BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee CI, Liu X, Zweier JL. Regulation of xanthine oxidase by nitric oxide and peroxynitrite. J Biol Chem. 2000;275:9369-9376. [PMID: 10734080 DOI: 10.1074/jbc.275.13.9369] [Cited by in Crossref: 107] [Cited by in F6Publishing: 86] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med 2011;51:576-93. [PMID: 21619929 DOI: 10.1016/j.freeradbiomed.2011.04.042] [Cited by in Crossref: 79] [Cited by in F6Publishing: 62] [Article Influence: 7.9] [Reference Citation Analysis]
2 Mir MA. Effect of cetyltrimethylammonium bromide and its gemini homologue bis(cetyldimethylammonium)butane dibromide on activity of xanthine oxidase. Journal of Dispersion Science and Technology 2017;39:1121-5. [DOI: 10.1080/01932691.2017.1383269] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Couture R, Girolami JP. Putative roles of kinin receptors in the therapeutic effects of angiotensin 1-converting enzyme inhibitors in diabetes mellitus. Eur J Pharmacol 2004;500:467-85. [PMID: 15464053 DOI: 10.1016/j.ejphar.2004.07.045] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 3.9] [Reference Citation Analysis]
4 Kiss A, Juhász L, Huliák I, Végh A. Peroxynitrite decreases arrhythmias induced by ischaemia reperfusion in anaesthetized dogs, without involving mitochondrial KATP channels. Br J Pharmacol 2008;155:1015-24. [PMID: 18846034 DOI: 10.1038/bjp.2008.344] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
5 Miyazaki H, Shoji H, Lee M. Measurement of oxidative stress in stroke-prone spontaneously hypertensive rat brain using in vivo electron spin resonance spectroscopy. Redox Report 2013;7:260-5. [DOI: 10.1179/135100002125000758] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
6 Akram M, Bhat IA, Kabir-ud-din. Binding of a novel 12-E2-12 gemini surfactant to xanthine oxidase: Analysis involving tensiometric, spectroscopic, microscopic and molecular docking approach. Journal of Luminescence 2016;170:56-63. [DOI: 10.1016/j.jlumin.2015.10.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
7 Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med. 2002;33:774-797. [PMID: 12208366 DOI: 10.1016/S0891-5849(02)00956-5] [Cited by in Crossref: 514] [Cited by in F6Publishing: 137] [Article Influence: 28.6] [Reference Citation Analysis]
8 Hu J, Peng C, Li J, Gao R, Zhang A, Ma L, Zhang L, Yang Y, Cheng Q, Wang Y, Luo T, Wang Z, Qing H, Yang S, Li Q. Serum Bisphenol A is an independent risk factor of hyperuricemia: A 6-year prospective study. Semin Arthritis Rheum 2019;48:644-8. [PMID: 29650240 DOI: 10.1016/j.semarthrit.2018.03.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
9 Yoshino F, Yoshida A, Umigai N, Kubo K, Lee MC. Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain. J Clin Biochem Nutr 2011;49:182-7. [PMID: 22128217 DOI: 10.3164/jcbn.11-01] [Cited by in Crossref: 72] [Cited by in F6Publishing: 58] [Article Influence: 7.2] [Reference Citation Analysis]
10 Bernal ME, Varon J, Acosta P, Montagnier L. Oxidative stress in critical care medicine. Int J Clin Pract 2010;64:1480-8. [PMID: 20846195 DOI: 10.1111/j.1742-1241.2010.02506.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
11 Li H, Samouilov A, Liu X, Zweier JL. Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation. J Biol Chem 2004;279:16939-46. [PMID: 14766900 DOI: 10.1074/jbc.M314336200] [Cited by in Crossref: 101] [Cited by in F6Publishing: 44] [Article Influence: 5.9] [Reference Citation Analysis]
12 Avula UMR, Hernandez JJ, Yamazaki M, Valdivia CR, Chu A, Rojas-Pena A, Kaur K, Ramos-Mondragón R, Anumonwo JM, Nattel S, Valdivia HH, Kalifa J. Atrial Infarction-Induced Spontaneous Focal Discharges and Atrial Fibrillation in Sheep: Role of Dantrolene-Sensitive Aberrant Ryanodine Receptor Calcium Release. Circ Arrhythm Electrophysiol 2018;11:e005659. [PMID: 29540372 DOI: 10.1161/CIRCEP.117.005659] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
