BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010;285:33959-33970. [PMID: 20817729 DOI: 10.1074/jbc.m110.122978] [Cited by in Crossref: 311] [Cited by in F6Publishing: 194] [Article Influence: 25.9] [Reference Citation Analysis]
Number Citing Articles
1 Thangaraj MP, Furber KL, Sobchishin L, Ji S, Doucette JR, Nazarali AJ. Does Sirt2 Regulate Cholesterol Biosynthesis During Oligodendroglial Differentiation In Vitro and In Vivo? Cell Mol Neurobiol 2018;38:329-40. [PMID: 28828594 DOI: 10.1007/s10571-017-0537-6] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
2 Molla MD, Ayelign B, Dessie G, Geto Z, Admasu TD. Caspase-1 as a regulatory molecule of lipid metabolism. Lipids Health Dis 2020;19:34. [PMID: 32143623 DOI: 10.1186/s12944-020-01220-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
3 Hu JQ, Deng F, Hu XP, Zhang W, Zeng XC, Tian XF. Histone deacetylase SIRT6 regulates chemosensitivity in liver cancer cells via modulation of FOXO3 activity. Oncol Rep 2018;40:3635-44. [PMID: 30542728 DOI: 10.3892/or.2018.6770] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
4 Berkoz M. EFFECT OF HYPEROSIDE ON THE INHIBITION OF ADIPOGENESIS IN 3T3-L1 ADIPOCYTES. Acta Endocrinol (Buchar) 2019;15:165-72. [PMID: 31508172 DOI: 10.4183/aeb.2019.165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang B, Zhou BH, Xiao M, Li H, Guo L, Wang MX, Yu SH, Ye QH. KDM5C Represses FASN-Mediated Lipid Metabolism to Exert Tumor Suppressor Activity in Intrahepatic Cholangiocarcinoma. Front Oncol 2020;10:1025. [PMID: 32714863 DOI: 10.3389/fonc.2020.01025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Choi SE, Kwon S, Seok S, Xiao Z, Lee KW, Kang Y, Li X, Shinoda K, Kajimura S, Kemper B, Kemper JK. Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver. Mol Cell Biol 2017;37:e00006-17. [PMID: 28533219 DOI: 10.1128/MCB.00006-17] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 4.6] [Reference Citation Analysis]
7 Chen XY, Cai CZ, Yu ML, Feng ZM, Zhang YW, Liu PH, Zeng H, Yu CH. LB100 ameliorates nonalcoholic fatty liver disease via the AMPK/Sirt1 pathway. World J Gastroenterol 2019; 25(45): 6607-6618 [PMID: 31832001 DOI: 10.3748/wjg.v25.i45.6607] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
8 Nagy LE, Ding WX, Cresci G, Saikia P, Shah VH. Linking Pathogenic Mechanisms of Alcoholic Liver Disease With Clinical Phenotypes. Gastroenterology 2016;150:1756-68. [PMID: 26919968 DOI: 10.1053/j.gastro.2016.02.035] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 12.2] [Reference Citation Analysis]
9 Pignatti C, D'Adamo S, Stefanelli C, Flamigni F, Cetrullo S. Nutrients and Pathways that Regulate Health Span and Life Span. Geriatrics (Basel) 2020;5:E95. [PMID: 33228041 DOI: 10.3390/geriatrics5040095] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Herranz D, Serrano M. SIRT1: recent lessons from mouse models. Nat Rev Cancer. 2010;10:819-823. [PMID: 21102633 DOI: 10.1038/nrc2962] [Cited by in Crossref: 178] [Cited by in F6Publishing: 178] [Article Influence: 14.8] [Reference Citation Analysis]
11 Askin L, Tibilli H, Tanriverdi O, Turkmen S. The relationship between coronary artery disease and SIRT1 protein. North Clin Istanb 2020;7:631-5. [PMID: 33381707 DOI: 10.14744/nci.2020.31391] [Reference Citation Analysis]
12 Fan H, Shen Y, Ren Y, Mou Q, Lin T, Zhu L, Ren T. Combined intake of blueberry juice and probiotics ameliorate mitochondrial dysfunction by activating SIRT1 in alcoholic fatty liver disease. Nutr Metab (Lond) 2021;18:50. [PMID: 33971886 DOI: 10.1186/s12986-021-00554-3] [Reference Citation Analysis]
13 Marwarha G, Claycombe-Larson K, Lund J, Ghribi O. Palmitate-Induced SREBP1 Expression and Activation Underlies the Increased BACE 1 Activity and Amyloid Beta Genesis. Mol Neurobiol 2019;56:5256-69. [PMID: 30569418 DOI: 10.1007/s12035-018-1451-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
14 Parrales A, Iwakuma T. p53 as a Regulator of Lipid Metabolism in Cancer. Int J Mol Sci 2016;17:E2074. [PMID: 27973397 DOI: 10.3390/ijms17122074] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 8.5] [Reference Citation Analysis]
15 Jing H, Lin H. Sirtuins in epigenetic regulation. Chem Rev. 2015;115:2350-2375. [PMID: 25804908 DOI: 10.1021/cr500457h] [Cited by in Crossref: 113] [Cited by in F6Publishing: 100] [Article Influence: 16.1] [Reference Citation Analysis]
16 Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol. 2017;13:710-730. [PMID: 28849786 DOI: 10.1038/nrendo.2017.91] [Cited by in Crossref: 276] [Cited by in F6Publishing: 261] [Article Influence: 55.2] [Reference Citation Analysis]
17 Choi JE, Mostoslavsky R. Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev 2014;26:24-32. [PMID: 25005742 DOI: 10.1016/j.gde.2014.05.005] [Cited by in Crossref: 89] [Cited by in F6Publishing: 82] [Article Influence: 11.1] [Reference Citation Analysis]
18 Shaik FB, Prasad DV, Narala VR. Role of farnesoid X receptor in inflammation and resolution. Inflamm Res. 2015;64:9-20. [PMID: 25376338 DOI: 10.1007/s00011-014-0780-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
19 Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225-238. [PMID: 22395773 DOI: 10.1038/nrm3293] [Cited by in Crossref: 1028] [Cited by in F6Publishing: 1046] [Article Influence: 102.8] [Reference Citation Analysis]
20 Inamori T, Goda T, Kasezawa N, Yamakawa-Kobayashi K. The combined effects of genetic variation in the SIRT1 gene and dietary intake of n-3 and n-6 polyunsaturated fatty acids on serum LDL-C and HDL-C levels: a population based study. Lipids Health Dis 2013;12:4. [PMID: 23305113 DOI: 10.1186/1476-511X-12-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
21 Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X, Li P. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med 2016;38:1715-26. [PMID: 27840945 DOI: 10.3892/ijmm.2016.2799] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
22 Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB, Yang HB, Jiang SX, Yan GQ, Wang D, Wang Y, Liu Y, Cai Z, Xu YY, Chen J, Yu W, Yang PY, Lei QY. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun 2016;7:11960. [PMID: 27357947 DOI: 10.1038/ncomms11960] [Cited by in Crossref: 145] [Cited by in F6Publishing: 139] [Article Influence: 24.2] [Reference Citation Analysis]
23 Kurtz CL, Fannin EE, Toth CL, Pearson DS, Vickers KC, Sethupathy P. Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Sci Rep 2015;5:12911. [PMID: 26246194 DOI: 10.1038/srep12911] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 7.1] [Reference Citation Analysis]
24 Gomes AP, Blenis J. A nexus for cellular homeostasis: the interplay between metabolic and signal transduction pathways. Curr Opin Biotechnol 2015;34:110-7. [PMID: 25562138 DOI: 10.1016/j.copbio.2014.12.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 7.4] [Reference Citation Analysis]
25 Liu Y, Zhao C, Xiao J, Liu L, Zhang M, Wang C, Wu G, Zheng MH, Xu LM, Chen YP, Mohammadi M, Chen SY, Cave M, McClain C, Li X, Feng W. Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury. Sci Rep 2016;6:31026. [PMID: 27498701 DOI: 10.1038/srep31026] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
26 Wang LF, Wang XN, Huang CC, Hu L, Xiao YF, Guan XH, Qian YS, Deng KY, Xin HB. Inhibition of NAMPT aggravates high fat diet-induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway. Lipids Health Dis 2017;16:82. [PMID: 28449683 DOI: 10.1186/s12944-017-0464-z] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 6.4] [Reference Citation Analysis]
