BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Montes LR, Ruiz-Argüello MB, Goñi FM, Alonso A. Membrane restructuring via ceramide results in enhanced solute efflux. J Biol Chem. 2002;277:11788-11794. [PMID: 11796726 DOI: 10.1074/jbc.M111568200] [Cited by in Crossref: 106] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Hirose H, Takeuchi T, Osakada H, Pujals S, Katayama S, Nakase I, Kobayashi S, Haraguchi T, Futaki S. Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol Ther 2012;20:984-93. [PMID: 22334015 DOI: 10.1038/mt.2011.313] [Cited by in Crossref: 142] [Cited by in F6Publishing: 133] [Article Influence: 14.2] [Reference Citation Analysis]
2 Maula T, Al Sazzad MA, Slotte JP. Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides. Biophys J 2015;109:1639-51. [PMID: 26488655 DOI: 10.1016/j.bpj.2015.08.040] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
3 Slotte JP, Yasuda T, Engberg O, Al Sazzad MA, Hautala V, Nyholm TKM, Murata M. Bilayer Interactions among Unsaturated Phospholipids, Sterols, and Ceramide. Biophys J 2017;112:1673-81. [PMID: 28445758 DOI: 10.1016/j.bpj.2017.03.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
4 Busto JV, Fanani ML, De Tullio L, Sot J, Maggio B, Goñi FM, Alonso A. Coexistence of immiscible mixtures of palmitoylsphingomyelin and palmitoylceramide in monolayers and bilayers. Biophys J 2009;97:2717-26. [PMID: 19917225 DOI: 10.1016/j.bpj.2009.08.040] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 4.4] [Reference Citation Analysis]
5 Möuts A, Vattulainen E, Matsufuji T, Kinoshita M, Matsumori N, Slotte JP. On the Importance of the C(1)–OH and C(3)–OH Functional Groups of the Long-Chain Base of Ceramide for Interlipid Interaction and Lateral Segregation into Ceramide-Rich Domains. Langmuir 2018;34:15864-70. [DOI: 10.1021/acs.langmuir.8b03237] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
6 van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 2003;369:199-211. [PMID: 12408751 DOI: 10.1042/BJ20021528] [Cited by in Crossref: 321] [Cited by in F6Publishing: 285] [Article Influence: 16.9] [Reference Citation Analysis]
7 Sot J, Aranda FJ, Collado MI, Goñi FM, Alonso A. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study. Biophys J 2005;88:3368-80. [PMID: 15695626 DOI: 10.1529/biophysj.104.057851] [Cited by in Crossref: 84] [Cited by in F6Publishing: 81] [Article Influence: 4.9] [Reference Citation Analysis]
8 Novgorodov SA, Gudz TI. Ceramide and mitochondria in ischemia/reperfusion. J Cardiovasc Pharmacol 2009;53:198-208. [PMID: 19247196 DOI: 10.1097/FJC.0b013e31819b52d5] [Cited by in Crossref: 54] [Cited by in F6Publishing: 31] [Article Influence: 4.2] [Reference Citation Analysis]
9 Zhou K, Blom T. Trafficking and Functions of Bioactive Sphingolipids: Lessons from Cells and Model Membranes. Lipid Insights 2015;8:11-20. [PMID: 26715852 DOI: 10.4137/LPI.S31615] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
10 Graziano VR, Wei J, Wilen CB. Norovirus Attachment and Entry. Viruses 2019;11:E495. [PMID: 31151248 DOI: 10.3390/v11060495] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
11 Siskind LJ, Davoody A, Lewin N, Marshall S, Colombini M. Enlargement and contracture of C2-ceramide channels. Biophys J 2003;85:1560-75. [PMID: 12944273 DOI: 10.1016/S0006-3495(03)74588-3] [Cited by in Crossref: 70] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
12 Siskind LJ, Kolesnick RN, Colombini M. Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 2006;6:118-25. [PMID: 16713754 DOI: 10.1016/j.mito.2006.03.002] [Cited by in Crossref: 162] [Cited by in F6Publishing: 157] [Article Influence: 10.1] [Reference Citation Analysis]
13 González-Ramírez EJ, Goñi FM, Alonso A. Mixing brain cerebrosides with brain ceramides, cholesterol and phospholipids. Sci Rep 2019;9:13326. [PMID: 31527655 DOI: 10.1038/s41598-019-50020-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