13 Lee MC. Assessment of oxidative stress and antioxidant property using electron spin resonance (ESR) spectroscopy. J Clin Biochem Nutr 2013;52:1-8. [PMID: 23341690 DOI: 10.3164/jcbn.12-58] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
14 Lu H, Cui W, Klaassen CD. Nrf2 protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced oxidative injury and steatohepatitis. Toxicol Appl Pharmacol 2011;256:122-35. [PMID: 21846477 DOI: 10.1016/j.taap.2011.07.019] [Cited by in F6Publishing: 46] [Reference Citation Analysis]
15 Ji Y, Bennett BM. Activation of Microsomal Glutathione S -Transferase by Peroxynitrite. Mol Pharmacol 2003;63:136-46. [DOI: 10.1124/mol.63.1.136] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 1.7] [Reference Citation Analysis]
16 Léger CL, Torres-rasgado E, Fouret G, Carbonneau M. First evidence for an LDL- and HDL-associated nitratase activity that denitrates albumin-bound nitrotyrosine-Physiological consequences. IUBMB Life 2008;60:73-8. [DOI: 10.1002/iub.14] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
17 Kahl S, Elsasser TH. Endotoxin challenge increases xanthine oxidase activity in cattle: effect of growth hormone and vitamin E treatment. Domest Anim Endocrinol 2004;26:315-28. [PMID: 15063924 DOI: 10.1016/j.domaniend.2003.12.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
18 Sawa T, Akaike T, Maeda H. Tyrosine Nitration by Peroxynitrite Formed from Nitric Oxide and Superoxide Generated by Xanthine Oxidase. Journal of Biological Chemistry 2000;275:32467-74. [DOI: 10.1074/jbc.m910169199] [Cited by in Crossref: 141] [Cited by in F6Publishing: 46] [Article Influence: 6.7] [Reference Citation Analysis]
19 Yoshino F, Shoji H, Lee M. Vascular effects of singlet oxygen ( 1 O 2 ) generated by photo-excitation on adrenergic neurotransmission in isolated rabbit mesenteric vein. Redox Report 2013;7:266-70. [DOI: 10.1179/135100002125000767] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
20 Zinchuk V, Dorokhina L, Maltsev A. Prooxidant–antioxidant balance in rats under hypothermia combined with modified hemoglobin–oxygen affinity. Journal of Thermal Biology 2002;27:345-52. [DOI: 10.1016/s0306-4565(01)00099-7] [Cited by in Crossref: 8] [Article Influence: 0.4] [Reference Citation Analysis]
21 Radi R, Denicola A, Alvarez B, Ferrer-sueta G, Rubbo H. The Biological Chemistry of Peroxynitrite. Nitric Oxide. Elsevier; 2000. pp. 57-82. [DOI: 10.1016/b978-012370420-7/50005-8] [Cited by in Crossref: 38] [Article Influence: 1.8] [Reference Citation Analysis]
22 Chen YR, Chen CL, Zhang L, Green-Church KB, Zweier JL. Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation. J Biol Chem 2005;280:37339-48. [PMID: 16150735 DOI: 10.1074/jbc.M503936200] [Cited by in Crossref: 99] [Cited by in F6Publishing: 48] [Article Influence: 6.2] [Reference Citation Analysis]
23 Lee MC, Shoji H, Komatsu T, Yoshino F, Ohmori Y, Zweier JL. Inhibition of superoxide generation from fMLP-stimulated leukocytes by high concentrations of nitric oxide or peroxynitrite: characterization by electron spin resonance spectroscopy. Redox Rep 2002;7:271-5. [PMID: 12688508 DOI: 10.1179/135100002125000776] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
24 Maxwell AJ, Bruinsma KA. Uric acid is closely linked to vascular nitric oxide activity. Journal of the American College of Cardiology 2001;38:1850-8. [DOI: 10.1016/s0735-1097(01)01643-6] [Cited by in Crossref: 70] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
25 Pfeilschifter J, Beck KF, Eberhardt W, Huwiler A. Changing gears in the course of glomerulonephritis by shifting superoxide to nitric oxide-dominated chemistry. Kidney Int 2002;61:809-15. [PMID: 11849430 DOI: 10.1046/j.1523-1755.2002.00225.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