27 Schug TT, Li X. Sirtuin 1 in lipid metabolism and obesity. Ann Med. 2011;43:198-211. [PMID: 21345154 DOI: 10.3109/07853890.2010.547211] [Cited by in Crossref: 170] [Cited by in F6Publishing: 161] [Article Influence: 15.5] [Reference Citation Analysis]
28 Moore DD. Nuclear receptors reverse McGarry's vicious cycle to insulin resistance. Cell Metab 2012;15:615-22. [PMID: 22560214 DOI: 10.1016/j.cmet.2012.03.016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
29 Zhou J, Lu Y, Jia Y, Lu J, Jiang Z, Chen K. Ketogenic diet ameliorates lipid dysregulation in type 2 diabetic mice by downregulating hepatic pescadillo 1. Mol Med 2022;28:1. [PMID: 34979900 DOI: 10.1186/s10020-021-00429-6] [Reference Citation Analysis]
30 Xiaoping Z, Fajun Y. Regulation of SREBP-Mediated Gene Expression. Sheng Wu Wu Li Hsueh Bao 2012;28:287-94. [PMID: 23730104 DOI: 10.3724/SP.J.1260.2012.20034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 0.3] [Reference Citation Analysis]
31 Wegner CJ, Kim B, Lee J. Trust your gut: galvanizing nutritional interest in intestinal cholesterol metabolism for protection against cardiovascular diseases. Nutrients 2013;5:208-22. [PMID: 23325147 DOI: 10.3390/nu5010208] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
32 Seok S, Kanamaluru D, Xiao Z, Ryerson D, Choi SE, Suino-Powell K, Xu HE, Veenstra TD, Kemper JK. Bile acid signal-induced phosphorylation of small heterodimer partner by protein kinase Cζ is critical for epigenomic regulation of liver metabolic genes. J Biol Chem 2013;288:23252-63. [PMID: 23824184 DOI: 10.1074/jbc.M113.452037] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
33 Shao D, Han J, Hou X, Fry J, Behring JB, Seta F, Long MT, Roy HK, Cohen RA, Matsui R, Bachschmid MM. Glutaredoxin-1 Deficiency Causes Fatty Liver and Dyslipidemia by Inhibiting Sirtuin-1. Antioxid Redox Signal 2017;27:313-27. [PMID: 27958883 DOI: 10.1089/ars.2016.6716] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
34 Wu D, Yang Y, Hou Y, Zhao Z, Liang N, Yuan P, Yang T, Xing J, Li J. Increased mitochondrial fission drives the reprogramming of fatty acid metabolism in hepatocellular carcinoma cells through suppression of Sirtuin 1. Cancer Commun (Lond) 2022;42:37-55. [PMID: 34981667 DOI: 10.1002/cac2.12247] [Reference Citation Analysis]
35 Lee JH, Lee GY, Jang H, Choe SS, Koo SH, Kim JB. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation. Hepatology 2014;60:844-57. [PMID: 24425205 DOI: 10.1002/hep.27011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
36 Romani M, Hofer DC, Katsyuba E, Auwerx J. Niacin: an old lipid drug in a new NAD+ dress. J Lipid Res 2019;60:741-6. [PMID: 30782960 DOI: 10.1194/jlr.S092007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
37 Wang LL, Chen AP, Li JY, Sun Z, Yan SL, Xu KY. Mechanism of the Effect of High-Intensity Training on Urinary Metabolism in Female Water Polo Players Based on UHPLC-MS Non-Targeted Metabolomics Technique. Healthcare (Basel) 2021;9:381. [PMID: 33915709 DOI: 10.3390/healthcare9040381] [Reference Citation Analysis]
38 Kumar J, Kumar S. Sirtuin1 in vascular endothelial function, an overview. Epigenetics 2021;:1-17. [PMID: 34570676 DOI: 10.1080/15592294.2021.1975936] [Reference Citation Analysis]
39 Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res 2013;54:2745-53. [PMID: 23881913 DOI: 10.1194/jlr.M039339] [Cited by in Crossref: 105] [Cited by in F6Publishing: 59] [Article Influence: 11.7] [Reference Citation Analysis]
40 Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239-250. [PMID: 22436747 DOI: 10.1038/nrm3328] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
41 Mashek DG. Hepatic fatty acid trafficking: multiple forks in the road. Adv Nutr 2013;4:697-710. [PMID: 24228201 DOI: 10.3945/an.113.004648] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
42 Paulazo MA, Sodero AO. SIRT-1 Activity Sustains Cholesterol Synthesis in the Brain. Neuroscience 2021;476:116-24. [PMID: 34600072 DOI: 10.1016/j.neuroscience.2021.09.017] [Reference Citation Analysis]
43 Bonomini F, Favero G, Rodella LF, Moghadasian MH, Rezzani R. Melatonin Modulation of Sirtuin-1 Attenuates Liver Injury in a Hypercholesterolemic Mouse Model. Biomed Res Int 2018;2018:7968452. [PMID: 29516009 DOI: 10.1155/2018/7968452] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
44 Kim SY, Sim CK, Tang H, Han W, Zhang K, Xu F. Acetylome Analysis Identifies SIRT1 Targets in mRNA-Processing and Chromatin-Remodeling in Mouse Liver. PLoS One 2015;10:e0140619. [PMID: 26468954 DOI: 10.1371/journal.pone.0140619] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
45 Zhu C, Huang M, Kim HG, Chowdhury K, Gao J, Liu S, Wan J, Wei L, Dong XC. SIRT6 controls hepatic lipogenesis by suppressing LXR, ChREBP, and SREBP1. Biochim Biophys Acta Mol Basis Dis 2021;1867:166249. [PMID: 34425214 DOI: 10.1016/j.bbadis.2021.166249] [Reference Citation Analysis]
46 Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol 2015;83:142-55. [PMID: 25640162 DOI: 10.1016/j.yjmcc.2015.01.011] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 11.1] [Reference Citation Analysis]
47 Ciregia F, Bugliani M, Ronci M, Giusti L, Boldrini C, Mazzoni MR, Mossuto S, Grano F, Cnop M, Marselli L, Giannaccini G, Urbani A, Lucacchini A, Marchetti P. Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal β cells and human pancreatic islets. Sci Rep 2017;7:13445. [PMID: 29044173 DOI: 10.1038/s41598-017-13908-w] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 6.4] [Reference Citation Analysis]
48 Banerjee KK, Ayyub C, Sengupta S, Kolthur-Seetharam U. Fat body dSir2 regulates muscle mitochondrial physiology and energy homeostasis nonautonomously and mimics the autonomous functions of dSir2 in muscles. Mol Cell Biol 2013;33:252-64. [PMID: 23129806 DOI: 10.1128/MCB.00976-12] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
49 Kim DH, Kwon S, Byun S, Xiao Z, Park S, Wu SY, Chiang CM, Kemper B, Kemper JK. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis. Nat Commun 2016;7:12179. [PMID: 27412403 DOI: 10.1038/ncomms12179] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
50 You M, Jogasuria A, Taylor C, Wu J. Sirtuin 1 signaling and alcoholic fatty liver disease. Hepatobiliary Surg Nutr 2015;4:88-100. [PMID: 26005675 DOI: 10.3978/j.issn.2304-3881.2014.12.06] [Cited by in F6Publishing: 44] [Reference Citation Analysis]
51 Della Fazia MA, Servillo G. Foie gras and liver regeneration: a fat dilemma. Cell Stress 2018;2:162-75. [PMID: 31225483 DOI: 10.15698/cst2018.07.144] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
52 London E, Bloyd M, Stratakis CA. PKA functions in metabolism and resistance to obesity: lessons from mouse and human studies. J Endocrinol 2020;246:R51-64. [PMID: 32485681 DOI: 10.1530/JOE-20-0035] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
53 Ren R, Wang Z, Wu M, Wang H. Emerging Roles of SIRT1 in Alcoholic Liver Disease. Int J Biol Sci 2020;16:3174-83. [PMID: 33162823 DOI: 10.7150/ijbs.49535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Nelson LE, Valentine RJ, Cacicedo JM, Gauthier MS, Ido Y, Ruderman NB. A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells. Am J Physiol Cell Physiol 2012;303:C4-C13. [PMID: 22378745 DOI: 10.1152/ajpcell.00296.2011] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 5.2] [Reference Citation Analysis]