14 Kyriakou K, Lederer CW, Kleanthous M, Drousiotou A, Malekkou A. Acid Ceramidase Depletion Impairs Neuronal Survival and Induces Morphological Defects in Neurites Associated with Altered Gene Transcription and Sphingolipid Content. Int J Mol Sci 2020;21:E1607. [PMID: 32111095 DOI: 10.3390/ijms21051607] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Fanani ML, De Tullio L, Hartel S, Jara J, Maggio B. Sphingomyelinase-induced domain shape relaxation driven by out-of-equilibrium changes of composition. Biophys J 2009;96:67-76. [PMID: 18849413 DOI: 10.1529/biophysj.108.141499] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
16 Abou-Ghali M, Stiban J. Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J Biol Sci 2015;22:760-72. [PMID: 26587005 DOI: 10.1016/j.sjbs.2015.03.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
17 Orchard RC, Wilen CB, Virgin HW. Sphingolipid biosynthesis induces a conformational change in the murine norovirus receptor and facilitates viral infection. Nat Microbiol 2018;3:1109-14. [PMID: 30127493 DOI: 10.1038/s41564-018-0221-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
18 Siskind LJ, Kolesnick RN, Colombini M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 2002;277:26796-26803. [PMID: 12006562 DOI: 10.1074/jbc.m200754200] [Cited by in Crossref: 263] [Cited by in F6Publishing: 117] [Article Influence: 13.2] [Reference Citation Analysis]
19 Montes LR, López DJ, Sot J, Bagatolli LA, Stonehouse MJ, Vasil ML, Wu BX, Hannun YA, Goñi FM, Alonso A. Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis. Biochemistry 2008;47:11222-30. [PMID: 18826261 DOI: 10.1021/bi801139z] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 3.1] [Reference Citation Analysis]
20 Härtel S, Fanani ML, Maggio B. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophys J 2005;88:287-304. [PMID: 15489298 DOI: 10.1529/biophysj.104.048959] [Cited by in Crossref: 77] [Cited by in F6Publishing: 75] [Article Influence: 4.3] [Reference Citation Analysis]
21 Contreras FX, Basañez G, Alonso A, Herrmann A, Goñi FM. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 2005;88:348-59. [PMID: 15465865 DOI: 10.1529/biophysj.104.050690] [Cited by in Crossref: 85] [Cited by in F6Publishing: 82] [Article Influence: 4.7] [Reference Citation Analysis]
22 Anheuser S, Breiden B, Sandhoff K. Membrane lipids and their degradation compounds control GM2 catabolism at intralysosomal luminal vesicles. J Lipid Res 2019;60:1099-111. [PMID: 30988135 DOI: 10.1194/jlr.M092551] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
23 Busik JV, Esselman WJ, Reid GE. Examining the role of lipid mediators in diabetic retinopathy. Clin Lipidol 2012;7:661-75. [PMID: 23646066 DOI: 10.2217/clp.12.68] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
24 Artetxe I, Ugarte-Uribe B, Gil D, Valle M, Alonso A, García-Sáez AJ, Goñi FM. Does Ceramide Form Channels? The Ceramide-Induced Membrane Permeabilization Mechanism. Biophys J 2017;113:860-8. [PMID: 28834722 DOI: 10.1016/j.bpj.2017.06.071] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
25 García-Arribas AB, Goñi FM, Alonso A. Lipid Self-Assemblies under the Atomic Force Microscope. Int J Mol Sci 2021;22:10085. [PMID: 34576248 DOI: 10.3390/ijms221810085] [Reference Citation Analysis]
26 Stancevic B, Kolesnick R. Ceramide-rich platforms in transmembrane signaling. FEBS Lett 2010;584:1728-40. [PMID: 20178791 DOI: 10.1016/j.febslet.2010.02.026] [Cited by in Crossref: 188] [Cited by in F6Publishing: 178] [Article Influence: 15.7] [Reference Citation Analysis]