26 Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555:589-606. [PMID: 14694147 DOI: 10.1113/jphysiol.2003.055913] [Cited by in Crossref: 569] [Cited by in F6Publishing: 453] [Article Influence: 31.6] [Reference Citation Analysis]
27 Lee M, Kawai Y, Shoji H, Yoshino F, Miyazaki H, Kato H, Suga M, Kubota E. Evidence of reactive oxygen species generation in synovial fluid from patients with temporomandibular disease by electron spin resonance spectroscopy. Redox Report 2013;9:331-6. [DOI: 10.1179/135100004225006830] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
28 Chen Y, Chen C, Yeh A, Liu X, Zweier JL. Direct and Indirect Roles of Cytochrome b in the Mediation of Superoxide Generation and NO Catabolism by Mitochondrial Succinate-Cytochrome c Reductase. Journal of Biological Chemistry 2006;281:13159-68. [DOI: 10.1074/jbc.m513627200] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
29 Ziolo MT, Houser SR. Abnormal Ca(2+) cycling in failing ventricular myocytes: role of NOS1-mediated nitroso-redox balance. Antioxid Redox Signal 2014;21:2044-59. [PMID: 24801117 DOI: 10.1089/ars.2014.5873] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
30 van Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R, Nohl H, Rassaf T, Samouilov A, Slama-Schwok A, Shiva S, Vanin AF, Weitzberg E, Zweier J, Gladwin MT. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 2009;29:683-741. [PMID: 19219851 DOI: 10.1002/med.20151] [Cited by in Crossref: 295] [Cited by in F6Publishing: 241] [Article Influence: 24.6] [Reference Citation Analysis]
31 Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol 2004;122:369-82. [PMID: 15248072 DOI: 10.1007/s00418-004-0677-x] [Cited by in Crossref: 483] [Cited by in F6Publishing: 423] [Article Influence: 28.4] [Reference Citation Analysis]
32 Miyake S, Sasaguri K, Hori N, Shoji H, Yoshino F, Miyazaki H, Anzai K, Ikota N, Ozawa T, Toyoda M, Sato S, Lee MC. Biting reduces acute stress-induced oxidative stress in the rat hypothalamus. Redox Rep 2005;10:19-24. [PMID: 15829107 DOI: 10.1179/135100005X21417] [Cited by in Crossref: 21] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
33 Liu X, Cheng C, Zorko N, Cronin S, Chen YR, Zweier JL. Biphasic modulation of vascular nitric oxide catabolism by oxygen. Am J Physiol Heart Circ Physiol 2004;287:H2421-6. [PMID: 15271663 DOI: 10.1152/ajpheart.00487.2004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
34 Yeh GC, Henderson JP, Byun J, André d'Avignon D, Heinecke JW. 8-Nitroxanthine, a product of myeloperoxidase, peroxynitrite, and activated human neutrophils, enhances generation of superoxide by xanthine oxidase. Arch Biochem Biophys 2003;418:1-12. [PMID: 13679077 DOI: 10.1016/s0003-9861(03)00256-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
35 Erdogan D, Gullu H, Caliskan M, Yildirim I, Ulus T, Bilgi M, Yilmaz S, Muderrisoglu H. Coronary flow reserve and coronary microvascular functions are strongly related to serum uric acid concentrations in healthy adults: . Coronary Artery Disease 2006;17:7-14. [DOI: 10.1097/00019501-200602000-00002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
36 Buys-Gonçalves GF, Abreu LAS, Gregorio BM, Sampaio FJB, Pereira-Sampaio MA, de Souza DB. Antioxidants as Renoprotective Agents for Ischemia during Partial Nephrectomy. Biomed Res Int 2019;2019:8575398. [PMID: 30882000 DOI: 10.1155/2019/8575398] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
37 Saleem M, Ohshima H. Xanthine oxidase converts nitric oxide to nitroxyl that inactivates the enzyme. Biochemical and Biophysical Research Communications 2004;315:455-62. [DOI: 10.1016/j.bbrc.2004.01.081] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 2.6] [Reference Citation Analysis]