55 Liu D, Liu X, Ma X, Li C, Li J, Li Q, Zhang N, Cao Y, Li Z, Kang X, Tian Y, Li W. Two novel InDels within the Promoter of SIRT1 are associated with growth traits in chickens. Br Poult Sci 2021. [PMID: 34923879 DOI: 10.1080/00071668.2021.2014400] [Reference Citation Analysis]
56 Li Z, Bridges B, Olson J, Weinman SA. The interaction between acetylation and serine-574 phosphorylation regulates the apoptotic function of FOXO3. Oncogene 2017;36:1887-98. [PMID: 27669435 DOI: 10.1038/onc.2016.359] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
57 de Gregorio E, Colell A, Morales A, Marí M. Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease. Int J Mol Sci 2020;21:E3858. [PMID: 32485811 DOI: 10.3390/ijms21113858] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
58 Cantó C, Auwerx J. Targeting sirtuin 1 to improve metabolism: all you need is NAD(+)? Pharmacol Rev. 2012;64:166-187. [PMID: 22106091 DOI: 10.1124/pr.110.003905] [Cited by in Crossref: 236] [Cited by in F6Publishing: 227] [Article Influence: 21.5] [Reference Citation Analysis]
59 Santos L, Escande C, Denicola A. Potential Modulation of Sirtuins by Oxidative Stress. Oxid Med Cell Longev 2016;2016:9831825. [PMID: 26788256 DOI: 10.1155/2016/9831825] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
60 Pham DV, Park PH. Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J Exp Clin Cancer Res 2022;41:9. [PMID: 34986886 DOI: 10.1186/s13046-021-02223-y] [Reference Citation Analysis]
61 Watroba M, Szukiewicz D. Sirtuins at the Service of Healthy Longevity. Front Physiol 2021;12:724506. [PMID: 34899370 DOI: 10.3389/fphys.2021.724506] [Reference Citation Analysis]
62 Libri V, Brown AP, Gambarota G, Haddad J, Shields GS, Dawes H, Pinato DJ, Hoffman E, Elliot PJ, Vlasuk GP, Jacobson E, Wilkins MR, Matthews PM. A pilot randomized, placebo controlled, double blind phase I trial of the novel SIRT1 activator SRT2104 in elderly volunteers. PLoS One 2012;7:e51395. [PMID: 23284689 DOI: 10.1371/journal.pone.0051395] [Cited by in Crossref: 72] [Cited by in F6Publishing: 64] [Article Influence: 7.2] [Reference Citation Analysis]
63 Li Y, Wong K, Giles A, Jiang J, Lee JW, Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L, Zang M. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology. 2014;146:539-49.e7. [PMID: 24184811 DOI: 10.1053/j.gastro.2013.10.059] [Cited by in Crossref: 159] [Cited by in F6Publishing: 155] [Article Influence: 17.7] [Reference Citation Analysis]
64 Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019;6:148. [PMID: 31608282 DOI: 10.3389/fnut.2019.00148] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
65 Chen GC, Chen WH, Tseng KT, Chao PM. The anti-adiposity effect of bitter melon seed oil is solely attributed to its fatty acid components. Lipids Health Dis 2017;16:186. [PMID: 28962621 DOI: 10.1186/s12944-017-0578-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 McKillop IH, Schrum LW, Thompson KJ. Role of alcohol in the development and progression of hepatocellular carcinoma. Hepat Oncol 2016;3:29-43. [PMID: 30191025 DOI: 10.2217/hep.15.40] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
67 Zhu JZ, Yi HW, Huang W, Pang T, Zhou HP, Wu XD. Fatty liver diseases, mechanisms, and potential therapeutic plant medicines. Chin J Nat Med 2020;18:161-8. [PMID: 32245585 DOI: 10.1016/S1875-5364(20)30017-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Wu WY, Ding XQ, Gu TT, Guo WJ, Jiao RQ, Song L, Sun Y, Pan Y, Kong LD. Pterostilbene Improves Hepatic Lipid Accumulation via the MiR-34a/Sirt1/SREBP-1 Pathway in Fructose-Fed Rats. J Agric Food Chem 2020;68:1436-46. [PMID: 31927917 DOI: 10.1021/acs.jafc.9b04259] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
69 de Lange P, Cioffi F, Silvestri E, Moreno M, Goglia F, Lanni A. (Healthy) ageing: focus on iodothyronines. Int J Mol Sci 2013;14:13873-92. [PMID: 23880847 DOI: 10.3390/ijms140713873] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
70 Thakran S, Sharma P, Attia RR, Hori RT, Deng X, Elam MB, Park EA. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J Biol Chem. 2013;288:807-818. [PMID: 23209300 DOI: 10.1074/jbc.m112.437970] [Cited by in Crossref: 46] [Cited by in F6Publishing: 30] [Article Influence: 4.6] [Reference Citation Analysis]
71 Zhong F, Hu Z, Jiang K, Lei B, Wu Z, Yuan G, Luo H, Dong C, Tang B, Zheng C, Yang S, Zeng Y, Guo Z, Yu S, Su H, Zhang G, Qiu X, Tomlinson S, He S. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis. Cell Res 2019;29:548-61. [PMID: 31076642 DOI: 10.1038/s41422-019-0175-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
72 Tien CP, Chen CH, Lin WY, Liu CS, Liu KJ, Hsiao M, Chang YC, Hung SC. Ambient particulate matter attenuates Sirtuin1 and augments SREBP1-PIR axis to induce human pulmonary fibroblast inflammation: molecular mechanism of microenvironment associated with COPD. Aging (Albany NY) 2019;11:4654-71. [PMID: 31299012 DOI: 10.18632/aging.102077] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
73 Zhou F, Liu Q, Zhang L, Zhu Q, Wang S, Zhu K, Deng R, Liu Y, Yuan G, Wang X, Zhou L. Selective inhibition of CBP/p300 HAT by A-485 results in suppression of lipogenesis and hepatic gluconeogenesis. Cell Death Dis 2020;11:745. [PMID: 32917859 DOI: 10.1038/s41419-020-02960-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
74 González-Reimers E, Quintero-Platt G, Rodríguez-Gaspar M, Alemán-Valls R, Pérez-Hernández O, Santolaria-Fernández F. Liver steatosis in hepatitis C patients. World J Hepatol 2015; 7(10): 1337-1346 [PMID: 26052379 DOI: 10.4254/wjh.v7.i10.1337] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
75 Guarente L. Calorie restriction and sirtuins revisited. Genes Dev 2013;27:2072-85. [PMID: 24115767 DOI: 10.1101/gad.227439.113] [Cited by in Crossref: 289] [Cited by in F6Publishing: 254] [Article Influence: 32.1] [Reference Citation Analysis]
76 Ip BC, Liu C, Lichtenstein AH, von Lintig J, Wang XD. Lycopene and apo-10'-lycopenoic acid have differential mechanisms of protection against hepatic steatosis in β-carotene-9',10'-oxygenase knockout male mice. J Nutr 2015;145:268-76. [PMID: 25644347 DOI: 10.3945/jn.114.200238] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
77 Li X, Lian F, Liu C, Hu KQ, Wang XD. Isocaloric Pair-Fed High-Carbohydrate Diet Induced More Hepatic Steatosis and Inflammation than High-Fat Diet Mediated by miR-34a/SIRT1 Axis in Mice. Sci Rep 2015;5:16774. [PMID: 26608583 DOI: 10.1038/srep16774] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
78 Yoo A, Narayan VP, Hong EY, Whang WK, Park T. Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: potential involvement of SIRT1-mediated signaling cascades in the liver. Sci Rep 2017;7:2251. [PMID: 28533555 DOI: 10.1038/s41598-017-02416-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
79 Dessalle K, Euthine V, Chanon S, Delarichaudy J, Fujii I, Rome S, Vidal H, Nemoz G, Simon C, Lefai E. SREBP-1 transcription factors regulate skeletal muscle cell size by controlling protein synthesis through myogenic regulatory factors. PLoS One 2012;7:e50878. [PMID: 23226416 DOI: 10.1371/journal.pone.0050878] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
