protein (HMGB-1) in photoreceptors and retinal explants exposed to elevated pressure. Lab Invest 2016;96:409-27. [PMID: 26779828 DOI: 10.1038/labinvest.2015.156] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
571 Ezz MA, Marey MA, Elweza AE, Kawai T, Heppelmann M, Pfarrer C, Balboula AZ, Montaser A, Imakawa K, Zaabel SM, Shimada M, Miyamoto A. TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro. PLoS One 2019;14:e0214516. [PMID: 30995239 DOI: 10.1371/journal.pone.0214516] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
572 Liu X, Ai F, Li H, Xu Q, Mei L, Miao J, Wen Q, Zhang C, Zhang S, Zhou J, Chen X, Chu C, Guo J. Anti-Inflammatory Effects of Shenfu Injection against Acute Lung Injury through Inhibiting HMGB1-NF-κB Pathway in a Rat Model of Endotoxin Shock. Evid Based Complement Alternat Med 2019;2019:9857683. [PMID: 31781288 DOI: 10.1155/2019/9857683] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
573 Yan SF, Ramasamy R, Schmidt AM. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med 2009;11:e9. [PMID: 19278572 DOI: 10.1017/S146239940900101X] [Cited by in Crossref: 89] [Cited by in F6Publishing: 49] [Article Influence: 6.8] [Reference Citation Analysis]
574 Alleva LM, Cai C, Clark IA. Using Complementary and Alternative Medicines to Target the Host Response during Severe Influenza. Evid Based Complement Alternat Med 2010;7:501-10. [PMID: 19779008 DOI: 10.1093/ecam/nep152] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
575 Weber MD, Frank MG, Tracey KJ, Watkins LR, Maier SF. Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci 2015;35:316-24. [PMID: 25568124 DOI: 10.1523/JNEUROSCI.3561-14.2015] [Cited by in Crossref: 131] [Cited by in F6Publishing: 83] [Article Influence: 18.7] [Reference Citation Analysis]
576 Osuka K, Watanabe Y, Usuda N, Iwami K, Miyachi S, Takayasu M. Expression of high mobility group B1 and toll-like receptor-nuclear factor κB signaling pathway in chronic subdural hematomas. PLoS One 2020;15:e0233643. [PMID: 32479555 DOI: 10.1371/journal.pone.0233643] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
577 Agalave NM, Svensson CI. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med 2015;20:569-78. [PMID: 25222915 DOI: 10.2119/molmed.2014.00176] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 7.3] [Reference Citation Analysis]
578 Romero R, Chaiworapongsa T, Alpay Savasan Z, Xu Y, Hussein Y, Dong Z, Kusanovic JP, Kim CJ, Hassan SS. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med 2011;24:1444-55. [PMID: 21958433 DOI: 10.3109/14767058.2011.591460] [Cited by in Crossref: 139] [Cited by in F6Publishing: 148] [Article Influence: 12.6] [Reference Citation Analysis]
579 Liu Z, Zhao S, Chen Q, Yan K, Liu P, Li N, Cheng CY, Lee WM, Han D. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice. Biol Reprod 2015;92:63. [PMID: 25588509 DOI: 10.1095/biolreprod.114.123901] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
580 Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323:1722-1725. [PMID: 19264983 DOI: 10.1126/science.1168988] [Cited by in Crossref: 452] [Cited by in F6Publishing: 444] [Article Influence: 34.8] [Reference Citation Analysis]
581 Wang C, Wang H, Chang DY, Hao J, Zhao MH, Chen M. High mobility group box 1 contributes to anti-neutrophil cytoplasmic antibody-induced neutrophils activation through receptor for advanced glycation end products (RAGE) and Toll-like receptor 4. Arthritis Res Ther 2015;17:64. [PMID: 25889374 DOI: 10.1186/s13075-015-0587-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
582 Uzawa A, Mori M, Taniguchi J, Masuda S, Muto M, Kuwabara S. Anti-high mobility group box 1 monoclonal antibody ameliorates experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2013;172:37-43. [PMID: 23480183 DOI: 10.1111/cei.12036] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
583 Song H, Feng Y, Hoeger S, Beck G, Hanusch C, Goettmann U, Leuvenink HG, Ploeg RJ, Hillebrands J, Yard BA. High mobility group box 1 and adenosine are both released by endothelial cells during hypothermic preservation. Clin Exp Immunol 2008;152:311-9. [PMID: 18341609 DOI: 10.1111/j.1365-2249.2008.03643.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
584 Bateman SL, Seed PC. Procession to pediatric bacteremia and sepsis: covert operations and failures in diplomacy. Pediatrics 2010;126:137-50. [PMID: 20566606 DOI: 10.1542/peds.2009-3169] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
585 Cox KH, Cox ME, Woo-Rasberry V, Hasty DL. Pathways involved in the synergistic activation of macrophages by lipoteichoic acid and hemoglobin. PLoS One 2012;7:e47333. [PMID: 23071790 DOI: 10.1371/journal.pone.0047333] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