38 Noel Alvarez M, Trujillo M, Radi R. Peroxynitrite formation from biochemical and cellular fluxes of nitric oxide and superoxide. Nitric Oxide, Part D: Oxide Detection, Mitochondria and Cell Functions, and Peroxynitrite Reactions. Elsevier; 2002. pp. 353-66. [DOI: 10.1016/s0076-6879(02)59198-9] [Cited by in Crossref: 52] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
39 Pitocco D, Di Stasio E, Romitelli F, Zaccardi F, Tavazzi B, Manto A, Caputo S, Musella T, Zuppi C, Santini SA, Ghirlanda G. Hypouricemia linked to an overproduction of nitric oxide is an early marker of oxidative stress in female subjects with type 1 diabetes. Diabetes Metab Res Rev 2008;24:318-23. [PMID: 18254136 DOI: 10.1002/dmrr.814] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
40 Bergamini C, Cicoira M, Rossi A, Vassanelli C. Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail 2009;11:444-52. [PMID: 19346534 DOI: 10.1093/eurjhf/hfp042] [Cited by in Crossref: 106] [Cited by in F6Publishing: 89] [Article Influence: 8.8] [Reference Citation Analysis]
41 Lee MC, Velayutham M, Komatsu T, Hille R, Zweier JL. Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry 2014;53:6615-23. [PMID: 25243829 DOI: 10.1021/bi500582r] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 3.9] [Reference Citation Analysis]
42 Mercuro G, Vitale C, Cerquetani E, Zoncu S, Deidda M, Fini M, Rosano GM. Effect of hyperuricemia upon endothelial function in patients at increased cardiovascular risk. Am J Cardiol 2004;94:932-5. [PMID: 15464681 DOI: 10.1016/j.amjcard.2004.06.032] [Cited by in Crossref: 148] [Cited by in F6Publishing: 128] [Article Influence: 8.7] [Reference Citation Analysis]
43 Hadizadeh M, Keyhani E, Keyhani J, Khodadadi C. Functional and structural alterations induced by copper in xanthine oxidase. Acta Biochimica et Biophysica Sinica 2009;41:603-17. [DOI: 10.1093/abbs/gmp048] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
44 Komatsu T, Kobayashi K, Helmerhorst E, Oppenheim F, Chang-Il Lee M. Direct assessment of the antioxidant property of salivary histatin. J Clin Biochem Nutr 2019;65:217-22. [PMID: 31777423 DOI: 10.3164/jcbn.19-53] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
45 Silva KC, Rosales MA, Biswas SK, Lopes de Faria JB, Lopes de Faria JM. Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes. 2009;58:1382-1390. [PMID: 19289456 DOI: 10.2337/db09-0166] [Cited by in Crossref: 78] [Cited by in F6Publishing: 70] [Article Influence: 6.5] [Reference Citation Analysis]
46 Webster RP, Roberts VH, Myatt L. Protein nitration in placenta - functional significance. Placenta. 2008;29:985-994. [PMID: 18851882 DOI: 10.1016/j.placenta.2008.09.003] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 5.4] [Reference Citation Analysis]
47 Daiber A, Schildknecht S, Müller J, Kamuf J, Bachschmid MM, Ullrich V. Chemical model systems for cellular nitros(yl)ation reactions. Free Radic Biol Med 2009;47:458-67. [PMID: 19477267 DOI: 10.1016/j.freeradbiomed.2009.05.019] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.4] [Reference Citation Analysis]
48 Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, Del Río LA. Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 2008;165:1319-30. [PMID: 18538891 DOI: 10.1016/j.jplph.2008.04.004] [Cited by in Crossref: 86] [Cited by in F6Publishing: 52] [Article Influence: 6.6] [Reference Citation Analysis]
49 Lalu MM, Wang W, Schulz R. Peroxynitrite in myocardial ischemia-reperfusion injury. Heart Fail Rev 2002;7:359-69. [PMID: 12379821 DOI: 10.1023/a:1020766502316] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
50 Kolluru GK, Shen X, Bir SC, Kevil CG. Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 2013;35:5-20. [PMID: 23850632 DOI: 10.1016/j.niox.2013.07.002] [Cited by in Crossref: 248] [Cited by in F6Publishing: 201] [Article Influence: 31.0] [Reference Citation Analysis]
51 Mir MA, Khan JM, Khan RH, Dar AA, Rather GM. Interaction of Cetyltrimethylammonium Bromide and Its Gemini Homologue Bis(cetyldimethylammonium)butane Dibromide with Xanthine Oxidase. J Phys Chem B 2012;116:5711-8. [DOI: 10.1021/jp207803c] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