80 Exeter HJ, Folkersen L, Palmen J, Franco-Cereceda A, Cooper JA, Kalea AZ, Hooft FV, Eriksson P, Humphries SE, Talmud PJ. Functional analysis of two PLA2G2A variants associated with secretory phospholipase A2-IIA levels. PLoS One 2012;7:e41139. [PMID: 22879865 DOI: 10.1371/journal.pone.0041139] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
81 Majeed Y, Halabi N, Madani AY, Engelke R, Bhagwat AM, Abdesselem H, Agha MV, Vakayil M, Courjaret R, Goswami N, Hamidane HB, Elrayess MA, Rafii A, Graumann J, Schmidt F, Mazloum NA. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci Rep 2021;11:8177. [PMID: 33854178 DOI: 10.1038/s41598-021-87759-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
82 Wang S, Wan T, Ye M, Qiu Y, Pei L, Jiang R, Pang N, Huang Y, Liang B, Ling W, Lin X, Zhang Z, Yang L. Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway. Redox Biol 2018;17:89-98. [PMID: 29679894 DOI: 10.1016/j.redox.2018.04.006] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 11.3] [Reference Citation Analysis]
83 Kemper JK, Choi SE, Kim DH. Sirtuin 1 deacetylase: a key regulator of hepatic lipid metabolism. Vitam Horm 2013;91:385-404. [PMID: 23374725 DOI: 10.1016/B978-0-12-407766-9.00016-X] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
84 Wu S, Näär AM. SREBP1-dependent de novo fatty acid synthesis gene expression is elevated in malignant melanoma and represents a cellular survival trait. Sci Rep 2019;9:10369. [PMID: 31316083 DOI: 10.1038/s41598-019-46594-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
85 Suga T, Sato K, Ohyama T, Matsui S, Kobayashi T, Tojima H, Horiguchi N, Yamazaki Y, Kakizaki S, Nishikido A, Okamura T, Yamada M, Kitamura T, Uraoka T. Ipragliflozin-induced improvement of liver steatosis in obese mice may involve sirtuin signaling. World J Hepatol 2020; 12(7): 350-362 [PMID: 32821334 DOI: 10.4254/wjh.v12.i7.350] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
86 Nogales F, Cebadero O, Romero-Herrera I, Rua RM, Carreras O, Ojeda ML. Selenite supplementation modulates the hepatic metabolic sensors AMPK and SIRT1 in binge drinking exposed adolescent rats by avoiding oxidative stress. Food Funct 2021;12:3022-32. [PMID: 33710180 DOI: 10.1039/d0fo02831b] [Reference Citation Analysis]
87 Eseberri I, Miranda J, Lasa A, Churruca I, Portillo MP. Doses of Quercetin in the Range of Serum Concentrations Exert Delipidating Effects in 3T3-L1 Preadipocytes by Acting on Different Stages of Adipogenesis, but Not in Mature Adipocytes. Oxid Med Cell Longev 2015;2015:480943. [PMID: 26180590 DOI: 10.1155/2015/480943] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
88 Miao LH, Lin Y, Huang X, Pan WJ, Zhou QL, Liu B, Ren MC, Ge XP, Pan LK. In Vivo Analysis of miR-34a Regulated Glucose Metabolism Related Genes in Megalobrama amblycephala. Int J Mol Sci 2018;19:E2417. [PMID: 30115855 DOI: 10.3390/ijms19082417] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
89 Kitada M, Ogura Y, Monno I, Koya D. Supplementation with Red Wine Extract Increases Insulin Sensitivity and Peripheral Blood Mononuclear Sirt1 Expression in Nondiabetic Humans. Nutrients 2020;12:E3108. [PMID: 33053742 DOI: 10.3390/nu12103108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
90 Chalkiadaki A, Guarente L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol 2012;8:287-96. [PMID: 22249520 DOI: 10.1038/nrendo.2011.225] [Cited by in Crossref: 230] [Cited by in F6Publishing: 224] [Article Influence: 23.0] [Reference Citation Analysis]
91 Hong S, Moreno-Navarrete JM, Wei X, Kikukawa Y, Tzameli I, Prasad D, Lee Y, Asara JM, Fernandez-Real JM, Maratos-Flier E, Pissios P. Nicotinamide N-methyltransferase regulates hepatic nutrient metabolism through Sirt1 protein stabilization. Nat Med 2015;21:887-94. [PMID: 26168293 DOI: 10.1038/nm.3882] [Cited by in Crossref: 102] [Cited by in F6Publishing: 105] [Article Influence: 14.6] [Reference Citation Analysis]
92 Tong X, Li P, Zhang D, VanDommelen K, Gupta N, Rui L, Omary MB, Yin L. E4BP4 is an insulin-induced stabilizer of nuclear SREBP-1c and promotes SREBP-1c-mediated lipogenesis. J Lipid Res 2016;57:1219-30. [PMID: 27252523 DOI: 10.1194/jlr.M067181] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
93 Ren T, Huang C, Cheng M. Dietary blueberry and bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway. Oxid Med Cell Longev 2014;2014:469059. [PMID: 25544867 DOI: 10.1155/2014/469059] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
94 Jia N, Lin X, Ma S, Ge S, Mu S, Yang C, Shi S, Gao L, Xu J, Bo T, Zhao J. Amelioration of hepatic steatosis is associated with modulation of gut microbiota and suppression of hepatic miR-34a in Gynostemma pentaphylla (Thunb.) Makino treated mice. Nutr Metab (Lond) 2018;15:86. [PMID: 30555521 DOI: 10.1186/s12986-018-0323-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
95 Raffaele M, Carota G, Sferrazzo G, Licari M, Barbagallo I, Sorrenti V, Signorelli SS, Vanella L. Inhibition of Heme Oxygenase Antioxidant Activity Exacerbates Hepatic Steatosis and Fibrosis In Vitro. Antioxidants (Basel) 2019;8:E277. [PMID: 31387260 DOI: 10.3390/antiox8080277] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
96 Li CX, Gao JG, Wan XY, Chen Y, Xu CF, Feng ZM, Zeng H, Lin YM, Ma H, Xu P, Yu CH, Li YM. Allyl isothiocyanate ameliorates lipid accumulation and inflammation in nonalcoholic fatty liver disease via the Sirt1/AMPK and NF-κB signaling pathways. World J Gastroenterol 2019; 25(34): 5120-5133 [PMID: 31558861 DOI: 10.3748/wjg.v25.i34.5120] [Cited by in CrossRef: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
97 Liu B, Mao X, Huang D, Li F, Dong N. Novel role of NLRP3-inflammasome in regulation of lipogenesis in fasting-induced hepatic steatosis. Diabetes Metab Syndr Obes 2019;12:801-11. [PMID: 31239738 DOI: 10.2147/DMSO.S206558] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
98 Uddin GM, Youngson NA, Sinclair DA, Morris MJ. Head to Head Comparison of Short-Term Treatment with the NAD(+) Precursor Nicotinamide Mononucleotide (NMN) and 6 Weeks of Exercise in Obese Female Mice. Front Pharmacol 2016;7:258. [PMID: 27594836 DOI: 10.3389/fphar.2016.00258] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 7.3] [Reference Citation Analysis]
99 Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021;12:763417. [PMID: 34899389 DOI: 10.3389/fphys.2021.763417] [Reference Citation Analysis]
100 Huang Y, Wang S, Meng X, Chen N, Li S. Molecular Cloning and Characterization of Sirtuin 1 and Its Potential Regulation of Lipid Metabolism and Antioxidant Response in Largemouth Bass (Micropterus salmoides). Front Physiol 2021;12:726877. [PMID: 34646155 DOI: 10.3389/fphys.2021.726877] [Reference Citation Analysis]
101 Thiel G, Guethlein LA, Rössler OG. Insulin-Responsive Transcription Factors. Biomolecules 2021;11:1886. [PMID: 34944530 DOI: 10.3390/biom11121886] [Reference Citation Analysis]
102 Banerjee KK, Ayyub C, Sengupta S, Kolthur-Seetharam U. dSir2 deficiency in the fatbody, but not muscles, affects systemic insulin signaling, fat mobilization and starvation survival in flies. Aging (Albany NY) 2012;4:206-23. [PMID: 22411915 DOI: 10.18632/aging.100435] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
103 Yin H, Hu M, Zhang R, Shen Z, Flatow L, You M. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J Biol Chem. 2012;287:9817-9826. [PMID: 22308024 DOI: 10.1074/jbc.m111.333534] [Cited by in Crossref: 111] [Cited by in F6Publishing: 66] [Article Influence: 11.1] [Reference Citation Analysis]