586 Takei H, Baba Y, Hisatsune A, Katsuki H, Miyata T, Yokomizo K, Isohama Y. Glycyrrhizin inhibits interleukin-8 production and nuclear factor-kappaB activity in lung epithelial cells, but not through glucocorticoid receptors. J Pharmacol Sci 2008;106:460-8. [PMID: 18344608 DOI: 10.1254/jphs.fp0072378] [Cited by in Crossref: 40] [Cited by in F6Publishing: 14] [Article Influence: 2.9] [Reference Citation Analysis]
587 Mavragani IV, Laskaratou DA, Frey B, Candéias SM, Gaipl US, Lumniczky K, Georgakilas AG. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res (Camb) 2016;5:12-33. [PMID: 30090323 DOI: 10.1039/c5tx00222b] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
588 Hiramoto K, Yamate Y, Goto K, Ohnishi S, Morita A, Yoshikawa N, Kawanishi S. Glycyrrhizin ameliorates melanoma cell extravasation into mouse lungs by regulating signal transduction through HMGB1 and its receptors. J Clin Biochem Nutr 2021;69:52-60. [PMID: 34376914 DOI: 10.3164/jcbn.20-125] [Reference Citation Analysis]
589 Pisetsky DS, Erlandsson-Harris H, Andersson U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther. 2008;10:209. [PMID: 18598385 DOI: 10.1186/ar2440] [Cited by in Crossref: 134] [Cited by in F6Publishing: 132] [Article Influence: 9.6] [Reference Citation Analysis]
590 Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse. Front Mol Neurosci 2018;11:490. [PMID: 30687006 DOI: 10.3389/fnmol.2018.00490] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 9.7] [Reference Citation Analysis]
591 Kim J, Park JC, Lee MH, Yang CE, Lee JH, Lee WJ. High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation. Int J Mol Sci 2017;19:E76. [PMID: 29283384 DOI: 10.3390/ijms19010076] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
592 Durning SP, Preston-Hurlburt P, Clark PR, Xu D, Herold KC; Type 1 Diabetes TrialNet Study Group. The Receptor for Advanced Glycation Endproducts Drives T Cell Survival and Inflammation in Type 1 Diabetes Mellitus. J Immunol. 2016;197:3076-3085. [PMID: 27655844 DOI: 10.4049/jimmunol.1600197] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
593 Spencer DM, Mobarrez F, Wallén H, Pisetsky DS. The expression of HMGB1 on microparticles from Jurkat and HL-60 cells undergoing apoptosis in vitro. Scand J Immunol 2014;80:101-10. [PMID: 24846056 DOI: 10.1111/sji.12191] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
594 Leemans JC, Butter LM, Pulskens WP, Teske GJ, Claessen N, van der Poll T, Florquin S. The role of Toll-like receptor 2 in inflammation and fibrosis during progressive renal injury. PLoS One 2009;4:e5704. [PMID: 19479087 DOI: 10.1371/journal.pone.0005704] [Cited by in Crossref: 87] [Cited by in F6Publishing: 85] [Article Influence: 6.7] [Reference Citation Analysis]
595 Vetreno RP, Crews FT. Current hypotheses on the mechanisms of alcoholism. Handb Clin Neurol 2014;125:477-97. [PMID: 25307591 DOI: 10.1016/B978-0-444-62619-6.00027-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 6.5] [Reference Citation Analysis]
596 Yanagawa M, Uchida K, Ando Y, Tomiyama T, Yamaguchi T, Ikeura T, Fukui T, Nishio A, Uemura Y, Miyara T, Okamoto H, Satoi S, Okazaki K. Basophils activated via TLR signaling may contribute to pathophysiology of type 1 autoimmune pancreatitis. J Gastroenterol. 2018;53:449-460. [PMID: 28921377 DOI: 10.1007/s00535-017-1390-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
597 Avalos AM, Kiefer K, Tian J, Christensen S, Shlomchik M, Coyle AJ, Marshak-Rothstein A. RAGE-independent autoreactive B cell activation in response to chromatin and HMGB1/DNA immune complexes. Autoimmunity 2010;43:103-10. [PMID: 20014975 DOI: 10.3109/08916930903384591] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 3.0] [Reference Citation Analysis]
598 Barnay-Verdier S, Maréchal V, Borde C. [HMGB1: a link between innate and adaptive immunity]. Rev Francoph Lab 2009;2009:59-68. [PMID: 32288806 DOI: 10.1016/S1773-035X(09)70310-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
599 Thwaites R, Chamberlain G, Sacre S. Emerging role of endosomal toll-like receptors in rheumatoid arthritis. Front Immunol 2014;5:1. [PMID: 24474949 DOI: 10.3389/fimmu.2014.00001] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 5.4] [Reference Citation Analysis]
600 McCarron EP, Williams DP, Antoine DJ, Kipar A, Lemm J, Stehr S, Welters ID. Exploring the translational disconnect between the murine and human inflammatory response: analysis of LPS dose-response relationship in murine versus human cell lines and implications for translation into murine models of sepsis. J Inflamm Res 2015;8:201-9. [PMID: 26527892 DOI: 10.2147/JIR.S89097] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]