52 Godber BL, Doel JJ, Goult TA, Eisenthal R, Harrison R. Suicide inactivation of xanthine oxidoreductase during reduction of inorganic nitrite to nitric oxide. Biochem J 2001;358:325-33. [PMID: 11513730 DOI: 10.1042/0264-6021:3580325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
53 Tupling AR, Bombardier E, Vigna C, Quadrilatero J, Fu M. Interaction between Hsp70 and the SR Ca 2+ pump: a potential mechanism for cytoprotection in heart and skeletal muscle. Appl Physiol Nutr Metab 2008;33:1023-32. [DOI: 10.1139/h08-067] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
54 Kaminski KA, Bonda TA, Korecki J, Musial WJ. Oxidative stress and neutrophil activation—the two keystones of ischemia/reperfusion injury. International Journal of Cardiology 2002;86:41-59. [DOI: 10.1016/s0167-5273(02)00189-4] [Cited by in Crossref: 211] [Cited by in F6Publishing: 49] [Article Influence: 11.1] [Reference Citation Analysis]
55 Akram M, Bhat IA, Anwar S, Kabir-ud-din. Biophysical analysis of novel oxy-diester hybrid cationic gemini surfactants (C m -E2O-C m ) with xanthine oxidase (XO). Process Biochemistry 2016;51:1212-21. [DOI: 10.1016/j.procbio.2016.05.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
56 Sabadashka M, Sybirna N. Reduction of radiation-induced nitrative stress in leucocytes and kidney cells of rats upon administration of polyphenolic complex concentrates from red wine. Cytol Genet 2016;50:187-95. [DOI: 10.3103/s0095452716030099] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
57 Aruoma OI, Colognato R, Fontana I, Gartlon J, Migliore L, Koike K, Coecke S, Lamy E, Mersch-Sundermann V, Laurenza I. Molecular effects of fermented papaya preparation on oxidative damage, MAP Kinase activation and modulation of the benzo[a]pyrene mediated genotoxicity. Biofactors. 2006;26:147-159. [PMID: 16823100 DOI: 10.1002/biof.5520260205] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 2.5] [Reference Citation Analysis]
58 Ozmen S, Ayhan S, Demir Y, Siemionow M, Atabay K. Impact of gradual blood flow increase on ischaemia-reperfusion injury in the rat cremaster microcirculation model. J Plast Reconstr Aesthet Surg 2008;61:939-48. [PMID: 17632046 DOI: 10.1016/j.bjps.2007.05.017] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
59 Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A; American Heart Association Council on Basic Cardiovascular Sciences. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016;119:e39-75. [PMID: 27418630 DOI: 10.1161/RES.0000000000000110] [Cited by in Crossref: 180] [Cited by in F6Publishing: 107] [Article Influence: 36.0] [Reference Citation Analysis]
60 Jhang JJ, Ong JW, Lu CC, Hsu CL, Lin JH, Liao JW, Yen GC. Hypouricemic effects of Mesona procumbens Hemsl. through modulating xanthine oxidase activity in vitro and in vivo. Food Funct 2016;7:4239-46. [PMID: 27713960 DOI: 10.1039/c6fo00822d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
61 de Mel A, Murad F, Seifalian AM. Nitric oxide: a guardian for vascular grafts? Chem Rev 2011;111:5742-67. [PMID: 21663322 DOI: 10.1021/cr200008n] [Cited by in Crossref: 115] [Cited by in F6Publishing: 89] [Article Influence: 11.5] [Reference Citation Analysis]
62 Chen Y, Chen C, Liu X, Li H, Zweier JL, Mason RP. Involvement of protein radical, protein aggregation, and effects on NO metabolism in the hypochlorite-mediated oxidation of mitochondrial cytochrome c. Free Radical Biology and Medicine 2004;37:1591-603. [DOI: 10.1016/j.freeradbiomed.2004.07.013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 2.4] [Reference Citation Analysis]