104 Simmons GE Jr, Pruitt WM, Pruitt K. Diverse roles of SIRT1 in cancer biology and lipid metabolism. Int J Mol Sci 2015;16:950-65. [PMID: 25569080 DOI: 10.3390/ijms16010950] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 8.1] [Reference Citation Analysis]
105 Fu T, Choi SE, Kim DH, Seok S, Suino-Powell KM, Xu HE, Kemper JK. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho. Proc Natl Acad Sci USA. 2012;109:16137-16142. [PMID: 22988100 DOI: 10.1073/pnas.1205951109] [Cited by in Crossref: 100] [Cited by in F6Publishing: 99] [Article Influence: 10.0] [Reference Citation Analysis]
106 Song J, Yang B, Jia X, Li M, Tan W, Ma S, Shi X, Feng L. Distinctive Roles of Sirtuins on Diabetes, Protective or Detrimental? Front Endocrinol (Lausanne) 2018;9:724. [PMID: 30559718 DOI: 10.3389/fendo.2018.00724] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
107 Lu CL, Liao MT, Hou YC, Fang YW, Zheng CM, Liu WC, Chao CT, Lu KC, Ng YY. Sirtuin-1 and Its Relevance in Vascular Calcification. Int J Mol Sci 2020;21:E1593. [PMID: 32111067 DOI: 10.3390/ijms21051593] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
108 Chung S, Hwang JT, Park JH, Choi HK. Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells. Nutr Res Pract 2019;13:196-204. [PMID: 31214287 DOI: 10.4162/nrp.2019.13.3.196] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Jurkowska K, Szymańska B, Knysz B, Kuźniarski A, Piwowar A. Sirtuins as Interesting Players in the Course of HIV Infection and Comorbidities. Cells 2021;10:2739. [PMID: 34685718 DOI: 10.3390/cells10102739] [Reference Citation Analysis]
110 Li X, Kazgan N. Mammalian sirtuins and energy metabolism. Int J Biol Sci. 2011;7:575-587. [PMID: 21614150 DOI: 10.7150/ijbs.7.575] [Cited by in Crossref: 118] [Cited by in F6Publishing: 117] [Article Influence: 10.7] [Reference Citation Analysis]
111 Smith Z, Ryerson D, Kemper JK. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol Cell Endocrinol 2013;368:59-70. [PMID: 22579755 DOI: 10.1016/j.mce.2012.04.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
112 Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon-Induced Acetylation of Energy-Sensing Factors in Control of Hepatic Metabolism. Int J Mol Sci 2019;20:E1885. [PMID: 30995792 DOI: 10.3390/ijms20081885] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
113 Bideyan L, Nagari R, Tontonoz P. Hepatic transcriptional responses to fasting and feeding. Genes Dev 2021;35:635-57. [PMID: 33888557 DOI: 10.1101/gad.348340.121] [Reference Citation Analysis]
114 Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH, Friedman JE, Grove KL, Tackett AJ, Aagaard KM. A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 2012;26:5106-14. [PMID: 22982377 DOI: 10.1096/fj.12-212878] [Cited by in Crossref: 121] [Cited by in F6Publishing: 100] [Article Influence: 12.1] [Reference Citation Analysis]
115 Kinouchi K, Sassone-Corsi P. Metabolic rivalry: circadian homeostasis and tumorigenesis. Nat Rev Cancer 2020;20:645-61. [PMID: 32895495 DOI: 10.1038/s41568-020-0291-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
116 Bertolio R, Napoletano F, Mano M, Maurer-Stroh S, Fantuz M, Zannini A, Bicciato S, Sorrentino G, Del Sal G. Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nat Commun 2019;10:1326. [PMID: 30902980 DOI: 10.1038/s41467-019-09152-7] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 18.0] [Reference Citation Analysis]
117 Chen Y, Patel V, Bang S, Cohen N, Millar J, Kim SF. Maturation and activity of sterol regulatory element binding protein 1 is inhibited by acyl-CoA binding domain containing 3. PLoS One 2012;7:e49906. [PMID: 23166793 DOI: 10.1371/journal.pone.0049906] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
118 Wang Z, Gao Y, Zhang C, Hu H, Guo D, Xu Y, Xu Q, Zhang W, Deng S, Lv P, Yang Y, Ding Y, Li Q, Weng C, Chen X, Gong S, Chen H, Niu J, Tang H. Quinolinate Phosphoribosyltransferase is an Antiviral Host Factor Against Hepatitis C Virus Infection. Sci Rep 2017;7:5876. [PMID: 28724915 DOI: 10.1038/s41598-017-06254-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
119 Dong XC. Sirtuin biology and relevance to diabetes treatment. Diabetes Manag (Lond) 2012;2:243-57. [PMID: 23024708 DOI: 10.2217/dmt.12.16] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
120 Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015;16:678-689. [PMID: 26490400 DOI: 10.1038/nrm4074] [Cited by in Crossref: 286] [Cited by in F6Publishing: 271] [Article Influence: 47.7] [Reference Citation Analysis]
121 Derdak Z, Villegas KA, Harb R, Wu AM, Sousa A, Wands JR. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol. 2013;58:785-791. [PMID: 23211317 DOI: 10.1016/j.jhep.2012.11.042] [Cited by in Crossref: 124] [Cited by in F6Publishing: 120] [Article Influence: 12.4] [Reference Citation Analysis]
122 Zarfeshani A, Ngo S, Sheppard AM. MicroRNA Expression Relating to Dietary-Induced Liver Steatosis and NASH. J Clin Med. 2015;4:1938-1950. [PMID: 26580662 DOI: 10.3390/jcm4111938] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
123 Daemen S, Kutmon M, Evelo CT. A pathway approach to investigate the function and regulation of SREBPs. Genes Nutr 2013;8:289-300. [PMID: 23516131 DOI: 10.1007/s12263-013-0342-x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 4.2] [Reference Citation Analysis]
124 Stacchiotti A, Grossi I, García-Gómez R, Patel GA, Salvi A, Lavazza A, De Petro G, Monsalve M, Rezzani R. Melatonin Effects on Non-Alcoholic Fatty Liver Disease Are Related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy. Cells 2019;8:E1053. [PMID: 31500354 DOI: 10.3390/cells8091053] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
125 Xu H, Chen GF, Ma YS, Zhang HW, Zhou Y, Liu GH, Chen DY, Ping J, Liu YH, Mou X, Fu D. Hepatic Proteomic Changes and Sirt1/AMPK Signaling Activation by Oxymatrine Treatment in Rats With Non-alcoholic Steatosis. Front Pharmacol 2020;11:216. [PMID: 32210812 DOI: 10.3389/fphar.2020.00216] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
126 You M, Arteel GE. Effect of ethanol on lipid metabolism. J Hepatol 2019;70:237-48. [PMID: 30658725 DOI: 10.1016/j.jhep.2018.10.037] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 27.0] [Reference Citation Analysis]
127 Yu J, Peng J, Luan Z, Zheng F, Su W. MicroRNAs as a Novel Tool in the Diagnosis of Liver Lipid Dysregulation and Fatty Liver Disease. Molecules 2019;24:E230. [PMID: 30634538 DOI: 10.3390/molecules24020230] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
128 Kim DH, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, Ma P, Wu SY, Chiang CM, Zhou E, Xu HE, Palvimo JJ, Chen LF, Kemper B, Kemper JK. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J 2015;34:184-99. [PMID: 25425577 DOI: 10.15252/embj.201489527] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 8.6] [Reference Citation Analysis]
129 Chen Z, Martin M, Li Z, Shyy JY. Endothelial dysfunction: the role of sterol regulatory element-binding protein-induced NOD-like receptor family pyrin domain-containing protein 3 inflammasome in atherosclerosis. Curr Opin Lipidol 2014;25:339-49. [PMID: 25188917 DOI: 10.1097/MOL.0000000000000107] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