27 Bock J, Liebisch G, Schweimer J, Schmitz G, Rogler G. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function. World J Gastroenterol 2007; 13(39): 5217-5225 [PMID: 17876892 DOI: 10.3748/wjg.v13.i39.5217] [Cited by in CrossRef: 22] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
28 Park J, Heo YJ, Kwon S. Interaction Between Hepatocytes and Proximal Tubular Epithelial Cells in Hypoxia-induced Lipotoxicity. Biotechnol Bioproc E. [DOI: 10.1007/s12257-021-0137-7] [Reference Citation Analysis]
29 Fanani ML, Härtel S, Oliveira RG, Maggio B. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers. Biophys J 2002;83:3416-24. [PMID: 12496108 DOI: 10.1016/S0006-3495(02)75341-1] [Cited by in Crossref: 69] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
30 Shivanna V, Kim Y, Chang KO. Ceramide formation mediated by acid sphingomyelinase facilitates endosomal escape of caliciviruses. Virology 2015;483:218-28. [PMID: 25985440 DOI: 10.1016/j.virol.2015.04.022] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.1] [Reference Citation Analysis]
31 González-Ramírez EJ, García-Arribas AB, Sot J, Goñi FM, Alonso A. C24:0 and C24:1 sphingolipids in cholesterol-containing, five- and six-component lipid membranes. Sci Rep 2020;10:14085. [PMID: 32839481 DOI: 10.1038/s41598-020-71008-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Russo SB, Tidhar R, Futerman AH, Cowart LA. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J Biol Chem 2013;288:13397-409. [PMID: 23530041 DOI: 10.1074/jbc.M112.428185] [Cited by in Crossref: 48] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
33 Abdul-Hammed M, Breiden B, Adebayo MA, Babalola JO, Schwarzmann G, Sandhoff K. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J Lipid Res 2010;51:1747-60. [PMID: 20179319 DOI: 10.1194/jlr.M003822] [Cited by in Crossref: 57] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
34 Tang N, Ong WY, Zhang EM, Chen P, Yeo JF. Differential effects of ceramide species on exocytosis in rat PC12 cells. Exp Brain Res 2007;183:241-7. [PMID: 17624518 DOI: 10.1007/s00221-007-1036-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
35 Sitrin RG, Sassanella TM, Petty HR. An obligate role for membrane-associated neutral sphingomyelinase activity in orienting chemotactic migration of human neutrophils. Am J Respir Cell Mol Biol 2011;44:205-12. [PMID: 20378749 DOI: 10.1165/rcmb.2010-0019OC] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
36 Plasencia I, Norlén L, Bagatolli LA. Direct visualization of lipid domains in human skin stratum corneum's lipid membranes: effect of pH and temperature. Biophys J 2007;93:3142-55. [PMID: 17631535 DOI: 10.1529/biophysj.106.096164] [Cited by in Crossref: 111] [Cited by in F6Publishing: 96] [Article Influence: 7.4] [Reference Citation Analysis]
37 Contreras FX, Sot J, Alonso A, Goñi FM. Sphingosine increases the permeability of model and cell membranes. Biophys J 2006;90:4085-92. [PMID: 16533839 DOI: 10.1529/biophysj.105.076471] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 3.3] [Reference Citation Analysis]
38 Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR, Cowart LA. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest 2012;122:3919-30. [PMID: 23023704 DOI: 10.1172/JCI63888] [Cited by in Crossref: 128] [Cited by in F6Publishing: 83] [Article Influence: 14.2] [Reference Citation Analysis]
39 Novgorodov SA, Gudz TI, Obeid LM. Long-chain ceramide is a potent inhibitor of the mitochondrial permeability transition pore. J Biol Chem 2008;283:24707-17. [PMID: 18596045 DOI: 10.1074/jbc.M801810200] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
40 Anishkin A, Sukharev S, Colombini M. Searching for the molecular arrangement of transmembrane ceramide channels. Biophys J 2006;90:2414-26. [PMID: 16415050 DOI: 10.1529/biophysj.105.071977] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 3.0] [Reference Citation Analysis]