63 Akram M, Bhat IA, Bhat WF, Kabir-ud-din. Conformational alterations induced by novel green 16-E2-16 gemini surfactant in xanthine oxidase: Biophysical insights from tensiometry, spectroscopy, microscopy and molecular modeling. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015;150:440-50. [DOI: 10.1016/j.saa.2015.05.056] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
64 Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315-424. [PMID: 17237348 DOI: 10.1152/physrev.00029.2006] [Cited by in Crossref: 3817] [Cited by in F6Publishing: 3154] [Article Influence: 272.6] [Reference Citation Analysis]
65 Chen YR, Chen CL, Chen W, Zweier JL, Augusto O, Radi R, Mason RP. Formation of protein tyrosine ortho-semiquinone radical and nitrotyrosine from cytochrome c-derived tyrosyl radical. J Biol Chem 2004;279:18054-62. [PMID: 14761966 DOI: 10.1074/jbc.M307706200] [Cited by in Crossref: 66] [Cited by in F6Publishing: 15] [Article Influence: 3.9] [Reference Citation Analysis]
66 Chen Y, Chen C, Liu X, He G, Zweier JL. Involvement of phospholipid, biomembrane integrity, and NO peroxidase activity in the NO catabolism by cytochrome c oxidase. Archives of Biochemistry and Biophysics 2005;439:200-10. [DOI: 10.1016/j.abb.2005.05.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
67 Komatsu T, Kobayashi K, Morimoto Y, Helmerhorst E, Oppenheim F, Chang-Il Lee M. Direct evaluation of the antioxidant properties of salivary proline-rich proteins. J Clin Biochem Nutr 2020;67:131-6. [PMID: 33041509 DOI: 10.3164/jcbn.19-75] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Li H, Samouilov A, Liu X, Zweier JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzednitrite reduction. Evaluation of its role in nitric oxide generation in anoxic tissues. J Biol Chem. 2001;276:24482-24489. [PMID: 11312267 DOI: 10.1074/jbc.M011648200] [Cited by in Crossref: 198] [Cited by in F6Publishing: 90] [Article Influence: 9.9] [Reference Citation Analysis]
69 Ko JK, Lam FY, Cheung AP. Amelioration of experimental colitis by Astragalus membranaceus through anti-oxidation and inhibition of adhesion molecule synthesis. World J Gastroenterol. 2005;11:5787-5794. [PMID: 16270386 DOI: 10.3748/wjg.v11.i37.5787] [Cited by in CrossRef: 50] [Cited by in F6Publishing: 45] [Article Influence: 3.1] [Reference Citation Analysis]
70 Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H2 O2 metabolism. J Integr Plant Biol 2019;61:803-16. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
71 Robinson VK, Sato E, Nelson DK, Camhi SL, Robbins RA, Hoyt JC. Peroxynitrite inhibits inducible (type 2) nitric oxide synthase in murine lung epithelial cells in vitro. Free Radic Biol Med 2001;30:986-91. [PMID: 11316578 DOI: 10.1016/s0891-5849(01)00489-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
72 Zivna D, Plhalova L, Chromcova L, Blahova J, Prokes M, Skoric M, Marsalek P, Praskova E, Stepanova S, Svobodova Z. The effects of ciprofloxacin on early life stages of common carp ( Cyprinus carpio ): Effects of ciprofloxacin on early life stages of fish. Environ Toxicol Chem 2016;35:1733-40. [DOI: 10.1002/etc.3317] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
73 Liu X, Liu Q, Gupta E, Zorko N, Brownlee E, Zweier JL. Quantitative measurements of NO reaction kinetics with a Clark-type electrode. Nitric Oxide 2005;13:68-77. [PMID: 15964224 DOI: 10.1016/j.niox.2005.04.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.4] [Reference Citation Analysis]
74 Maxwell AJ. Mechanisms of dysfunction of the nitric oxide pathway in vascular diseases. Nitric Oxide. 2002;6:101-124. [PMID: 11890735 DOI: 10.1006/niox.2001.0394] [Cited by in Crossref: 84] [Cited by in F6Publishing: 71] [Article Influence: 4.4] [Reference Citation Analysis]
75 Maehata Y, Ozawa S, Kobayashi K, Kato Y, Yoshino F, Miyamoto C, Izukuri K, Kubota E, Hata R, Lee MC. Reactive oxygen species (ROS) reduce the expression of BRAK/CXCL14 in human head and neck squamous cell carcinoma cells. Free Radic Res. 2010;44:913-924. [PMID: 20815772 DOI: 10.3109/10715762.2010.490836] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