130 Molla MD, Akalu Y, Geto Z, Dagnew B, Ayelign B, Shibabaw T. Role of Caspase-1 in the Pathogenesis of Inflammatory-Associated Chronic Noncommunicable Diseases. J Inflamm Res 2020;13:749-64. [PMID: 33116753 DOI: 10.2147/JIR.S277457] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
131 Jeong SM, Haigis MC. Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism. Mol Cells 2015;38:750-8. [PMID: 26420294 DOI: 10.14348/molcells.2015.0167] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
132 Gan L, Xiang W, Xie B, Yu L. Molecular mechanisms of fatty liver in obesity. Front Med 2015;9:275-87. [PMID: 26290284 DOI: 10.1007/s11684-015-0410-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
133 Shuang R, Rui X, Wenfang L. Phytosterols and Dementia. Plant Foods Hum Nutr 2016;71:347-54. [PMID: 27663717 DOI: 10.1007/s11130-016-0574-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
134 Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013;18:1208-46. [PMID: 22978553 DOI: 10.1089/ars.2011.4498] [Cited by in Crossref: 315] [Cited by in F6Publishing: 278] [Article Influence: 31.5] [Reference Citation Analysis]
135 Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci. 2017;13:852-867. [PMID: 28808418 DOI: 10.7150/ijbs.19370] [Cited by in Crossref: 105] [Cited by in F6Publishing: 102] [Article Influence: 21.0] [Reference Citation Analysis]
136 Chalkiadaki A, Guarente L. Metabolic signals regulate SIRT1 expression. EMBO Rep 2011;12:985-6. [PMID: 21941300 DOI: 10.1038/embor.2011.179] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
137 Adlakha YK, Saini N. MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016;37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
138 Sebastián C, Satterstrom FK, Haigis MC, Mostoslavsky R. From sirtuin biology to human diseases: an update. J Biol Chem 2012;287:42444-52. [PMID: 23086954 DOI: 10.1074/jbc.R112.402768] [Cited by in Crossref: 151] [Cited by in F6Publishing: 85] [Article Influence: 15.1] [Reference Citation Analysis]
139 He L. Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. Int J Mol Sci 2021;22:2121. [PMID: 33672754 DOI: 10.3390/ijms22042121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
140 Pirinen E, Lo Sasso G, Auwerx J. Mitochondrial sirtuins and metabolic homeostasis. Best Pract Res Clin Endocrinol Metab. 2012;26:759-770. [PMID: 23168278 DOI: 10.1016/j.beem.2012.05.001] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
141 Yu L, Liu X, Yuan Z, Li X, Yang H, Yuan Z, Sun L, Zhang L, Jiang Z. SRT1720 Alleviates ANIT-Induced Cholestasis in a Mouse Model. Front Pharmacol 2017;8:256. [PMID: 28553227 DOI: 10.3389/fphar.2017.00256] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
142 Nakamura K, Kageyama S, Ke B, Fujii T, Sosa RA, Reed EF, Datta N, Zarrinpar A, Busuttil RW, Kupiec-Weglinski JW. Sirtuin 1 attenuates inflammation and hepatocellular damage in liver transplant ischemia/Reperfusion: From mouse to human. Liver Transpl 2017;23:1282-93. [PMID: 28719070 DOI: 10.1002/lt.24821] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
143 Zou Y, Chen Z, Sun C, Yang D, Zhou Z, Peng X, Zheng L, Tang C. Exercise Intervention Mitigates Pathological Liver Changes in NAFLD Zebrafish by Activating SIRT1/AMPK/NRF2 Signaling. Int J Mol Sci 2021;22:10940. [PMID: 34681600 DOI: 10.3390/ijms222010940] [Reference Citation Analysis]
144 Zhang Y, Geng C, Liu X, Li M, Gao M, Liu X, Fang F, Chang Y. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1. Mol Metab 2017;6:138-47. [PMID: 28123944 DOI: 10.1016/j.molmet.2016.11.002] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 8.5] [Reference Citation Analysis]
145 Yuan H, Su L, Chen WY. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther 2013;6:1399-416. [PMID: 24133372 DOI: 10.2147/OTT.S37750] [Cited by in Crossref: 28] [Cited by in F6Publishing: 78] [Article Influence: 3.1] [Reference Citation Analysis]
146 Tao R, Wei D, Gao H, Liu Y, DePinho RA, Dong XC. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J Biol Chem 2011;286:14681-90. [PMID: 21388966 DOI: 10.1074/jbc.M110.201061] [Cited by in Crossref: 92] [Cited by in F6Publishing: 60] [Article Influence: 8.4] [Reference Citation Analysis]
147 Kitada M, Koya D. SIRT1 in Type 2 Diabetes: Mechanisms and Therapeutic Potential. Diabetes Metab J. 2013;37:315-325. [PMID: 24199159 DOI: 10.4093/dmj.2013.37.5.315] [Cited by in Crossref: 141] [Cited by in F6Publishing: 130] [Article Influence: 17.6] [Reference Citation Analysis]
148 Purushotham A, Xu Q, Li X. Systemic SIRT1 insufficiency results in disruption of energy homeostasis and steroid hormone metabolism upon high-fat-diet feeding. FASEB J 2012;26:656-67. [PMID: 22006157 DOI: 10.1096/fj.11-195172] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
149 Chattopadhyay T, Maniyadath B, Bagul HP, Chakraborty A, Shukla N, Budnar S, Rajendran A, Shukla A, Kamat SS, Kolthur-Seetharam U. Spatiotemporal gating of SIRT1 functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia. Proc Natl Acad Sci U S A 2020;117:6890-900. [PMID: 32152092 DOI: 10.1073/pnas.1909943117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
150 Poulose N, Raju R. Sirtuin regulation in aging and injury. Biochim Biophys Acta. 2015;1852:2442-2455. [PMID: 26303641 DOI: 10.1016/j.bbadis.2015.08.017] [Cited by in Crossref: 128] [Cited by in F6Publishing: 130] [Article Influence: 18.3] [Reference Citation Analysis]
151 Li Y, Xu S, Jiang B, Cohen RA, Zang M. Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PLoS One 2013;8:e67532. [PMID: 23825667 DOI: 10.1371/journal.pone.0067532] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 5.1] [Reference Citation Analysis]
152 McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA. SIRT1 is a Highly Networked Protein That Mediates the Adaptation to Chronic Physiological Stress. Genes Cancer 2013;4:125-34. [PMID: 24020004 DOI: 10.1177/1947601912474893] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 4.0] [Reference Citation Analysis]
153 Viscarra J, Sul HS. Epigenetic Regulation of Hepatic Lipogenesis: Role in Hepatosteatosis and Diabetes. Diabetes 2020;69:525-31. [PMID: 32198196 DOI: 10.2337/dbi18-0032] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
154 Ding H, Li Y, Liu L, Hao N, Zou S, Jiang Q, Liang Y, Ma N, Feng S, Wang X, Wu J, Loor JJ. Sirtuin 1 is involved in oleic acid-induced calf hepatocyte steatosis via alterations in lipid metabolism-related proteins. J Anim Sci 2021;99:skab250. [PMID: 34436591 DOI: 10.1093/jas/skab250] [Reference Citation Analysis]
155 Louphrasitthiphol P, Siddaway R, Loffreda A, Pogenberg V, Friedrichsen H, Schepsky A, Zeng Z, Lu M, Strub T, Freter R, Lisle R, Suer E, Thomas B, Schuster-Böckler B, Filippakopoulos P, Middleton M, Lu X, Patton EE, Davidson I, Lambert JP, Wilmanns M, Steingrímsson E, Mazza D, Goding CR. Tuning Transcription Factor Availability through Acetylation-Mediated Genomic Redistribution. Mol Cell 2020;79:472-487.e10. [PMID: 32531202 DOI: 10.1016/j.molcel.2020.05.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
156 Jang H, Lee GY, Selby CP, Lee G, Jeon YG, Lee JH, Cheng KK, Titchenell P, Birnbaum MJ, Xu A, Sancar A, Kim JB. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun 2016;7:12180. [PMID: 27412556 DOI: 10.1038/ncomms12180] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