76 Lee Y, Chang D, Tsai JC. Association of a 27-bp repeat polymorphism in intron 4 of endothelial constitutive nitric oxide synthase gene with serum uric acid levels in chinese subjects with type 2 diabetes. Metabolism 2003;52:1448-53. [DOI: 10.1016/s0026-0495(03)00258-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
77 Akram M, Bhat IA, Kabir-ud-din. Interaction of a green ester-bonded gemini surfactant with xanthine oxidase: Biophysical perspective. International Journal of Biological Macromolecules 2015;78:62-71. [DOI: 10.1016/j.ijbiomac.2015.03.050] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
78 Qiu W, Kass DA, Hu Q, Ziegelstein RC. Determinants of shear stress-stimulated endothelial nitric oxide production assessed in real-time by 4,5-diaminofluorescein fluorescence. Biochem Biophys Res Commun 2001;286:328-35. [PMID: 11500041 DOI: 10.1006/bbrc.2001.5401] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 2.1] [Reference Citation Analysis]
79 Zielonka J, Sikora A, Joseph J, Kalyanaraman B. Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe. J Biol Chem 2010;285:14210-6. [PMID: 20194496 DOI: 10.1074/jbc.M110.110080] [Cited by in Crossref: 150] [Cited by in F6Publishing: 72] [Article Influence: 13.6] [Reference Citation Analysis]
80 Ma L, Hu J, Li J, Yang Y, Zhang L, Zou L, Gao R, Peng C, Wang Y, Luo T, Xiang X, Qing H, Xiao X, Wu C, Wang Z, He JC, Li Q, Yang S. Bisphenol A promotes hyperuricemia via activating xanthine oxidase. FASEB j 2018;32:1007-16. [DOI: 10.1096/fj.201700755r] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
81 Funaki S, Tokutomi F, Wada-takahashi S, Yoshino F, Yoshida A, Maehata Y, Miyamoto C, Toyama T, Sato T, Hamada N, Lee MC, Takahashi S. Porphyromonas gingivalis infection modifies oral microcirculation and aortic vascular function in the stroke-prone spontaneously hypertensive rat (SHRSP). Microbial Pathogenesis 2016;92:36-42. [DOI: 10.1016/j.micpath.2015.12.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
82 Siervo M, Stephan B, Feelisch M, Bluck L. Measurement of in vivo nitric oxide synthesis in humans using stable isotopic methods: a systematic review. Free Radical Biology and Medicine 2011;51:795-804. [DOI: 10.1016/j.freeradbiomed.2011.05.032] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
83 Sugiyama S, Takahashi SS, Tokutomi FA, Yoshida A, Kobayashi K, Yoshino F, Wada-Takahashi S, Toyama T, Watanabe K, Hamada N. Gingival vascular functions are altered in type 2 diabetes mellitus model and/or periodontitis model. J Clin Biochem Nutr. 2012;51:108-113. [PMID: 22962527 DOI: 10.3164/jcbn.11-103] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
84 Yoshida A, Yoshino F, Tsubata M, Ikeguchi M, Nakamura T, Lee MC. Direct assessment by electron spin resonance spectroscopy of the antioxidant effects of French maritime pine bark extract in the maxillofacial region of hairless mice. J Clin Biochem Nutr 2011;49:79-86. [PMID: 21980222 DOI: 10.3164/jcbn.10-103] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
85 Tokutomi F, Wada-takahashi S, Sugiyama S, Toyama T, Sato T, Hamada N, Tsukinoki K, Takahashi S, Lee MC. Porphyromonas gingivalis-induced alveolar bone loss is accelerated in the stroke-prone spontaneously hypertensive rat. Archives of Oral Biology 2015;60:911-8. [DOI: 10.1016/j.archoralbio.2015.02.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
86 Yoshino F, Lee M, Kobayashi K, Hayashi Y, Aruoma OI. Assessment of the effect of fermented papaya preparation on oxidative damage in spontaneously hypertensive rat brain using electron spin resonance (ESR) imaging and L-band ESR spectroscopy. Journal of Functional Foods 2009;1:375-80. [DOI: 10.1016/j.jff.2009.09.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]