157 Hu X, Zhang Q, Zheng J, Kong W, Zhang HH, Zeng TS, Zhang JY, Min J, Wu C, Chen LL. Alteration of FXR phosphorylation and sumoylation in liver in the development of adult catch-up growth. Exp Biol Med (Maywood) 2017;242:297-304. [PMID: 27190252 DOI: 10.1177/1535370216641788] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
158 Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239-250. [PMID: 22436747 DOI: 10.1038/nrm3313] [Cited by in Crossref: 728] [Cited by in F6Publishing: 684] [Article Influence: 72.8] [Reference Citation Analysis]
159 Ow JR, Cadez MJ, Zafer G, Foo JC, Li HY, Ghosh S, Wollmann H, Cazenave-Gassiot A, Ong CB, Wenk MR, Han W, Choi H, Kaldis P. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. Elife 2020;9:e63835. [PMID: 33345777 DOI: 10.7554/eLife.63835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
160 Abdulla A, Zhang Y, Hsu FN, Xiaoli AM, Zhao X, Yang ES, Ji JY, Yang F. Regulation of lipogenic gene expression by lysine-specific histone demethylase-1 (LSD1). J Biol Chem 2014;289:29937-47. [PMID: 25190802 DOI: 10.1074/jbc.M114.573659] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 3.1] [Reference Citation Analysis]
161 Yu JH, Song SJ, Kim A, Choi Y, Seok JW, Kim HJ, Lee YJ, Lee KS, Kim JW. Suppression of PPARγ-mediated monoacylglycerol O-acyltransferase 1 expression ameliorates alcoholic hepatic steatosis. Sci Rep 2016;6:29352. [PMID: 27404390 DOI: 10.1038/srep29352] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
162 Chen G, Li X. The decreased SIRT1 level may account for the lipid profile in chronic kidney disease. J Biol Res (Thessalon) 2019;26:9. [PMID: 31637223 DOI: 10.1186/s40709-019-0101-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
163 Arias N, Miranda J, Macarulla MT, Aguirre L, Fernández-Quintela A, Andres-Lacueva C, Urpi-Sarda M, Portillo MP. The combination of resveratrol and conjugated linoleic acid attenuates the individual effects of these molecules on triacylglycerol metabolism in adipose tissue. Eur J Nutr 2014;53:575-82. [PMID: 23896999 DOI: 10.1007/s00394-013-0566-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
164 Song Q, Chen Y, Wang J, Hao L, Huang C, Griffiths A, Sun Z, Zhou Z, Song Z. ER stress-induced upregulation of NNMT contributes to alcohol-related fatty liver development. J Hepatol 2020;73:783-93. [PMID: 32389809 DOI: 10.1016/j.jhep.2020.04.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
165 Yao W, Wang T, Huang F. p300/CBP as a Key Nutritional Sensor for Hepatic Energy Homeostasis and Liver Fibrosis. Biomed Res Int 2018;2018:8168791. [PMID: 29862292 DOI: 10.1155/2018/8168791] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
166 Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177-197. [PMID: 24692138 DOI: 10.1002/cphy.c130024] [Cited by in Crossref: 700] [Cited by in F6Publishing: 681] [Article Influence: 87.5] [Reference Citation Analysis]
167 Li ZQ, Gu XY, Hu JX, Ping Y, Li H, Yan JY, Li J, Sun R, Yu ZJ, Zhang Y. Hepatitis C virus core protein impairs metabolic disorder of liver cell via HOTAIR-Sirt1 signalling. Biosci Rep 2016;36:e00336. [PMID: 27129296 DOI: 10.1042/BSR20160088] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
168 Huang Q, Ma C, Chen L, Luo D, Chen R, Liang F. Mechanistic Insights Into the Interaction Between Transcription Factors and Epigenetic Modifications and the Contribution to the Development of Obesity. Front Endocrinol (Lausanne) 2018;9:370. [PMID: 30034368 DOI: 10.3389/fendo.2018.00370] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
169 Ilbeigi D, Nourbakhsh M, Pasalar P, Meshkani R, Shokri Afra H, Panahi GH, Borji M, Sharifi R. Nicotinamide Phosphoribosyltransferase Knockdown Leads to Lipid Accumulation in HepG2 Cells through The SIRT1-AMPK Pathway. Cell J 2020;22:125-32. [PMID: 32779442 DOI: 10.22074/cellj.2020.7013] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
170 Choi SE, Fu T, Seok S, Kim DH, Yu E, Lee KW, Kang Y, Li X, Kemper B, Kemper JK. Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell. 2013;12:1062-1072. [PMID: 23834033 DOI: 10.1111/acel.12135] [Cited by in Crossref: 147] [Cited by in F6Publishing: 147] [Article Influence: 16.3] [Reference Citation Analysis]
171 Choi SE, Kemper JK. Regulation of SIRT1 by microRNAs. Mol Cells 2013;36:385-92. [PMID: 24213676 DOI: 10.1007/s10059-013-0297-1] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 4.9] [Reference Citation Analysis]
172 Pissios P. Nicotinamide N-Methyltransferase: More Than a Vitamin B3 Clearance Enzyme. Trends Endocrinol Metab 2017;28:340-53. [PMID: 28291578 DOI: 10.1016/j.tem.2017.02.004] [Cited by in Crossref: 90] [Cited by in F6Publishing: 88] [Article Influence: 18.0] [Reference Citation Analysis]
173 Ren T, Huang C, Cheng M. Dietary blueberry and bifidobacteria attenuate nonalcoholic fatty liver disease in rats by affecting SIRT1-mediated signaling pathway. Oxid Med Cell Longev. 2014;2014:469059. [PMID: 25544867 DOI: 10.1155/] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
174 Bellet MM, Masri S, Astarita G, Sassone-Corsi P, Della Fazia MA, Servillo G. Histone Deacetylase SIRT1 Controls Proliferation, Circadian Rhythm, and Lipid Metabolism during Liver Regeneration in Mice. J Biol Chem 2016;291:23318-29. [PMID: 27634039 DOI: 10.1074/jbc.M116.737114] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 6.7] [Reference Citation Analysis]
175 Novák J, Olejníčková V, Tkáčová N, Santulli G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. Adv Exp Med Biol 2015;887:79-100. [PMID: 26662987 DOI: 10.1007/978-3-319-22380-3_5] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 11.5] [Reference Citation Analysis]
176 Gillum MP, Erion DM, Shulman GI. Sirtuin-1 regulation of mammalian metabolism. Trends Mol Med 2011;17:8-13. [PMID: 20971038 DOI: 10.1016/j.molmed.2010.09.005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 62] [Article Influence: 8.0] [Reference Citation Analysis]
177 Zhao G, Wirth D, Schmitz I, Meyer-Hermann M. A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance. Nat Commun 2017;8:1362. [PMID: 29118381 DOI: 10.1038/s41467-017-01627-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
178 Kemper JK. Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post-translational modifications. Biochim Biophys Acta. 2011;1812:842-850. [PMID: 21130162 DOI: 10.1016/j.bbadis.2010.11.011] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 5.2] [Reference Citation Analysis]
179 Park JM, Jo SH, Kim MY, Kim TH, Ahn YH. Role of transcription factor acetylation in the regulation of metabolic homeostasis. Protein Cell 2015;6:804-13. [PMID: 26334401 DOI: 10.1007/s13238-015-0204-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
180 Pittala S, Krelin Y, Kuperman Y, Shoshan-Barmatz V. A Mitochondrial VDAC1-Based Peptide Greatly Suppresses Steatosis and NASH-Associated Pathologies in a Mouse Model. Mol Ther 2019;27:1848-62. [PMID: 31375359 DOI: 10.1016/j.ymthe.2019.06.017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
181 Han JY, Park SH, Yang JH, Kim MG, Cho SS, Yoon G, Cheon SH, Ki SH. Licochalcone Suppresses LXRα-Induced Hepatic Lipogenic Gene Expression through AMPK/Sirt1 Pathway Activation. Toxicol Res 2014;30:19-25. [PMID: 24795795 DOI: 10.5487/tr.2014.30.1.019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 2.9] [Reference Citation Analysis]
182 Natarajan SK, Stringham BA, Mohr AM, Wehrkamp CJ, Lu S, Phillippi MA, Harrison-Findik D, Mott JL. FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis. J Lipid Res 2017;58:866-75. [PMID: 28250026 DOI: 10.1194/jlr.M071357] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
183 Nguyen LT, Chen H, Zaky A, Pollock C, Saad S. SIRT1 overexpression attenuates offspring metabolic and liver disorders as a result of maternal high-fat feeding. J Physiol 2019;597:467-80. [PMID: 30381838 DOI: 10.1113/JP276957] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
184 Defour A, Dessalle K, Castro Perez A, Poyot T, Castells J, Gallot YS, Durand C, Euthine V, Gu Y, Béchet D, Peinnequin A, Lefai E, Freyssenet D. Sirtuin 1 regulates SREBP-1c expression in a LXR-dependent manner in skeletal muscle. PLoS One 2012;7:e43490. [PMID: 22984430 DOI: 10.1371/journal.pone.0043490] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
185 Boutant M, Cantó C. SIRT1 metabolic actions: Integrating recent advances from mouse models. Mol Metab 2014;3:5-18. [PMID: 24567900 DOI: 10.1016/j.molmet.2013.10.006] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 8.9] [Reference Citation Analysis]
186 Nguyen LT, Mak CH, Chen H, Zaky AA, Wong MG, Pollock CA, Saad S. SIRT1 Attenuates Kidney Disorders in Male Offspring Due to Maternal High-Fat Diet. Nutrients 2019;11:E146. [PMID: 30641941 DOI: 10.3390/nu11010146] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
187 Tian L, Wang C, Hagen FK, Gormley M, Addya S, Soccio R, Casimiro MC, Zhou J, Powell MJ, Xu P, Deng H, Sauve AA, Pestell RG. Acetylation-defective mutant of Pparγ is associated with decreased lipid synthesis in breast cancer cells. Oncotarget 2014;5:7303-15. [PMID: 25229978 DOI: 10.18632/oncotarget.2371] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
188 Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev. 2012;92:1479-1514. [PMID: 22811431 DOI: 10.1152/physrev.00022.2011] [Cited by in Crossref: 344] [Cited by in F6Publishing: 340] [Article Influence: 34.4] [Reference Citation Analysis]
189 Kim MY, Bae JS, Kim TH, Park JM, Ahn YH. Role of transcription factor modifications in the pathogenesis of insulin resistance. Exp Diabetes Res. 2012;2012:716425. [PMID: 22110478 DOI: 10.1155/2012/716425] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 0.9] [Reference Citation Analysis]
190 Kwon S, Seok S, Yau P, Li X, Kemper B, Kemper JK. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3. J Biol Chem 2017;292:17312-23. [PMID: 28808064 DOI: 10.1074/jbc.M117.778720] [Cited by in Crossref: 50] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
191 Kim YC, Seok S, Zhang Y, Ma J, Kong B, Guo G, Kemper B, Kemper JK. Intestinal FGF15/19 physiologically repress hepatic lipogenesis in the late fed-state by activating SHP and DNMT3A. Nat Commun 2020;11:5969. [PMID: 33235221 DOI: 10.1038/s41467-020-19803-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
192 Chen C, Ren YM, Zhu JZ, Chen JL, Feng ZL, Zhang T, Ye Y, Lin LG. Ainsliadimer C, a disesquiterpenoid isolated from Ainsliaea macrocephala, ameliorates inflammatory responses in adipose tissue via Sirtuin 1-NLRP3 inflammasome axis. Acta Pharmacol Sin 2021. [PMID: 34789920 DOI: 10.1038/s41401-021-00797-z] [Reference Citation Analysis]
193 Purushotham A, Xu Q, Lu J, Foley JF, Yan X, Kim DH, Kemper JK, Li X. Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1α/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol Cell Biol 2012;32:1226-36. [PMID: 22290433 DOI: 10.1128/MCB.05988-11] [Cited by in Crossref: 59] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
194 Heebøll S, Thomsen KL, Pedersen SB, Vilstrup H, George J, Grønbæk H. Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease. World J Hepatol 2014; 6(4): 188-198 [PMID: 24799987 DOI: 10.4254/wjh.v6.i4.188] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
195 Seok S, Kim YC, Byun S, Choi S, Xiao Z, Iwamori N, Zhang Y, Wang C, Ma J, Ge K, Kemper B, Kemper JK. Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation. J Clin Invest 2018;128:3144-59. [PMID: 29911994 DOI: 10.1172/JCI97736] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
196 Kisková T, Kassayová M. Resveratrol Action on Lipid Metabolism in Cancer. Int J Mol Sci 2019;20:E2704. [PMID: 31159437 DOI: 10.3390/ijms20112704] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
197 Xiong X, Yu J, Fan R, Zhang C, Xu L, Sun X, Huang Y, Wang Q, Ruan HB, Qian X. NAMPT overexpression alleviates alcohol-induced hepatic steatosis in mice. PLoS One 2019;14:e0212523. [PMID: 30794635 DOI: 10.1371/journal.pone.0212523] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
198 Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin (Shanghai) 2013;45:51-60. [PMID: 23257294 DOI: 10.1093/abbs/gms108] [Cited by in Crossref: 171] [Cited by in F6Publishing: 163] [Article Influence: 19.0] [Reference Citation Analysis]
199 Lee GY, Jang H, Lee JH, Huh JY, Choi S, Chung J, Kim JB. PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon fasting signaling. Mol Cell Biol 2014;34:926-38. [PMID: 24379443 DOI: 10.1128/MCB.01166-13] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
200 Kp AD, Sj AR, Martin A. SIRT1 activation by Taurine: In vitro evaluation, molecular docking and molecular dynamics simulation studies. J Nutr Biochem 2022;:108948. [PMID: 35051560 DOI: 10.1016/j.jnutbio.2022.108948] [Reference Citation Analysis]
201 Bonzo JA, Brocker C, Jiang C, Wang RH, Deng CX, Gonzalez FJ. Hepatic sirtuin 1 is dispensable for fibrate-induced peroxisome proliferator-activated receptor-α function in vivo. Am J Physiol Endocrinol Metab 2014;306:E824-37. [PMID: 24496310 DOI: 10.1152/ajpendo.00175.2013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
202 Rottiers V, Najafi-Shoushtari SH, Kristo F, Gurumurthy S, Zhong L, Li Y, Cohen DE, Gerszten RE, Bardeesy N, Mostoslavsky R, Näär AM. MicroRNAs in metabolism and metabolic diseases. Cold Spring Harb Symp Quant Biol 2011;76:225-33. [PMID: 22156303 DOI: 10.1101/sqb.2011.76.011049] [Cited by in Crossref: 83] [Cited by in F6Publishing: 85] [Article Influence: 7.5] [Reference Citation Analysis]
203 Singh P, Reza MI, Syed AA, Garg R, Husain A, Katekar R, Goand UK, Riyazuddin M, Gupta AP, Gayen JR. PSTi8 with metformin ameliorates perimenopause induced steatohepatitis associated ER stress by regulating SIRT-1/SREBP-1c axis. Heliyon 2020;6:e05826. [PMID: 33426334 DOI: 10.1016/j.heliyon.2020.e05826] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
204 Wolfe D, Gong M, Han G, Magee TR, Ross MG, Desai M. Nutrient sensor-mediated programmed nonalcoholic fatty liver disease in low birthweight offspring. Am J Obstet Gynecol 2012;207:308.e1-6. [PMID: 22921094 DOI: 10.1016/j.ajog.2012.07.033] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
205 de Lange P, Cioffi F, Senese R, Moreno M, Lombardi A, Silvestri E, De Matteis R, Lionetti L, Mollica MP, Goglia F. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-L-thyronine in rats. Diabetes. 2011;60:2730-2739. [PMID: 21926273 DOI: 10.2337/db11-0207] [Cited by in Crossref: 84] [Cited by in F6Publishing: 80] [Article Influence: 7.6] [Reference Citation Analysis]
206 Wang LF, Miao LJ, Wang XN, Huang CC, Qian YS, Huang X, Wang XL, Jin WZ, Ji GJ, Fu M, Deng KY, Xin HB. CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARγ signaling pathway. J Cell Mol Med 2018;22:101-10. [PMID: 28816006 DOI: 10.1111/jcmm.13297] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]